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Harmonic oscillators driven by colored noise: Crossovers, resonances, and spectra
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We study second-order properties of linear oscillators driven by exponentially correlated noise.
We focus our attention on dynamical exponents and crossovers and also on resonance phenomena
that appear when the driving noise is dichotomous. We also obtain the power spectrum and show
its different behaviors according to the color of the noise.
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I. INTRODUCTION

In two recent papers [1,2] we have studied free second-
order processes (also called inertial processes) of the form

X+PX = F(t),

g(t) = Ae (1.2)

where A is the average time between switches. If we
assume that the initial values of F(t) are equally likely,

where the driving random force F(t) is zero-centered di-
chotomous Markov noise alternately taking on values +a
with an exponential switch probability density function
of the form

for Pt (( 1 and a crossover to ordinary diB'usive motion

(X (t)) -t
for Pt )) 1.

In the undamped case P = 0 [1], the results of this
analysis have been recently applied [3] to the problem
of chemical reactions in constrained geometries where, in
some cases, the kinetics of the reaction is "anomalous"
in low dimensions in the sense of being difFerent &om the
results of mass action [4].

One of the main goals of this paper is to study the efFect
of a potential on the anomalous di8'usive behavior of the
system. One of the simplest potentials, albeit of great
relevance mainly due to its countless applications, is the
quadratic potential. We will thus consider the classical
harmonic oscillator driven by colored noise:

Prob(F(0) = +a] = 1/2, X+PX+ io X = F(t), (1.5)

then the above form of @(t) implies that F(t) is a station-
ary colored noise with the following correlation function:

(F(t) F(t )) = a~ e lt t I/ (1.3)

where

1
7

2A
(1.4)

is the correlation time.
Our focus in [1,2] has been on the joint density,

p(x, y, t), for the probability that the position X(t) lies
between x and x + dx and that the velocity X(t) lies
between y and y + dy. We have also obtained exact
equations for the marginal probability density, p(y, t),
of the velocity and the marginal probability density,
p(x, t), of the position. The equation satisfied by p(y, t)
is a telegrapher's equation with state-dependent coeK-
cients while the equation satisfied by p(x, t) is a telegra-
pher's equation with time-dependent coefBcients. In the
Gaussian-white-noise limit, this latter equation reduces
to a Fokker-Planck equation with time-dependent coefFi-
cients which in turns leads to anomalous "superdifFusive"
motion of the form

where u is the angular frequency of the oscillator and
F(t) is dichotomous Markov noise. Since the pioneering
work of Uhlenbeck and Ornstein [5] there has been much
literature on the problem of linear oscillators driven by
white noise (see [6] and references therein). Nevertheless,
there are very few results available when the driving noise
is colored. We should mention here the work of Pawula
[7] on second-order Butterworth filters (a special kind of
linear oscillators driven by the random telegraph signal)
where analytical results on stationary moments and some
Monte Carlo simulations have been obtained.

Herein we will only consider second-order properties
of X(t), i.e. , the properties related with the mean-square
displacement (X (t)). Incidentally we note that, from
the point of view of probability theory, most of the
second-order properties of X(t) depend solely on the cor-
relation function (F(t)F(t')) of the driving force, being
then independent of the probabilistic nature (dichoto-
mous, Gaussian, etc, ...) of F(t). Therefore, we will
see that many of our results not only apply to dichoto-
mous Markov noise [with the correlation function given
by Eq. (1.3)] but also to Ornstein-Uhlenbeck noise, that
is, Gaussian colored noise with the correlation function

(X'(t)) - t'
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Note that both dichotomous Markov noise and Ornstein-
Uhlenbeck noise have the same correlation function pro-
vided that we set

a =2AD = —.D
+C

The paper is organized as follows. In Sec. II we evalu-
ate the variance and the dynamical exponent of the linear
oscillator. In Sec. III we study the behavior of the vari-
ance which leads to several crossovers for the dynamical
exponent. In Sec. IV we present the classical resonances
associated with dichotomous driving noise. The power
spectrum and its behavior are shown in Sec. V. Conclu-
sions are drawn in Sec. VI and the spectral analysis of
the oscillator is given in the Appendix.

