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Unpredictability of symmetry breaking in a phase transition
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We study the sensitive dependence on initial conditions of the final states of systems undergo-
ing a symmetry-breaking phase transition. If the knowledge of the initial state is incomplete the
macroscopic final state is unpredictable. This is demonstrated by computer simulations for two
simple classical many-body systems. Next, this unpredictability is discussed within the more gen-
eral framework of quantum field theories. For infinite systems a mixing property is exposed that
prevents long-time predictions on the basis of local measurements. Finally, we remark on the more
philosophical question whether the symmetry breaking of a highly symmetric theory after the big
bang can be predicted or has to be considered as an historical accident.

PACS number(s): 05.70.Fh, 05.45.+b, 03.70.+k

I. INTRODUCTION

The laws of physics as we see them today are supposed
to be the result of a phase transition which happened
shortly after the big bang. Thereby a highly symmetric
unified theory ("theory of everything, " TOE) was broken
down into the various interactions we find now. They are
all assumed to be contained in the TOE and, in principle,
derivable from it. In this paper we shall investigate to
what extent the outcome of a symmetry breaking in a
phase transition can be predicted. Although the TOE
is presumably deterministic one is dealing with a system
of many particles (10 s at present) where not everything
can be measured. Thus we shall investigate how much
the outcome of a phase transition is influenced by the
fact that the initial state contains elements which are not
completely determined.

In Sec. II we shall do this erst by studying two classical
models. One is a system of 400 particles with attractive
two-body potentials, the other is a 100 x 100 spin sys-
tem on a lattice with ferromagnetic interactions. In both
examples we work in an energy range where theory pre-
dicts a phase transition to occur and, indeed, practically
for all initial conditions sooner or later a phase transi-
tion takes place. In both cases it breaks the symmetry of
the system. In the first case a cluster is formed breaking
the translational symmetry, in the second case the up-
down symmetry is broken. In both cases the outcome of
the phase transition (position of the cluster or direction
of the spins) shows exceedingly sensitive dependence on
initial conditions. We demonstrate that if we leave the
initial conditions for all but two particles (or spins) the
same and for those two we just interchange part of their
initial data the resulting pattern of symmetry breaking
is completely different.

After these computer solutions of simple classi-
cal many-body systems with deterministic and time-
reversible equations of motion we turn in Sec. III to
a theoretical study of unpredictability in the quantum

theory of large systems. So far relativistic quantum field
theories give the best framework for a TOE and there the
situation is analogous to our classical models: What one
can measure are only local quantities and there always
remains an unobserved outer part; These theories pre-
sumably have a property which is called mixing and this
tells us that in spite of the deterministic time evolution
long-term predictions become impossible.
These results suggest to us that although a TOE may
contain all the known laws of nature and many other
possible laws as potentiality our present situation is the
result of historical accidents which are beyond the pre-
dictive power of any kind of theory known today.

II. TWO EXAMPLES
FROM CLASSICAL MECHANICS

Our arguments are based on the assumption of a very
sensitive initial-condition dependence of the Anal states
of a system undergoing a symmetry-breaking phase tran-
sition. We want to illustrate this point by two examples
taken from classical mechanics.

A. Translational symmetry breaking
in self-gravitating systems

A many-body system of particles interacting with
purely attractive forces is known to be mechanically and
thermodynamically unstable if its energy is below a cer-
tain threshold [1,2]. Computer simulations reveal that
even if one starts out with initial conditions for the
particles homogeneous in space [Fig. 1(a)] and with a
Maxwell-Boltzmann distribution in momentum space
clusters are formed very quickly which Boat in the rest-
atmosphere of the remaining particles [Fig. 1(b)]. For
this qualitative behavior the precise shape of the attrac-
tive pair potential and the dimension of space is imma-
terial. Our example is for a two-dimensional system of
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finite volume V the collapsed equilibrium state is char-
acterized by a single cluster which may contain a sizable
fraction of all particles [N, 2N/1n(V/o )], and which
performs a Brownian motion in the gas of the remain-
ing particles as depicted in Fig. 2(a). This cluster is
formed very early in the simulation run by acquiring more
and more particles from the gas. During that transient
growth it also heats up considerably [4] with a kinetic
temperature T = K,/N, N„where K, is the peculiar
kinetic energy of the cluster particles. If reduced units
are used for which the potential parameters K, o. and the
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FIG. 1. (a) and (b) Snapshots of the homogeneous ran-
dom initial configuration (a) and of a final clustered state (b)
for the planar 400-particle system of Sec. IIA. In reduced
units the volume V = 800, and the particle diameter in the
figure is 1/~2, the infiection point of the attractive potential.

