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Statistical mechanics of kinks in 1+1 dimensions:
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We investigate the thermal equilibrium properties of kinks in a classical N field theory in 1+ 1 dimen-
sions. From large-scale Langevin simulations we identify the temperature below which a dilute-gas
description of kinks is valid. The standard dilute-gas or WKB description is shown to be remarkably ac-
curate below this temperature. At higher "intermediate" temperatures, where kinks still exist, this
description breaks down. By introducing a double-Gaussian variational ansatz for the eigenfunctions of
the statistical transfer operator for the system, we are able to study this region analytically. In particu-
lar, our predictions for the number of kinks and the correlation length are in agreement with the simula-
tions. The double Gaussian prediction for the characteristic temperature at which the kink description
ultimately breaks down is also in accord with the simulations. We also analytically calculate the internal
energy and demonstrate that the peak in the specific heat near the kink characteristic temperature is
indeed due to kinks. In the neighborhood of this temperautre there appears to be an intricate energy-
sharing mechanism operating between nonlinear phonons and kinks.

PACS number(s): 05.20.—y, 11.10.—z, 63.75.+z

I. INTRODUCTION

The equilibrium and nonequilibrium statistical
mechanics of solitons, solitary waves, and other coherent
structures in nonlinear systems has been a subject of
study for some time [1]. Recent interest has been fueled
by new applications not only in condensed-matter physics
[2,3], but also by potential applications in particle physics
(sphalerons) [4] and cosmology (domain walls, baryo-
genesis) [5].

In this paper we focus on the classical equilibrium sta-
tistical mechanics of solitary wave ("kink") solutions of a
tachyonic mass, 4 ("double-well" ) field theory in 1+1
space-time dimensions with the Lagrangian density

m m—tanh (x —xo )
A 2

(3)

and the negative of the kink solution is the antikink.
Since the Lagrangian (1) is Lorentz invariant, time-
dependent solutions are easily found by boosting the stat-
ic solution. The energy density of the static kink (or an-
tikink) is

two asymptotic field potential-energy minima at
&=+No=+m/&A. Kink solutions of the field equa-
tions are inaccessible to perturbation theory: A statisti-
cal mechanics of kinks is nevertheless still possible, partly
because they are localized objects. The static kink solu-
tion centered at x =xo is

L = & (tl (y)2 —& (() g))2+ & trt 2/)2 —& Aq)4

and the corresponding equation of motion

m (x —xo)
Ek(x) = sech

2
(4)

N+m @—AN (2)

This model is of direct relevance to the study of displa-
cive phase transitions [6] and magnetic spin chains [7].
Moreover, the behavior of this model is representative of
a large class of soliton-bearing systems. Finally, it has
the added advantage of being amenable to both theoreti-
cal analysis and numerical simulation.

The kink solution of the equation of motion (2) is the
localized Geld configuration that interpolates between the

from which the total energy of an isolated kink, or the
kink mass, is obtained,

+ ooE„=I dx.„(x) (&)

3

=&(g/9)
A

(6)

In numerical simulations it is customary to employ a
dimensionless form of the theory given by the transfor-
mation s:

P=@/a,
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t =mt,
where a =m /A. Applying these transformations, we
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have

H=ma H,

where H is the original field Hamiltonian, and

H= fdxPE + —,'(V'P) —,'P +—,'P ]—.

The new field P satisfies the equation of motion

(8)

(10)

(N(0)4&(x) ) -exp( —~x~/A. )

exhibits an exponential temperature dependence [9],

(12)

(vr/3) ex—p(EkP)
1 1

4 QE„P
(13)

at low temperatures.
Computer simulations to verify these results date back

to Ref. [11] where only a qualitative agreement was
found. Recent work [12—15] has led to more detailed
comparisons, however significant discrepancies have been
reported. This has led to theoretical speculation [16,17]
regarding possible corrections to the dilute-gas theory of
kinks. It has been suggested that these discrepancies are
due to finite-size effects and phonon dressing of the bare
kink energy (breather contributions to the free energy
may also be significant [18]). As was discussed in Ref.

We enforce pH =pH by introducing a new scaled tem-
perature p=p/(ma ).