and

/' p2) /
0= ice 4) (2.6)

+ xp cosh cia

(2 7)

and

p, /2 sinh nt
(2.8)

Note that in the overdamped case, P ) 2ur, the mean
value (X(t)) and the Green function G(t) are conve-
niently written as

II. VARIANCE AND DYNAMICAL EXPONENT where

We will now obtain an explicit analytical expression of
the variance (2 9)

(t)—:( IX(t) —(X(t))l )

of our noisy linear oscillator. The erst step consists in
writing the formal solution to the equation

In the critical or aperiodic case, P = 2u, we have

1
(X(t)) =

~
xp+ —Pxp

~

t+xp e ~'/ (2.io)

X+PX+ u) X = F(t),

with (deterministic) initial conditions

X(0) = xp, X(0) = xp.

(2.1)

(2.2)

If we take into account that the driving noise is zero-
centered, that is (F(t)) = 0, and use the Green function
of the homogeneous initial problem, it is straightforward
to find that the solution to Eqs. (2.1) and (2.2) reads

and

(2.1i)

We can now evaluate the variance of the oscillator.
From Eq. (2.3) we have

t t
0. (t) = ds ds'G(t —s)G(t —s')C(s —s'), (2.12)

0 0

t
X(t) = (X(t)) + dt'G(t —t')F(t'),

0

where [cf. Eq. (1.3)j
(2.3)

C(s —s') = (F(s)F(s')) = " '"' ''. (2.13)
where

1 ) sinOt
(X(t)) = e ~ /

~

xp+ Pxp
~

+—xpcosOt
2 p 0

)
Pg/2 sill Bt

0

(2.4)

(2 5)

I

t 8

a (t) = 2 dsG(s) ds'G(s')C(s —s').
0 0

(2.i4)

Now the substitution of Eq. (2.5) into Eq. (2.14) yields

Due to the symmetry of the correlation function C(s —s')
we can write the variance in the following more conve-
nient form:

2a 1
o (t) = 1 &'"+~/'l'

~

2A
p) sinOt

+ —
i

+

cosset

2y 0
A P/2

(
p, e

p 4caI
(2.i5)

where

+ 2A(2A+ P). (2.16)

In the overdamped case the same expression holds just by replacing cos At by cosh nt and sin At/Q by sinhnt/n In.
the critical regime we have 0 = 0 and Eq. (2.15) reads
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2G 1o'(t) =

e—Pt
+ (2 —e e

)
— 2(22 —ti)t+ (22(t —tt + 2w )t ]). (2.17)

Finally in the Gaussian-white-noise limit:

Gamoo Amoo D—= —&oo
2A

)

Eq. (2.15) reduces to the well known result [12]

e (t) = i —e es i + sin 2At + —sirP At
p(. p. ,

(uzP 20 ( 0 )
(2.18)

We will now discuss some asymptotic properties of the
variance o.z(t). We first observe that, in the case of a
linear oscillator driven by colored noise, there are three
time scales involved. These time scales are the relax-
ation time 7; = P and the period r = 2z a of the
undriven oscillator and the correlation time of the driving
noise 7, = (2A) . In the next section we will show that
(Tz(t) has a difFerent behavior depending on (i) whether
the observation time t is longer than some of these time
scales, and (ii) the order of magnitude of r„, r, and r. In
other words, the behavior of (Tz(t) depends on whether
the orders of magnitude of v„,w, w, and t are similar or
not comparable. In any case we can easily see that when
t ~ oo, i.e. , when t is much longer than any time scale,
o (t) goes to the following stationary value [cf. Eqs.
(2.15) and Eq. (2.16)]:

d ln o z(t) o.z(t)
( ) — „.. .(,) (2.21)

where o' (t) = do' (t)/dt. Note that in the regions where
this quantity does not appreciably vary, the variance
o (t) can be written as

X(t) = (X(t)) + -E'(0)
2

[t « p i, ~ i, (2A) i] and Eq. (2.20) holds.
Let us now analyze in detail the behavior of o (t).