N = 400 particles confined to a square volume U with
periodic boundary conditions, for which the Hamiltonian
is written as

II~ = ) * + ) ) v(x; —x, ).
i=1 i (&j) j

Here, x; and p; denote the position and momentum of
particle i, and m is the mass taken to be equal for all
particles. For the pair potential we take a short-ranged
negative Gaussian,

v(x —y) = eKxp[-(y —x—) /0 ].

With this choice the singularity at the origin and the
long-range cutoK problems inherent to the gravitational
I/x potential are avoided in the simulation, but the es-
sential instability properties of gravitational systems are
retained. Extensive computer simulations have been car-
ried out with this model [3—6] which has interesting equi-
librium properties (such as a negative specific heat in a
certain range of energies) and a pronounced transient dy-
namical behavior while approaching equilibrium. For a

FIG. 2. (a)—(c) Instantaneous location of the center of
mass of the largest cluster formed during the erst 100 time
units of a simulation run for the 400-particle model of Sec.
II A. (a) reference system; (b) the x components of the mo-
menta in the initial conditions of two particles are inter-
changed. (c) The y components of the momenta in the initial
conditions of two particles are interchanged.



48 UNPREDICTABILITY OF SYMMETRY BREAKING IN A PHASE. . . 4335

mass m are unity, the time required to reach the equi-
librium cluster size is of the order of t 40, although it
takes at least 200 times longer to reach thermal equilib-
rium between the cluster and the surrounding gas [4]. In
Fig. 2(a) the points indicate the Brownian motion of the
center of mass of the largest cluster during the first 100
time units of the simulation run.

The homogeneous initial state [Fig. 1(a)] is transla-
tionally invariant. However, this symmetry is broken in
the early stages of the phase transition by the forma-
tion of the main cluster, but the exact location where
this cluster is formed depends very sensitively on the ini-
tial conditions. To demonstrate this fact the simulation
leading to Fig. 2(a) was repeated with identical initial
conditions with the exception of two particles for which
the x components of their momenta were interchanged.
This slight modification also leaves the total energy and
momentum unafFected. The result is shown in Fig. 2(b).
An analogous interchange of the y components of the
momenta of the same pair of particles leads to Fig. 2(c).
It is obvious that there is no resemblence between these
three pictures as a result of the Lyapunov instability of
the system in spite of the very weak perturbation applied
to the initial state. Any slight ignorance about the initial
state is dramatically amplified by the symmetry-breaking
phase transition and leads to diferent macroscopic final
states.

Even in low-dimensional systems with more than one
attractor competing with each other and with a fractal
boundary between their respective basins of attraction,
a similar sensitive dependence of the occupancy of the
final attractors on initial conditions has been found [7,8].

B. Dynamics of phase transition
in a tvro-dimensional Ising model

The second example we want to consider is a deter-
ministic Ising spin system in two dimensions exhibiting
a ferromagnetic phase transition [9]. This algorithm is
based on a deterministic cellular automaton rule. It is
invariant toith respect to time reversal and exactly con-
serves the total energy

II = —J ) s s,. + ) K, .
(i,j) i

The first term in this equation is the usual ferromag-
netic (J & 0) Ising energy with spins s, C (+1,—1) on
site i, and the sum is over all next-neighbor pairs of lat-
tice sites. The second term is the kinetic-energy where
I|, 6 (0, 4J, 8J, 12J) is the kinetic-energy contribution
of site i and may be associated with a momentum vari-
able conjugate to spin s, . Using periodic boundaries,
any spin s; is surrounded by four next neighbors. If it is
fIipped the Ising energy changes by a multiple of 4J. This
move will be accepted only if the kinetic-energy variable
K, can be varied accordingly to keep the total energy a
constant. If the change of the Ising energy cannot be ab-
sorbed by K; the move is not accepted and s, , K,. remain
unchanged. Checkerboard updating is used for all sites
[9] such that in a first sweep through the system black
sublattice sites are updated first with the white sublat-
tice sites left unchanged. In a second sweep the role of
the black and white sublattices is exchanged. A full time
step requires an update of all sites and consequently two
consecutive sweeps through the system. Since the kinetic

(c)

FIG. 3. (a)—(d) Instanta-
neous spin patterns for the ref-
erence system of the dynamical
Ising model of Sec. IIB. A site
with spin s = +1 is marked
black, a site with s = —1 is
marked white. (a): t = 0;
(b): t = 3000; (c): t = OOOO;

(d): t = 9000. t is the num-
ber of time steps. During one
time step all sites of the lat-
tice are updated in two full
sweeps through the respective
black and white checkerboard
sublattices of the system.
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energy variable is exponentially distributed with weight
P(K, ) oc exp( —PK, ), the temperature T = I/P is de-
fined by the expression for the expectation value of K,".