The statistical mechanics of kinks in this system has
been studied by two approaches. In the first, and phe-
nomenological, approach one assumes that the kinks and
the field Auctuations about the asymptotic field minima
("phonons") may be treated as weakly interacting ele-
mentary excitations. Provided that the kink density is
low (the dilute-gas approximation), the canonical parti-
tion function can be found by standard methods [1,8,9].
Alternatively, as shown by Krumhansl and Schrieffer
(KS) [8], building on earlier work of Scalapino, Sears, and
Ferrell [10], it is possible to calculate the partition func-
tion, in principle exactly, by exploiting a transfer opera-
tor technique. KS showed that in the low-temperature
(dilute-gas) limit the partition function naturally factor-
izes into two contributions both having counterparts in
the phenomenological theory; a tunneling term which
they were able to identify with the kink contribution, and
the remainder which they identified as the linearized pho-
nons. The approach of KS was further refined and ex-
tended to a wider class of systems by Currie et al. [9]. In
this work, interactions of kinks with linearized phonons
were taken into account, leading to substantial correc-
tions to the results of KS.

The key result of these efforts is the prediction that,
below a certain temperature, the spatial density of kinks
1s

nk QEkPexp( EkP) . —

A related prediction is that the field correlation length A,

defined by

[19], the earlier simulations were not carried out at low
enough temperatures: Nevertheless the authors interpret-
ed their results in terms of WKB formulas that are sim-

ply not a valid description over the range of temperatures
they had studied. In this intermediate-temperature re-
gime, there is no unique characterization of what consti-
tutes a kink and how to differentiate it from a nonlinear
phonon. By going to low enough temperatures where the
dilute gas results are valid, we are also able to rule out an
earlier claim of substantial phonon dressing even at these
temperatures [11].

We have numerically studied the equilibrium statistical
mechanics of kinks in the N" model by implementing a
Langevin code on a massively parallel computer. To un-
derstand our results in the high- and intermediate-
temperature region not susceptibile to a dilute-gas
analysis, we have used a nonperturbative double Gauss-
ian wave function approximation in the quantum-
mechanical problem for determining the eigenvalues of
the transfer operator. The study of the intermediate tem-
perature regime is important because kink contributions
to some thermodynamic quantities (e.g., the specific heat)
of the system may be dominant precisely in this region.
Numerical calculations of the partition function, while
certainly valuable, are by themselves not sufficient. Such
calculations, for example, cannot explain the nature of
the peak in the specific heat nor can they enable one to
extract which effects are due to kinks and which effects
are due to phonons.

Stated in brief, our results are the following: (1) the
dilute-gas predictions for the kink density and the corre-
lation length are very accurate below a certain (theoreti-
cally estimable) temperature; (2) above this temperature
the Gaussian results for the kink number and correlation
length agree with the simulations; (3) kinks are found to
"disappear" into the thermal phonon background above
a characteristic temperature, in good agreement with our
theoretical prediction; (4) our Gaussian approximation
accurately describes the classical single-point field distri-
bution function at high and intermediate temperatures
where the dilute-gas (WKB) approximation breaks down;
and (5) the internal energy and the specific heat calculat-
ed in double-Cxaussian approximation show an interesting
energy sharing process between kinks and nonlinear pho-
nons in an intermediate-temperature range below the
characteristic temperature at which kinks appear: a peak
in the specific heat in this temperature range is shown to
be due essentially to kinks.

The rest of this paper is organized as follows. We de-
scribe our computer simulation and numerical techniques
in Sec. II. Section III is a brief review of the transfer
operator formalism and the standard WKB results for the
partition function. Here we also introduce an "effective"
definition of the kink number that takes into account an
averaging over the thermal phonon length scale. In Sec.
IV we introduce the double-Gaussian variational method
and use it to find approximate eigenfunctions and eigen-
values of the transfer operator and also to compute ther-
modynamic quantities such as the specific heat. Finally,
we conclude in Sec. V with a discussion of our results and
of directions for future work.
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II. THE SIMULATIONS

The Langevin equation for the dimensionless theory is

t)-, Q =d„P r)—t),P+-P(1 P—)+F(X,t ) . (14)

To guarantee an approach to equilibrium, the Gaussian,
white noise F, and the viscosity q are related via the
fluctuation-dissipation theorem

(F(x, t)F(y, s)) =2g/3 6(x —y)5(t —s) . (15)

where the "velocity" u =t)-,P. The finite differencing was
implemented with a time step a=0.02, and a lattice spac-
ing 6=0.5. The space-time noise was generated by sum-
ming X random variables uniformly distributed over
(
—0.5, 0.5). From the central limit theorem, in the limit

that X~~ this sum should approach a Gaussian ran-
dom variable with mean 0 and variance &N/12. For
convenience we chose N = 12: since this gave a noise nor-
malized to a strength of unity, for each given temperature
the normalization was straightforwardly determined by
the fluctuation-dissipation relation. The results presented
here were obtained on lattices consisting of 16384 sites
and we have checked their consistency with results from
lattices of different sizes. The lattice volume is large
enough that there are no discernible finite-size effects.