One of the quantities which has been proved to be very
suitable for this analysis is the so called "dynamical ex-
ponent" v(t) of the process [2]. We define this exponent
in an analogous way as is done in fractal theory to define
the difFerential fractal dimension, a quantity that chara-
terizes the random inotion of particles [9—ll]:

az 2A+Po.. = limo (t)=
cuzP(4A~ + 2AP + a)~)

(2.19) 2 (t) tte t (2.22)

For the special choice of parameters that corresponds to
Butterworth filters, i.e. , a = w = P /2, Eq. (2.19)
agrees with previous results [7].

Another extreme asymptotic behavior of the variance
refers to the case t ~ 0, that is, when the observation
time is much smaller than any time scale. In this case
and after some lengthy calculation we get from Eq. (2.15)
that

2 4~'(t) = a' t', (t -+ 0). —
4

(2.20)

X = P(t)

(t « P, w ). On the other hand, the observation time
t is also much smaller than the correlation time (2A)
of the noise. This means that at time t the probability
that the noise has switched to another value is very small,
that is, E(t) = E(0) (in probability). Therefore

We can obtain this result in a much simpler way. In-
deed, since t is much smaller than P and w then the
so called "dominant-balance technique" [8] tells us that
~X~ )) P~X~ and ~X~ )) w ~X~. Hence Eq. (2.1) can be
approximated by

where G(t) is an integrable function and E(t) is any wide-
sense stationary noise with a given correlation function
C(t). In this case we have shown that the variance of
X(t) is given by Eq. (2.14) and, consequently, the dy-
namical exponent is given by

t
t G(t) dsG(s)C(t —s)

0
t S

ds G(s) ds'G(s')C(s —s')
0 0

(2.23)

When E(t) is white noise (not necessarily Gaussian) then
C(t) = 2Db(t), Eq. (2.23) reads

t G'(t)
v t

ds G (s)
0

(2.24)

and v(t) is always positive (or zero). Nevertheless, when
E(t) is colored noise the sign of v(t) will depend on the

Let X(t) be a random process defined by an equation
of the form [cf. Eq. (2.3))

t

X(t) = (X(t)) + dt'G(t —t')F(t'),
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specific forms of the functions G(t) and C(t).
Finally for the linear oscillator (1.5) with an expo-

nentially correlated driving noise P(t) both Gaussian or
dichotomous, the dynamical exponent is given by Eq.
(2.21) with cr (t) given by Eq. (2.15) and

2G

2) 0

+e (2&+~i2)~ sin Ot
(2.25)

III. CROSSOVERS

We have mentioned in Sec. II that the behavior of the
variance of the linear oscillator depends on whether the
observation time t, the relaxation time 7; = P, the
correlation time r, = (2A), and the period r = 2vrw

are similar or not comparable. Moreover we have shown
in Sec. II that when t is much smaller than any other time
scale, the variance is proportional to t . Therefore, in the
early stages of its evolution the dynamical exponent of
the linear oscillator is

Note that this exponent corresponds to ballistic motion.
We have also shown that when t ~ oo the variance goes
to a stationary value and hence

v(t) = 0 (t -+ oo).

Let us now investigate the intermediate-time behavior
of v(t) between these two extreme situations. We first
assume that ~, 7„, and w are not comparable. In this
situation we have six diferent cases.

(1) 7; (& w, &( r. In this case the movement is over-
damped and we distinguish three diferent time regimes.
(a) The observation time is much longer than the cor-
relation time but still smaller than the relaxation time:
7', (& t & w, « r. In this regime F(t) acts as white noise
and by means of Eqs. (2.8) and (2.24) we see that

which implies that o2(t) t [1], whence

v(t) = l.

(c) The observation time is much longer than any other
time scale: 7 « w„« 7 « t. This corresponds to the
stationary regime and hence

v(t) = 0.

Case (1) is shown in Fig. 1 where, as in the following Bg-
ures of this section, we plot the exact dynamical exponent
v(t) calculated from Eqs. (2.21) and (2.15). We observe
that Fig. 1 totally agrees with the above discussion on
cross overs.