(K,) = ) K, exp —PK, ) exp —PK, .
4~, )

In this equation the sums are over the four values which
the kinetic energy K,. may assume and which are listed
above. Since only integers are involved, the dynamics of
this model is not aIII'ected by rounding errors.

For the simulations we put J = 1 and use a square
lattice with 100 x 100 sites and periodic boundaries. The
initial conditions were chosen such that the upper half of
the spins are +1 [black in Fig. 3(a)], the lower half —1
[white dots in Fig. 3(a)] making the total magnetization
zero. All site kinetic energies were set to zero with the
exception of 1500 randomly chosen black sublattice sites
of the checkerboard [9] which were assigned a value 12.
The temperature of this system, T = 1.55, is well below
the critical temperature for the magnetic phase transi-
tion, T = 2.269. In Figs. 3(b,c) some intermediate con-
Ggurations are shown exhibiting quite large fluctuations
around zero magnetization before settling after about
7000 time steps into a stationary state of almost uni-
form positive magnetization [Fig. 3(d)]. About 89%%uo of
the spins are +1, and this number fluctuates only slightly.
Of course, the notion of a phase transition and of a spon-
taneous positive magnetization is strictly correct only in
the thermodynamic limit of an infinite system [10].

In a second simulation the same initial conditions were
used with the exception of two selected next-neighbor lat-

tice sites of the black sublattice (separated only by a sin-
gle white lattice site in the full checkerboard lattice) the
kinetic energies of which, 0 and 12, were interchanged.
The initial spin configuration [Fig. 4(a)] is identical to
that in Fig. 3(a). The simulation again reveals quite wild
fluctuations of the total magnetization around zero [Figs.
4(b, c)] before committing itself after about 18000 time
steps to a stationary state of almost uniform negative
magnetization [Fig. 4(d)].

III. MIX.INC SYSTEMS

For the convenience of the reader we start with a sum-
mary of the relevant features of the quantum-mechanical
formalism. There the observables are the Hermitian el-
ements of an algebra A. Classically A is Abelian and
consists of the functions f (q, p) on phase space. The
time evolution a ~ aq, a E A is an automorphism
of A. Classically this means that f follows the orbits
(q, p) ~ (qi, pi) which are determined by the equations
of motion. In quantum field theory A is the bosonic
part of the Geld algebra which is generated by the local
destruction and creation operators o. and o.* of parti-
cles [canonical commutation relations (CCR) algebra for
bosons and canonical anticommutation relations (CAR)
algebra for fermions]. A state w is a normalized posi-
tive linear functional which assigns to a E A its expec-
tation value cu(a). Classically w is given by a probability
distribution iv(q, p), w(f) = f dqdpiv(q, p) f(q, p), and in
elementary quantum mechanics it corresponds to a den-
sity matrix p, cu(a) = Tr pa. For the following discussion
it is sufBcient to consider only the simplest observables,

(b)

(c)

FIG. 4. (a)—(d) Instanta-
neous spin patterns for the
spin system of Sec. IIB with
slightly modified initial condi-
tions as compared to the ref-
erence system of Fig. 3: The
kinetic energies, 0 and 12, of
two next-neighbor lattice sites
of the black checkerboard sub-
lattice were interchanged. (a)
t=0;(b)t =8000;(c)t
15 000 (d) t = 24 000.
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namely projections p = p = p* (propositions). They
have only eigenvalues 0 or 1 and are the propositions
that certain observables have their values in a particular
region I'. Thus, classically they are the characteristic
function y~(q, p) = 1 if (q, p) F F C R, 0 otherwise. n
is the number of degrees of freedom.

If we have a state with io(p) ) 0, and a measurement
of p has the result 1, the state is refined to ~„,

~(a) = e dq, dp;b(H(p, q) —E)a(q, p).