Our system size is one to two orders of magnitude
larger than that in most previous simulations. Large sys-
tem sizes are necessary to get acceptable statistics at low
temperatures. In many of the recent numerical simula-
tions of this model, the system size was such that only a
few kinks would appear at the lowest temperatures stud-
ied. For temperatures in the range where the WKB
theory is valid, on average fewer than one kink would ap-
pear on systems of the sizes used in Refs. [12—15].

The lattice systems were evolved from random initial
configurations to equilibrium. The length of time neces-
sary to ensure equilibrium increased with inverse temper-
ature. For P=8 the time required was approximately 10
time steps, and for the highest temperatures, less than 10
steps.

Two quantities of interest reported here are the kink
number and the field correlation length. To compute the
kink number, we need an operational way to identify
kinks, even though there is an exact kink solution avail-
able theoretically. We therefore examined several possi-
ble definitions, all of which rely on a knowledge of the

Since in this paper we are interested only in the equilibri-
um properties of the system which are independent of the
viscosity, we fixed g= 1 for all the simulations. (It was
verified that the results did not depend on the value of g.)

We carried out numerical simulations of this Langevin
equation using a standard first-order Euler differencing
technique. The second order in time Langevin equation
(14) was written as the two first-order finite difference
equations

v(t+e) =v(t)+@I [P(x+5)+P(x —5) —2$(x )]/5

rlv(t )+—P(x )[1—P (x )]+F(X,t )],
P(t+e) =P(t )+au(t+e),
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FIGr. 1. Sample Geld configurations, from top to bottom, at
P=2, P=4, P=5.5, and P=8. Only a 1000 lattice unit sample
of the total lattice size of 16384 is shown.

canonical kink size. From the classical solution for a
kink centered at xo, P=tanh[(x —xo)/&2], the kink
scale Lk is approximately 8 lattice units. Raw kink
configurations are shown in Fig. 1. At low enough tem-
peratures (P) 5), kinks may be identified easily, however
at higher temperatures this is clearly not the case.

The naive approach is to simply count the number of
zero crossings of the field, since one may argue that these
are the "tunneling events" which correspond to kinks.
However, at higher temperatures there are zero crossings
due to thermal noise (phonons), and counting all zero
crossings would lead to a gross overestimation of the
number of kinks. At high temperatures it is not possible
to distinguish unambiguously between kinks and non-
linear phonons. However, the problem of the possible
overcounting arises already at intermediate temperatures,
where kinks are distinct. A possible solution is to use a
smoothed field by either averaging or "block spinning"
the actual field configuration over a length of the order of
the kink length scale. The latter approach was taken in
previous simulations [12—15]. This solution is not
without Aaws either, as rapid fluctuations can still appear
as kinks. We prefer to count kinks in the following way:
at a particular time we first find all zero crossings. To
test the legitimacy of a given zero crossing we check for
zero crossings one kink scale (8 lattice units) to its right
and to its left. If no zero crossings are found, we count it
as a kink, otherwise not.

The number of kinks is plotted against P in Fig. 2.
Above f3-6, the averaged field method and our method
for counting kinks agree. Moreover, in this (low-
temperature) range, the dilute gas expression for the kink
number (11) is in excellent agreement with the data. At
elevated temperatures, there is a clear disagreement be-
tween the two methods of counting kinks. The average
field technique has the number of kinks monotonically in-
creasing with temperature; whereas, in accord with intui-
tion and the behavior of P[P], the second technique
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FIG. 2. Total number of kinks as a function of P. Squares
denote counts with a smoothed field (l, = 8 lattice units)
definition of kinks, diamonds for the zero-crossing counting
method discussed in Sec. II, and the solid line starting at P=4 is
a fit to the WKB prediction (11). Also shown are three predic-
tions (the three pairs of solid lines) for the kink number from
the theoretical formula (42) calculated in double-Gaussian ap-
proximation. Three values for the averaging length were used,
from top to bottom, l, =2, 4, and 8 lattice units. For each value
of I„there are two theoretical curves: (1) calculating (42) keep-
ing only the ground and first excited states and (2) keeping the
ground, and first and second excited states (the upper curves of
each pair). The kink number is seen to strongly depend on I,
for p&6. (The double-Gaussian approximation breaks down at
higher values of P.l