(2) r„« r, « r. In this case the movement is also
overdamped and we again distinguish three diferent time
regimes. (a) The observation time is much longer than
the relaxation time but still smaller than the correlation
time: r„(( t ( r, « r. Proceeding as in case (1)-(b)
we can easily show that the evolution equation can be
approximated by

We have shown elsewhere [13] that in this case the vari-
ance is proportional to t and

v(t) = 2.

(b) The observation time is longer than the correlation
time but still smaller than the period: w„« w « t ( w.

Now F(t) = rl(t), where rI(t) is white noise and

v(t) = l.
(c) The observation time is longer than any other time
scale. In this regime the oscillator has already reached
the stationary state and v(t) = 0 (Fig. 2).

(3) 7 « w, « 7, . In this case we first observe that
is the longest time involved, this means that the driv-

ing noise F(t) cannot be approximated by white noise
[except when t )) 7„but in this regime the system has
reached the stationary state and v(t) = 0]. The fact that

v(t) = 3.

(b) The observation time is much longer than the relax-
ation time but still smaller than the period: 7
t ( r. We de6ne the dimensionless time t' = t/r, . Equa-
tion (1.5) is thus transformed to

X"+ X' + 4~'(7 /7. )'X = il(t'),

where the primes denote derivatives with respect to t'
and g(t') is white noise. Since w„/r « 1 we can neglect
the last term on the right hand side of this equation. In
addition t' && 1 and the dominant balance technique tells
us that

Therefore the time evolution of the oscillator can be ap-
proximated by

0
—10

logio (pt)

15

FIG. 1. Dynamical exponent of the linear oscillator. Pa-
rameter values: P = 1, tu = 10, A = 10, and a = l.
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(5) r, (( r « 7„. (a) In the time regime 7; « t & w &(
r„, the evolution of X(t) is approximately given by

X = rl(t),

where rI(t) is white noise. Therefore v(t) = 3. (b) When
(( r « t & T„, the evolution of X(t) is approximately

given by

X+ (u X = g(t)

0
—10

~ogio(pt)

FIG. 2. Dynamical exponent of the linear oscillator. Pa-
rameter values: P = 1, cu = A = 10, and a = l.

r, is the longest time scale also means that F(t) = F(0)
(in probability) which implies an almost deterministic be-
havior [i.e. , v(t) = 4] for a longer time interval than be-
fore. On the other hand, the movement of the oscillator
is now underdamped and, for intermediate observation
times, we can expect an oscillatory behavior of o' (t) al-
ternately taking on positive and negative values. This
leads to a crossover from v(t) = 4 to v(t) = 0 with a
damped oscillation around 0. These considerations are
clearly confirmed by the exact result plotted in Fig. 3.

(4) r « r « T, . This case is very similar to that of the
preceding case and there exists an oscillatory crossover
from v(t) = 4 to v(t) = 0. Since now the relaxation time
w„ is the longest time involved, we expect that the oscilla-
tions of v(t) around 0 will have a much bigger amplitude
than in case (3). This is con6rmed by the exact calcula-
tion, although due to the big size of the oscillations we
have not plotted it.

and the behavior of the dynamical exponent is described
by an oscillatory crossover from v(t) = 3 to v(t) = 0.
However, in this case the noise is white and v(t) is always
positive [cf. Eq. (2.24)]. Therefore the oscillations of the
dynamical exponent will be towards v(t) = 0 but not
around v(t) = 0 (see Fig. 4).

(6) r &( w « r, . In this case we see that, as in case
(3), out of the stationary regime the driving noise can-
not be approximated by white noise and this rules out
the possibility of having v(t) = 3. On the other hand
the movement is now overdamped and no oscillatory be-
havior will be shown by v(t). (a) In the time regime
r„(( t & r « r„we have IXI « PIXI and the evolution
equation can be approximated by

PX+(u X = F(0),

and v(t) = 2. (b) When r, &( 7 « t & r„we have

Ixl «Plxl «~'Ixl

C +T

we are only able to distinguish two extreme asymptotic
regimes: t ~ 0 and t ~ oo. This leads to the crossover

v(t) = 4 : v(t) =0,

Therefore, X(t) has practically reached its stationary
value and hence v(t) = 0 (Fig. 5).