If we know in addition to the energy E that particle 1 is
in a region F c: R, this state is refined to

~~(a) = ~(pap)l~(p).
For instance, the classical microcanonical state w is the
Liouville measure on the energy shell,

(a) = e dq*dp'~(H(p q) —E)~~(qi)a(q p)!~h~)

where y~(qi) = 1 for qi C F, 0 elsewhere. Furthermore,
has the property of a projection, and

(yp) = 1, so that we are sure that particle 1 is in
F. In quantum mechanics, if p is one dimensional w„(a)
corresponds to the usual contraction of the wave func-
tion, but for quantum field theory in infinite space the
local observables do not contain one-dimensional projec-
tions since there is always something unobserved outside.
Nevertheless, the negation 1 —p of a proposition p is also
an observable.

The meaning of these notions is illustrated by the fol-
lowing lemma.

Lemma I2. The following statements for propositions
are equivalent: (1) p ~ q (~ means logical implication);
(2) p & q [as operator inequality, which means u(p)
~(q) V~]; (3) pqp = p; (4) V ~: ~p(q) = 1; (5) If A is
Abelian and p (respectively, q) correspond to regions P
(respectively, Q) then P C Q.

Proof. (3) ~ (4) follows from the definition of w„; (1)
~ (4): Every observer who has measured p = 1 is sure
to find q = 1; (2) ~ (3): q & 1 implies pqp & p and p & q
implies p & pqp; not (2) ~ not (3): not (2) implies 3w
with w(p) = 1, w(q) & 1 but w(p) = 1 M w(pqp) = cu(q)
and thus tu(pqp) & cu(p); (5) M (2) is obvious.

For infinite quantum systems a local observation can
refine a state u only to a wz, where q is the local ob-
servable about which we have gained knowledge. This
means roughly that we can measure what we want but
not infinitely many things. To discuss the limits on pre-
dictability due to the unobserved outside we have to seek
properties like (4) of Ll which do not depend on w.

Iemma L2. With the norm
~~
a

~~

=
sup~~~~~ i ~~„~~ i [(x]a)y)[ the following properties of pro-

jections p, q are equivalent: (1) ()pq][ = 1; (2) [(qp[[ = 1;
(3) ((pqp[( = 1; (4) JJqpq[( = 1; (5) Ve ) 0 3cu such that
(u„(q) ) 1 —e; (6) Ve ) 0 3~' such that (u'(p) ) 1 —a",

(7) If A is Abelian then P fl Q g S.
Proof. (1) m (2): follows from ~a*~~ = ~~a~~; (1) m

(3) and (2) m (4) follow from ((a*a( = ([a([; (3) m (5)
and (4) ~ (6) follow since for a = a" we have ((a((
sup ~cu(a) ~; (7) ~ (1) The product of the characteristic
functions is equal to 1 in P 9 Q and zero otherwise.

How chaotic or unpredictable a quantum system is
shall be characterized by the following definition [11—13].

Definition DI. A quantum dynamical system is called

mixing if

Va, b E A.

a CAMa= ) v;z o

j finite i

The time evolution is just a shift,

(O~)i = 0~+i VtcZ, .

Since //aa[/ = [faf/[/a[/ if

a=) ~i,j - ~X, with x, g xg Vi, k

we see that the system is mixing. Actually even the norm
closure of A where the a's are infinite norm convergent
sums is also mixing. Evidently a system is mixing if it

An immediate consequence is the following lemma.
Lemma L8. Mixing is equivalent to the fol-

lowing properties: (1) limq~ [/abq [[
= ][a f/ f

fb f/;

(2) lim~~ [ ba[ =
/ af[f[bf[; (3) for a b ) 0:

lim, ~ //ab, a
f

= [a/[ [b .
Proof Follows .from

/
a[ = [/ag ff

= //a*/f = //aa*/['~'.
The concept of mixing merits the following remarks.
(a) Classically mixing means that any region F is so

finely distributed over all of phase space that it eventually
meets any other region G such that kg g 0.

(b) Mixing systems have to be ergodic, for if there
was a constant observable a = ai $ 1 we could take
two functions f, g with disjoint support on the spectrum
of a such that 0 = f(a)g(a) = f(a)g(aq) = f(a)g &(a)
for all t Thus, if. A contains a Hamiltonian H with
aq ——e' ae ' the system cannot be mixing.

To make the notion of a mixing system more transpar-
ent, we consider two examples which are very similar and
with a discrete time.

Example A: The shift of a spin chain. Vx E Z one
has spin operators o. which commute on difI'erent sites,
[o~, o ]

= 0 Vx g x', and A are the polynomials in the
o. , that is
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has a normdense mixing subsystem.
Example 8: The shift on a fermionic chain. Vx 6 Z

one has the fermion operators o. , o.*, o. o.*, + o.*,o,

~, and again (n )i ——a +z. This system is not mixing.
Consider the projection p = (1 + e) j2, e = n + a*,
e = 1, and eel+ eqe = 0 Vt g 0. Thus,

1
ppip = —[(1 + e) (1 + eq) (1 + e)]

8

= —((1 + e) + (1 —e )et] =

Ilpp~pll =

Therefore the infinite range of correlations created by
anticommutativity destroys the mixing.