clearly shows a reduction in the kink number at higher
temperatures (see Sec. IV for a detailed discussion).
Moreover, in this temperature regime the number of
kinks computed with the smoothing method depends
strongly on the smoothing scale. We conclude that for
p& 6, an unambiguous number of kinks cannot be ex-
tracted with any confidence from the smoothing method.
Unfortunately, this is precisely the temperature regime
explored in previous simulations. We will discuss an ana-
lytic definition of the kink number 1Vk in Sec. III and
show that this quantity can be independent of the
smoothing scale only at low temperatures.

The correlation length was extracted from the field
configurations by taking the inverse Fourier transform of
the power spectrum and then fitting an exponential decay
to the correlation function. The correlation length A, is
plotted against P in Fig. 3. The WKB prediction is seen
to hold for p) 6 while at higher temperatures (p & 4), the
double Gaussian approximation is in excellent agreement
with the data.

Our numerical results can be understood by using
different analytical approaches in different temperature
regimes. At low temperatures (p) 6) the WKB method
turns out to be very accurate. At higher temperatures a
double Gaussian variational method provides a good
description of our data. Both analytical methods are con-

FIG. 3. Field correlation length A, as a function of p. The
double-Gaussian (top curve) and WKB (bottom curve) predic-
tions are compared with the numerical results. Squares are data
points from the simulations. The crossover from the double-
Gaussian to the WKB range of validity happens around P-5.

veniently discussed in the framework of the transfer-
operator formalism, which we describe in the following
section.

III. THE TRANSFER OPERATOR

Z= DAD~exp —H N, m (17)

where m is the canonical momentum of the field and H is
the field Hamiltonian. The integral over the rnomenta is
a trivial Gaussian integral. Writing

z=z ze
we have

' N!2

(18)

obtained by discretizing the spatial lattice with lattice
spacing 5. Periodic boundary conditions are assumed
and the total lattice size L =%6. We will be primarily in-
terested in obtaining the configurational partition func-

The key idea behind the transfer-operator method is to
transform the problem of finding the canonical partition
function for a system to the exactly equivalent problem of
finding the eigenvalues of a certain integral operator.
With some smoothness assumptions for the eigenfunc-
tions of this transfer operator, it is then possible to show
that the problem reduces to that of finding the energy ei-
genvalues of a related quantum-mechanical problem.
The method easily generalizes to the problem of calculat-
ing correlation functions. The presentation given here
closely follows that of Ref. [10].

The canonical partition function for the Lagrangian (1)
is given by the functional integral
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tion Z+. Skeletomzing the formal path integral for Z+
by first forming

is the quantum Hamiltonian for a particle in a double-
well potential with a temperature-dependent energy shift

2

f(@ +, 'N )= ~m @~+,+ ~AC&4+, + V = ln
2P5 2~5

(29)

we have
N

Z = + fd4;exp[ —P5f(4&,. „&0,. )],

(20)

(21)

arising from the normalization (22). The role of A' is now
played by p ', so that as the inverse temperature is made
larger, WKB becomes a better approximation. For the
dimensionless form of the theory (7), the quantum Hamil-
tonian (28) becomes

where as just stated we have imposed a periodic bound-
ary condition (4

&

=4&+, ), and

d@, =(P/2vr5)d4, . (22)

—Pl e„Z+= e (24)

The normalization (22) is fixed by requiring equipartition
to hold for a free scalar field theory.

Introducing the transfer operator specified by the ei-
genvalue problem,

f dN;exp[ P5f (4, + „—4, )]%„(N, )

=exp( —P5e„)%„(@;+,), (23)

where e„ is the eigenvalue corresponding to the eigen-
function 4„. Substituting in (21), it follows from the
completeness of the eigenfunctions that

(30)
2P BP

where V& is just V& with P replaced by P. This is the
form of the theory that we will use in the remainder of
the paper.