We Anally observe that when all time scales are similar,

0

0
—8

1o gio (Pt) log(o(Pt)

FIG. 3. Dynamical exponent of the linear oscillator. Pa-
rameter values: P = 1, cu = 4, A = 0.01, and a = 1.

FIG. 4. Dynamical exponent of the linear oscillator. Pa-
rameter values: P = 1, w = 10, A = 10, and a = 1.
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X+ PX+ w X = F cosset (4.1)

present two kinds of resonance according to whether the
amplitude or the power absorption have a maximum for
certain values of cd. Thus, when

u = y ~2 —P2/2

0
—10

I

10 15

gio(Pt)

FIG. 5. Dynamical exponent of the linear oscillator. Pa-
rameter values: P = 1, tu = 10, A = 10, and a = l.

without any intermediate value (Fig. 6). Note that if in
this case 7„& w the movement can be underdamped. In
this situation there exist slight oscillations around v(t) =
0. In fact, Fig. 6 corresponds to an underdamped case
although these oscillations are so small that they do not
show in the graphic.

As a final remark we observe that all the results of
this section are valid for exponentially correlated driving
noises regardless of their probabilistic nature. Thus, al-
though we have carried out the calculations and figures
for dichotomous Markov driving noise, all of the above
results also hold for Ornstien-Uhlenbeck driving noise

a Cd +
Cd P((d + P(d + M )

(4.2)

where

the average amplitude (or, equivalently, the average po-
tential energy) has a maximum, where the average is

taken over one cycle of the undriven motion. On the
other hand, the average power delivered by the periodic
force has a maximum for cd = cd.

One of the aims of this section is to elucidate whether
linear oscillators driven by colored noise present this res-
onant behavior. As we will see, it is precisely at this point
where the probabilistic nature of the driving noise shows
its importance. Indeed, dichotomous noise can be viewed
as a random square wave with a "random frequency"
whose average is given by the inverse of the correlation
time 2A. Nevertheless, one cannot give such an interpre-
tation for Ornstein-Uhlenbeck noise. This is the reason
why dichotomous driving noise presents resonances while
Ornstein-Uhlenbeck driving noise does not.

For the stochastic oscillator given by Eq. (1.5) we may
define the square root of the variance as the average am-
plitude of the oscillations. In the stationary regime we

will have lcf. Eq. (2.19)j

IV. RESONANCES Cd = 2A. (4.3)

As is well known from intermediate physics, forced lin-
ear oscillators of the form

We see Rom Eq. (4.2) that o', (as a function of w) has a
maximum for cd = cd, where

(4 4)

This resonant value of the inverse of the correlation time
will exist provided that w ) P implying that the oscillator
is in the underdamped regime.

Note that initial conditions have no inhuence on the
stationary state. We may thus assume, without loss of
generality, that

x(o) = x (o) = o. (4.5)

In this case the mean potential energy of our oscillator is
given by

0
—8

log, o (Pt)

(U), = —~ o. ,

and (U), also has a maximum for |d = w —P.
I et us now obtain the mean energy of the oscillator,

FIG. 6. Dynamical exponent of the linear oscillator. Pa-
rameter values: P = 1,w = 0.4, A = 1.5, and a = 1. (@(t)) = —(X (t))+ — (X (t)) (4.6)
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and the resonance associated with it. Taking into account
Eq. (4.5) we have

'(t) = (x'(t)).
Hence

o'(t) = 2(X(t)X(t))

and

o. (t) = 2(X (t)) —Po (t) —2(u o.2(t) + 2(X(t)E(t)).

The substitution of these equations into Eq. (4.6) yields

300

200
A
LJJ
V

100

(E(t)) = -[ (t) + P (')1+ (t) ——(X(t)P(t)).

(4.7)

In the stationary state o (t) = o (t) = 0 and Eq. (4.7)
reads

(4 8)

where

p, —= lim (X(t)E(t)).

From Eqs. (2.3) and (4.9) we obtain

(4 9) Thus

e ~' ~ C(t') cos At' dt'.(P(t)) = ——(X(t)&(t)) +

FIG. 7. Mean energy of the linear oscillator in the station-
ary state as a function of A. Parameter values: a = 10 and
P = 1. Solid line corresponds to w = 0.4 (overdamped case),
dot-dashed line corresponds to ~ = 0.5 (critical case), dotted
line corresponds to cu = 1 (underdamped case).