It is striking that these two examples have so difI'erent
mixing properties in spite of their similarity.

The problem of predictability can now be formulated
as follows. If we want to be able to predict a property
described by a projection q with certainty at time t, we
need a measurement p at t = 0 such that io(pq&p)/w(p) =
1, or that the negation 1 —qi of qq is false: w(p(l —qi)p) =
0. For a real prediction we also require that this is a
property of the dynamics a —+ aq and does not depend
on the observer represented by w. If all observers agree
that 1 —

qq is false this means that sup [w(p(l —
qt, )p)] =

IIp(1 —q, )pII = 0. Now it turns out that for the chaotic
system we are dealing with there will never be a p such
that this holds for all times. This is the content of the
following lemma.

Lemma Lg For no p. roposition q of' a mixing system
there is a proposition p which for all observers even faintly
suggests q for all times in the sense that w„(qi) ) e V t, cu.

Proof. 1 —q is a proposition C A and thus Ve, p 2 w, T

~(p(l —qi)p) ) 1 —e

Thus

~(p) —~(pqip)» —e

ol
1 —E'

c „(q,) & 1 — & e V t ) r.
p

Again some remarks are in order
(a) Diiferent states correspond to observers with difFer-

ent knowledge. For a mixing system for any two propo-
sitions p, q there is a time T such that for all times t ) T
there is an observer w which after having measured p con-
siders qq very likely, w~(qi) ) 1 —e, and another observer
w who considers qz unlikely, urz(qt) & e. In this sense the
system is indeterministic and undecidable. On the other
hand, it is deterministic in the sense that given q and t
one can find a proposition p = qq such that w„(qq) = 1
VM.

(b) For example A given above mixing simply means
that no matter how many spins one measures in finite
regions there are spins further out which remain unde-
termined and thus there are some initial states which
predict them to be up and others which predict them
down. On the other hand, in the nonmixing example B

once one has measured p any observer predicts a 50%%uo

chance of finding pi ——1 V t g 0.
We have thus shown that mixing systems possess some

unpredictability. The question remains as to what phys-
ical systems are known to be mixing. In this respect we
have the following results [14]:

Theorem T1. For certain smoothed-out Galilei invari-
ant two-body interactions the time evolution is an au-
tomorphism of the CAR algebra. There the observables
are a mixing system.

Conjecture C1. The observables of Poincare invariant
quantum field theories are a mixing system.

Remarks. Cl is still on the level of a conjecture be-
cause in 3+ 1 dimensions except for free fields it has not
been shown that the time evolution exists as an auto-
morphism of the CCR and CAR algebras. However, the
proof of the theorem T1 suggests that from the point of
view of mixing the Poincare group is easily as good as
the Galilei group. Therefore one expects the theory of
everything also to be mixing and to contain the same
unpredictability.

IV. CONCLUDING REMARKS

In the simple classical models of Sec. II the difI'er-
ent symmetry breakings were all equivalent and there-
fore do not illustrate the emergence of diff'erent laws of
nature. Non-equivalent symmetry breakings will reduce
a larger group to nonconjugate subgroups. For exam-
ple, in crystallizing carbon a diamond or graphite struc-
ture may emerge. The latter is energetically favored and
more abundant. Thus, the question remains why in a
theory with a large symmetry group, say some U(n),
n 10, a breaking into a particular subgroup, say some
U(ni) x U(n2), ni + n2 & n, should be favored.

Our result does not mean that the theory does not
contain some statements which can be made with cer-
tainty. For instance, in the spin chain of Sec. II one
can state with certainty that the spin at each site is

z, since (—*) =
2 (z + 1). This means that the ob-

servable is a multiple of unity and w(o2) = 3 Vi, cu.

In some representation the average magnetization m
limiv~ 2~ i P, iv o; may exist and is translation in-
variant. If it is not represented by a multiple of unity
the system is not mixing. This does not contradict our
statement in Sec. III since this is not a local observable
but presupposes some global knowledge.

The situation in mixing systems has some similarity to
what happens in formal mathematical systems. As Godel
has shown the latter also contain undecidable proposi-
tions in the sense that neither they nor their negation
can be proved. The element which appears in the discus-
sion of mixing systems is the uniformity in time.
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