It is important to note that since (27) was derived un-
der certain smoothness requirements, the eigenfunctions
of H& or of M& will not always be eigenfunctions of the
transfer operator. This is the case at high temperatures
where, for fixed 5, the ratio 5/P may be much larger than
unity. However, for the intermediate- and low-
temperature regimes which are of relevance to kink ther-
modynamics, (27) provides an adequate description. (If
needed, the high-temperature behavior can be studied via
perturbation theory [20].)

An alternative way to view (30) is to introduce the
scaled field P =PP, in which case,

In the thermodynamic limit, L ~~, Z+ is determined by
the smallest eigenvalue of the transfer operator. In this
limit, the free-energy density is simply I'@=so.

In an entirely analogous manner, it is possible to show
that the correlation function

& e(x)e(0) &
= fDC&e ~ ( )C (x)4(0)1

Z+

=y
I & qj. 1@1+0& I'exp( —Plx 60„), (25)

2P2 4P4
(31)

Here we have omitted the contribution of V& which,
since it is just a shift, can be treated separately.

At low temperatures the two wells are widely separated
and the ground-state energy is given by the oscillator
ground-state energy for one of the wells minus the
tunnel-splitting term, usually calculated by the WKB
method. One can then write

where Ao„=e„—eo. At large values of x, the lowest ex-
cited state controls the behavior of the correlation func-
tion.

The problem is now to compute the eigenvalues and
eigenfunctions of the transfer operator. Assuming that
qI„(N, ) are smooth functions of 4;, we Taylor expand
ql„(@;) on the left-hand side of (23) in terms of the
4„(@;+&)on the right-hand side. The integral on the
left-hand side can now be evaluated term by term. To
leading order in 5/P, (23) becomes

exp( p5H& )ql „=exp( ——p5e„)'k„

Zosc Ztunn Zp
Q

or, in terms of the free energies,

I' =I' „+I',„„„+Vg,

where, from a crude WKB estimate,

L
osc v' 2P

and

2v'ZP

(32)

(33)

(34)

H~% „=e„%„.
Dropping the indices on the fields

02

2P B&b

(27)

which is equivalent to the time independent Schrodinger
equation

where the kink energy for the dimensionless form of the
theory, Ek =V8/9. The key result of KS is the realiza-
tion that the tunneling contribution is associated with
kinks and the sum of all the other contributions with
phonons[8].

More generally, one expects that there should be three
qualitatively distinct temperature ranges. At very low
temperatures the tunnel splitting between two "classically
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degenerate" states is very small and the WKB picture of
kinks is valid. At higher temperatures the wave-function
overlap in the region between the wells is large enough
that the WKB result for the energy difference between
the ground and first excited state is incorrect. One ex-
pects, therefore, that for temperatures in this "intermedi-
ate overlap" regime, the WKB approximation breaks
down, but that kinks still exist as fairly well identifiable
objects. Moreover, the tunnel splitting between the
ground states can become comparable to the splitting be-
tween a ground state and the first excited state inside
each well (this, however, has no effect on the correlation
length, and as seen in Fig. 2, makes only a minor correc-
tion to the kink number). Finally, at still higher tempera-
tures when the ground-state energy in each well becomes
larger than the classical barrier height, the kink descrip-
tion fails since the overlap is of order unity and the kink
and phonon energy scales become indistinguishable.
These three temperature regimes are in fact clearly seen
in our numerical data (Fig. 1) as well as in the analytic re-
sults from the double-Gaussian approximation of Sec. IV
(Fig. 5).

Let us first describe the expectation values for the
correlator and the kink density based on the WKB ap-
proximation, which one expects to be valid in the low-
temperature regime. [From now on we perform all calcu-
lations in the thermodynamic limit L~~. The large
size of the system in our simulation (16384 sites) rules out
finite-size effects: from (24), it is clear that the thermo-
dynamic limit is correctly found in the simulation provid-
ed that Lb,oip» 1, or in terms of the correlation length,
when L ))A.. At the lowest temperature studied here
L/A, )40. Since this is the worst case result, the condi-
tion L ))A, is very well satisfied over the full range of the
simulation. ] An accurate calculation in this limit (see,
e.g., Ref. [9]) yields, for the energy difference between the
ground and first excited state,

' 1/2
3Ek

~oi=4 (36)

1

p~oi
(38)

=—,'&(~/3) exp(EkP) .
V'E, P

(39)

This is plotted in Fig. 3 and is seen to fit the numerical
data very well for p& 6.