GtCtdt

and using Eqs. (2.5) and (2.13) we finally get

In the stationary state we get Icf. Eq. (2.13) and Eqs.
(4.9) and (4.10)j

a
4A2 + 2AP+ (u2

(4.10)

a cu
(P) = (4.14)

The substitution of Eqs. (2.19) and (4.10) into Eq. (4.8)
yields

a2(2m+ P)
2p(cu + pie+ (u )

' (4.11)

(d~ = — — + 4(d
1

(4.12)

This resonant frequency exists if and only if w ) p jv 2
which corresponds to the underdamped regime.

The average power delivered by the driving noise to
the oscillator is de6ned by

(P(t)) —= (X(t)P(t)). (4.13)

From Eqs. (2.3) and (2.5) we see that the velocity X can
be written as

where w is given by Eq. (4.3). In Fig. 7 we have plot-
ted the mean energy for the overdamped, underdamped,
and critical regimes. We observe from the figure that in
the underdamped regime (E), has a relative inaximum.
Indeed, we see from Eq. (4.11) that the mean energy has
a maximum for ~ = ~„where

where a is given by Eq. (4.3). The mean power delivered
by the driving noise has a maximum for u = u, where

h)~ = Cd. (4.15)

p p)
CO~ = 2(d+ —6

I
2(d+

I

Ld
2 i 2)

and the resonant width L = u+ —(d reads

(4cu + p) —4~2. (4.16)

This width depends on both the angular frequency u
of the undriven oscillator and the damping coefficient P.
Nevertheless, in the light-damping limit P (( u, we have

This resonant frequency exists for all values of the ft. e-
quency u1 of the oscillator (Fig. 8). It is interesting to
note that ~ coincides with the resonant kequency of
the average power delivered by the periodic force in the
deterministic case (4.1).

The so called "resonant width" associated with (P), is
defined as the size of the frequency range within which
(P), is greater than half its maximum value. The values
of ~ at half height are

pX(t) = ——X(t) +
2

e ~l' ' li E(t') cos A(t —t') dt'. &=2~~»+ + oI —,
I

p ~p')
)

(4.17)
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60 and in the weak-damping limit we have

(d~ (d~ = (d.

A
CL
V

40
When E(t) is Ornstein-Uhlenbeck noise we have

a = 2AD

and from Eqs. (4.2), (4.11), and (4.14) we obtain

Ct/(Cd + P)
P(Ld + PM + Cd )

(4.22)

10
and

D~(2ur + P)
2P(ld + PCd + (d )

(4.23)

FIG. 8. Average power delivered by the driving noise in the
stationary state as a function of A. Parameter values: a = 10
and P = 1. Solid line corresponds to u = 5 (underdamped
case), dot-dashed line corresponds to u = 0.5 (critical case),
dotted line corresponds to cu = 0.4 (overdamped case).

(P), =
(d + P(d + ld

(4.24)

These quantities are monotonic functions of w and there
are no resonances for Orsntein-Uhtenbeck driving noise

& =P 1+ +&
I

4~
') (4.18)

Now A P and the resonant width is controlled by the
damping coeKcient. This case parallels that of determin-
istic oscillators driven by harmonic periodic forces where
the resonant width is independent of u and exactly equals

P [14]
From Eqs. (1.5) and (4.6) we see that the mean energy

decay is given by

In this case A —2m~3 and the resonant width is con-
trolled by the angular &equency of the undriven oscilla-
tor.

In the case of heavy damping P )) td, Eq. (4.16) can
be written as

V. POWER SPECTRUM

1
S(n) = e * K(r)dr, (5.1)

where

The spectral analysis is a central problem in the study
of second-order properties of random functions [15,16].
This analysis is mainly carried out through the spectral
representation both of the random process itself and of its
autocorrelation function. This latter is especially impor-
tant because it often carries the sense of an energy and,
in any case, represents a simple measure of the intensity
of the process.

The power spectrum S(n) of a stationary process Z(t)
is the Fourier transform of its autocorrelation:

= —P(X (t)) + (X(t)+(t)).
~ ~

~

dE(t) (4.19)
It (r) = (Z(t+ r)Z(~)) .

In the stationary state we have

(dE(tj
)

(T) =
2

(P)' (4.20)

Therefore, in the stationary state the kinetic energy has
the same resonant frequency than power absorption.

It is not difBcult to convince oneself that the resonant
frequencies discussed above obey the following order re-
lation:

Cd~ ) 4)~ ) (d~) (4»)

and from Eq. (4.19) we see that the mean kinetic energy

(T) = X /2 is proportional to the power absorption, that
1s)

e * 'G(z)dz (5.2)

where G(z) is given by Eq. (2.5) and C(n) is the power
spectrum of the driving noise F(t):

1
C(n) = — e ' C(r)dr.

27r
(5.3)

We will now derive an explicit expression for the power
spectrum of the linear oscillator driven by colored noise
(1.5). There are standard derivations, all of them based
on the Wiener-Khinchine theorem, of the power spectrum
of stationary linear processes. Nevertheless, in the Ap-
pendix we present an alternative derivation (also based
on this theorem) that is especially suited for the initial-
value problem (2.1) and (2.2). Thus we show that for
our linear oscillator in the stationary regime the power
spectrum reads
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For exponentially correlated da e riving noise we have

2Aa2

vr(4A2 + n2) (5 4)

The substitution of Eqs. 2.5o qs. (2.5) and (5.4) into Eq. (5.2)

2Aa

7r(4A2+ n2)[(n2 —cu ) + p n j
(5.5)

The ualq itative behavior of the ow
ob o l d ds on the time s
two cases.

h
'

scales involved. We have

1~ The correlation time of the drivin '
er

~ ~

h th l
0
—8

e«
Now depending on thon e period 7. = 2'
d&8'erent situations.

vru we have three

FIG. 10. Poweower spectrum of the
function of thee spectral frequency o..

o e linear oscillatoror as a

(a) v- & 2vr~. 1+ ~~l——(~./~. )'

o. =0, n = +V'(&+ ~)/3

and two minima located at

n = +V'(& —~)/3

where

( = 2(u —P —4A

and

In this case S~o.
&
~hasas three maxima located at

(5.6)

(5.7)

(5 8)

This case is plotted in Fig 9~ ~

(b) 2vr~, 1+ Ql-C C F

& ~ & 27r~, 1 —gl —(~ /~ )'

In this situation the power spectrum h
or o, = 0 and tw o maxima for

as one minimum

n = +V'(&+ S)/3

(Fig. 10).

(c) 7 ) 27rT, 1 —gl —(7,/7;)2

p = /~4 + 4(2A' —P')~' + 4A"4A'—4A2 —P2) + P4. (5.9)
In this case S(n) only resen
(Fig. 11).
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0
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0
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FIG. 12. Power spectrum of the linear oscillator as a
function of the spectral frequency o.. Parameter values:
a = 1,P = 2, A = 0.5, and u = 5.

FIG. 14. Power spectrum of the linear oscillator as a
function of the spectral frequency n. Parameter values:
a = 1,P = 2, A = 0.5, and ~ = 3.

(2) The correlation time of the driving noise is longer
than the relaxation time:

7~ ) 7„.
We have two diferent regimes:

(a) ~ ( 2vrw„(2 —(w„/w, ) + /3[1 —(7-„/7;) ])
In this situation the power spectrum behaves as in case
(1)(a) and it has three maxima and two minima [cf. Eqs.
(5.6) and (5.7)] (Fig. 12).

(b) 7. ) 2~7.„(2—(7~/7;) + /3[1 —(7-„/7;)2])

This situation is similar to that of case (1)(c) and the
spectral density only has one maximum for n = 0 (Fig.
13). However, the numerical analysis of Eq. (5.5) shows

that in this case there exists a range of period values such
that S(a) has two symmetrical inBection points around
the maximum (Fig. 14).

For Ornstein-Uhlenbeck driving noise the power spec-
trum is also given by Eq. (5.5) with a = 2AD. There-
fore, S(o.) presents the same behavior as discussed above.