Another quantity of interest is the number of kinks. In
fact, there appears to be no unambiguous way to define
this quantity. The number of kinks is usually calculated
in the phenomenological approach by working in the
grand canonical ensemble (see, e.g. , Ref. [9]). We now in-
troduce a new way of defining an effective kink number
by working only with the original field variable. We be-

The WKB result for the correlation function (using
only the first two states) is

&P(0)P(x) & =e (37)

where the correlation length

gin by identifying three length scales in the problem: I„
the averaging scale, a length scale long enough such that
the averaged field

I /2

P, (x)=—f dy P(x+y)
a a

(40)

is smooth on scales of the order of the kink length. Cal-
ling the typical kink separation, lk, and with L, such that
l, L, « lk, we define

2yg2 2l2

~

—PL bo„+e
X [1—cosh(Pb. o„l, )]] .

(42)

, [&y', &
—&y. (0)y. (L, ) &] (41)

4/2

to be the kink number density. This definition comes
from just counting the number of zero crossings of the
smoothed field under an assumption that the typical sepa-
ration between the kinks is much larger than l, and L, .
The normalization factor +()I(0 is the asymptotic field
value away from a kink. The angular brackets denote a
sampling over the whole lattice (divided into blocks of
length L, ). The factor —,

' compensates for the fact that
antikinks are also counted (the number of kinks is equal
to the number of antikinks). Note that our definition of
kink number is sensible only when there is an appropriate
separation of length scales, e.g., it is not valid at high
temperatures when the kink separation is very small
(where even the notion of a kink is not well defined).
Even at intermediate temperatures, Xk depends on the
smearing length. Such a dependence has indeed been
noted in numerical simulations [15,19].

To understand the errors in estimating the number of
kinks from (41) we first consider the case of l, fixed and
varying L, . If, on the one hand, L, is chosen too large
(L, & lk ) then there is an undercounting of the total num-
ber of kinks since there will be many instances of having
more than one kink in a block of length L, . If, on the
other hand, L, is too small (i.e., smaller than the kink
size) then there will again be an undercounting since in
any given block of size L„~P,(0)—P, (L, ) (2/0. There-
fore, for a given l„one should maximize (41) with respect
to L, . Now, considering l, as a variable, it is clear that
for small l, (l, less than the kink size), (41) can be
nonzero as long as non-negligible phonon Auctuations are
present independent of whether kinks exist or not. At
low temperatures one expects Nk to be independent of l,
(see the discussion below) but in the intermediate-
temperature regime there should be a dependence on the
averaging scale.

An explicit formula for 1Vk can be obtained by substi-
tuting (40) in (25). Then, for L, &l, , it is easy to show
that
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In the dilute-gas regime we keep only the contribution of
the first excited state in (42), use the WKB result (36) for
b,oi, and take the limit P—+ ~ in (42). The total number
of kinks is, for L, ~ I„

l,
N,„= L, 1 — (3/n)QEkP, etot L s

kink contributions in terms of separate "diagonal" and
"overlap" contributions to the ground-state energy. The
double-Gaussian approximation should be reliable at in-
termediate and high temperatures, where the overlap be-
tween the two ground states is substantial (at low temper-
atures, when the overlap is very sensitive to the form of
the "tail" of the wave function, WKB is more accurate).

l,=L 1— &(3/rr)QEkPe (43) IV. THE DOUBLE-GAUSSIAN APPROXIMATION

which, modulo the constant prefactor, is in agreement
with the result of Ref. [9] in this limit. An interesting
point is that we have an explicit expression for the pre-
factor and therefore can test our formula directly against
the simulations.

Our predictions are compared with results from the
simulations in Fig. 2. (Note that the kink energy in the
dimensionless form of the theory Ek =&8/9 and that
EkP=Ek13 )In the . low-temperature limit, one expects the
kink number to be independent of L„and this is indeed
true provided that l, ((L, [see (43)]. In this case, while
the analytic result overestimates the number of kinks by a
multiplicative factor of —1.6, the functional form of the
temperature dependence of the kink number is in very
good agreement with the simulations. If one sets L, =l,
in (43) then compared with the previous case, the kink
number is reduced by a factor of —', , and is in complete
agreement with the simulations. At present we do not
understand the sensitivity of the theoretical formula to
the ratio of I, /L, in the low-temperature regime. A dis-
cussion of the kink number density in the intermediate
temperature regime will be postponed to Sec. IV, after we
have described the double-Gaussian approximation.