We finally mention that in the Gaussian-white-noise
limit we obtain from Eq. (5.5) the well known result [12]

S(n) = D
~[(o,2 ~2)2 + p2o, 2]

As one can expect, the behavior of the power spectrum
is similar to that of cases (l)(b) and (c) above. Indeed,
now 7, = 0 and this only leads to cases (1)(b) and (c).
Thus, when

(5.10)

p ( (d~2,

n = + /~2 —P2/2.

If the above condition does not hold, then the two max-
ima merge into a single maximum at o. = 0.

I

the power spectrum has one maximum at o. = 0 and two
minima at

VI. CONCLUSIONS

FIG. 13. Power spectrum of the linear oscillator as a
function of the spectral frequency o;. Parameter values:
a = 1,P = 2, A = 0.5, and ~ = l.

We have studied the second-order properties of linear
oscillators driven by exponentially correlated noise. We
have shown that the dynamical exponent v(t) associated
with the random position A (t) of the oscillators presents
several crossovers Rom v(t) = 4, accounting for ballis-
tic motion, to v(t) = 0, corresponding to the stationary
regime. We have also shown that v(t) can take on the
intermediate values 3, 2, and 1 depending on the funda-
mental time scales 7, 7„, and w.

We observe that one can easily obtain numerical esti-
mates for the duration both of "transient regimes" where
v(t) is not constant and of "stable regimes" where v(t)
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is approximately constant. Therefore, our method can
provide quantitative data that can be of interest for ex-
perimental work. Moreover numerical analysis (see the
figures in Sec. III) seems to indicate that, in several
cases and regardless the order of magnitude of the fun-
damental time scales, these transient regimes have much
shorter durati. on than stable regimes. This might indi-
cate that in many situations the random dynamical evo-
lution of the oscillator goes through well defined regimes.
One can argue that the short duration of transients is a
direct consequence of a wide separation of time scales.
Nevertheless, Fig. 6 shows a case where all time scales
are similar and transients are much shorter than stable
regimes. Evidently, all of this is just a conjecture that
we have not yet been able to prove.

Another interesting feature, which is only associated
to dichotomous driving noise, consists in the appearance
of resonances for the average values of the amplitude, the
energy, and power dissipation. Resonance provides am-
plification. We thus see that, for certain values of the cor-
relation time, the addition of dichotomous Markov noise
enhances the system response in a similar way as is done
by deterministic harmonic forces. These resonant phe-
nomena have no counterpart for Gaussian colored noise.
We should mention that these phenomena are in the sense
of classical resonance in linear systems and they do not
refer to the so called "stochastic resonance. " The latter
is related to nonlinear systems subject to both periodic
and random forcing [17,18].

Finally, we have studied the spectrum of the oscillator
in the stationary state. In this case the behavior of the
spectrum can be substantially altered by color. There-
fore, for certain regimes either the energy or the intensity
of the oscillator is strongly dependent on the correlation
time of the input noise regardless of its probabilistic na-
ture.

APPENDIX: DERIVATION OF EQ. (5.2)

If we assume that X(0) = X(0) = 0, then the solution
of an initial-value linear problem such as (2.1) and (2.2)
can be written as [cf. Eq. (2.3)]

t
X(t) = dt'G(t')F (t —t').

0

Let us now evaluate the autocorrelation function of X(t).
We have

t+T t

(X(t+ r)X(t)) = dt'G(t') dt"G(t")
0 0

x(F(t + ~ —t')F(t —t")). (A1)

F(t) is a stationary noise and this allows us to write

(F(t+ ~ —t')F(t —t"))= C(r —t'+ t")
ia(r —t'+t")C(

)

(A2)

where C(n) is the spectral density of the driving noise.
Hence

OO t+T
(X(t+ r)X(t)) = do.e' C(n)

—OO 0
t

x dt"e' ' G(t").

dtr tlat G (tl )—

(A3)

We now let t ~ oo. Thus
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K(r) = lim (X(t + r)X(t) )

OO OO 2

dne' C(n) e * 'G(z)dz

and Eq. (5.2) holds.
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