The agreement of the WKB or dilute-gas results with
the simulations imply that there is no significant renor-
malization of the kink energy (beyond that due to linear-
ized phonons) at low temperatures (i.e., P) 6). This is in
disagreement with the simulations carried out in Ref. [11]
but in agreement with the theory of Ref. [9]. Whether
there is or not such a renormalization of the kink mass at
intermediate temperatures is dificult to analyze as at
these temperatures the effects due to nonlinear phonons
and kinks are hard to disentangle. A good example of
this is the behavior of the kink number versus P (Fig. 2).
Both numerical and analytic results show that the ambi-
guity in the very notion of a kink number density is such
as to rule out any estimation of the kink mass from the
data at intermediate temperatures.

In the regime where WKB fails, one can compare the
simulations of the kink system with numerical solutions
for the energy eigenvalues of the Hamiltonian H&. How-
ever, one would like to have a simple analytical method
for predicting the measured quantities. To this end we
implement the double-Gaussian variational approxima-
tion in the effective quantum-mechanical problem. This
approximation is an order of magnitude more accurate
than the simple Gaussian approximation for this problem
and correctly accounts for the reduction of energy due to
the overlap between the wave functions in the two wells.
It also allows a natural decomposition of phonon and

The Gaussian approximation is a well-known nonper-
turbative variational method for calculating the ground-
state energy and effective potentials in quantum-
mechanics and quantum-field theory [22]. As discussed
in the previous section, the transfer-operator technique
reduces the classical statistical mechanics of a field theory
in 1+1 dimensions to ordinary quantum mechanics. To
apply the standard Gaussian approximation is simple:
one assumes that the ground-state wave function is a
Gaussian with width n ', and centered at the point po,

O'G(po, n) =&(n/~)exp[ —
—,'n(p —po) ] .

Next one computes the energy

VG(yo n): (%G~ag % G )

(44)

(45)

and minimizes with respect to Q to yield the Gaussian
effective potential VG (Po). The global minimum of
VG(go) is the ground-state energy as calculated in the
Gaussian approximation.

In our case, with the Hamiltonian given by (31), it is
easy to show that

VG(po, n) = —,'n— 1 —
q 1

2p2 ' 2n

3 2-4 3 34o
4p' ' 4n' (46)

Minimization of (46) with respect to n yields the cubic
equation

13' P' 2P' (47)

the largest positive root of which is of interest. Substitu-
tion of (47) in (46) enables us to write

VG(fo) = — —,4'o+ —,4'o+ —,
'n—

2P ' 413' ' 1613' n'

Note that go=0 is always a local minimum of VG(go).
Above a certain temperature, it becomes the global
minimum and one has a behavior reminiscent of a first-
order phase transition in the effective potential (Fig. 4).
Numerically, this transition occurs at P =3. 12 and one
might interpret this as predicting a disappearance of
kinks at this temperature. This is not quite correct, how-
ever, as we will soon see.

A problem with the Gaussian approximation is that it
does not account for tunneling. We know intuitively that
for the double-well Hamiltonian, at large well separation,
the ground state should be described- by a superposition
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n s to a contribution totion: the diagonal term correspon s to a c
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hile the overlap term is the kink con ricorrections w i e e
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V b following t ehIn principle, one can minimize D& y
f V . Unfortunately, this yields asame procedure as or

for Q which cannot be handledtranscendental equation for w
out is to first minimize (5 wianalytically. A way out is

o 0 i noring the overlap terms comp etc y: isrespect to ignorin
b (47) in (51). The

t to is then carried out by
to kee ing 0 as given y

minimization with respect to 0 is en c
differentiating (51) with respec
suit to zero. While this procedure appears to be rather a

is still a major improvement over
V both ualitatively and quantitatively. First,

a
'

at =0 so that there is noa way1 ays has a local maximum a
abrupt change in the behavior of VDo(gp ) with tempera-

'
h the fact that there is no finite tem-ture, consistent wit t e ac

and V areerature p ase rh transition in this model (VDo an G a
c ' . 4j S cond it is an order of magnitud ecompared in Fig. 4 . econ, i

h V in estimating the ground-state en-more accurate t an G i e
r (worst case error —

l%%uo compared toergy wors c
n now estimate the en-Third, and very importantly, we can now

ergy of the higher excited states.
To estimate the energy of the first excited state we sim-'" =(4 H ~ql ) where ~P, is the an-ply minimize VDz ——

tisymmetric partner of O'Dz,

ackets, one in each well. Theseof two localized wave pac e s,
e taken to be Gaussians. Wit suc awave packets may be ta en

f t' there will be cross terms inwave unc ion
overla s between the individual Gaus

'~ ~ ~

ssians.arising from over aps e
verla terms is clearlyCorrectly accounting for these over ap erm

essential for our problem.
We therefore modify the trial wave function y ta ing

it as a superposition of two Gaussians,

+i==I +G(4'i ni) —+G( —0'i»i ]
N

(52)

2

with N =2[1—exp-wi = —
(
—n ~ )]. It is to be stressed that

the minimization of the energy pe m' ' ' '
with res ect to 4', has to

be done independently from that with O'Dz.. We findthat

[0 G(yo n)+9 G( yo n ]DG ~ G 0&

where the normalization factor
—QgpN'=2[1+e '] .

It is then a simple matter to showw that

V (y„n)=( I~iF~I ~%

(50)

n2$ 2

2
1

4p n,

Qi+ +
16p'n', 4

(53)

VG(iI)o, n)+2

n2$ 2

2
1 3

4p n 16p n4 2

(51)

a of V'" anda u between the absolute minima of VDz andThe i erence e w
V is the tunnel-splitting energy h0& ca cu a eis

We now investigate thedouble-Gaussian approximation. We no
low-tern erature imit o e1' ' f th double-Gaussian approxima-

'
h he WKB result. First, fromtion and contrast it wit t e

(47), it follows immediately that at low temperatures,

(54)
onal" contribution toThe first term represents the diagona

r while the rest are cross terms from the overlap
or "off-diagonal" contribution. n e ra

Substituting these lastAlso, at low temperatures, Po= . Sub
' '

g
two results in (51) and (53) we find,
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1 3 1
V = +

&2P 32P 4
e

—V'2P
14—

&z/3

3

8P 2

(55)

and

y(&) 1 3

&2/3 32/3

—&zp——+
4 4

14—
&z/3

3

8/3

(56)

1 3
4 — —,p —+Do,

&2P 8P
(57)

Polynomial corrections in powers of P ' to the leading
order result are due to anharmonic corrections while the
exponential terms represent the tunneling contribution.
On subtracting (55) from (56) the tunnel-splitting term
follows immediately:

e
—V'2P

wave packets is very small and therefore very sensitive to
the form of the tail of the wave function. At higher tem-
peratures, however, the overlap is not small and the sen-
sitivity to the form of the tail disappears. Consequently,
(51) and (53) become increasingly more accurate.

At low temperatures, the second excited state is one of
a pair of tunnel-split harmonic-oscillator first excited
states. The state with even parity does not contribute to
the correlation function or to the approximate kink num-
ber formula because the matrix element of the position
operator between the ground state and any even state
vanishes. The odd state, written in our double-Gaussian
approximation is,

+2 —~(4 42 )+G (42&+2 )+(4 +02 )+G ( 42&+2)]
N

(58)

which may be contrasted with the WKB result (36). In
this regime, the WKB result is more accurate as the
double-Gaussian method tends to underestimate the
overlap contribution [b,o, —exp( —+2/3) in double Gauss-
ian versus b,o, -exp( —&8/9P) in WKB]. This is to be
expected since in this regime the overlap between the two

I

—242 (59)

The expectation value of the energy in this state now fol-
lows from a straightforward calculation:

Do = ( +2 I Hg I +2 ~

—0 P+e . 1 —4n2$ 2+ nyl2 —— (1——n2IYf2)+ ( ——'02' 2)—
/3 Q2 p'n', ' (6O)

In order to determine the values of Pz and Q2 one has, in
principle, to carry out a constrained minimization of the
energy by also enforcing the requirement that 4& and %2
be orthogonal. From (52) and (58) this condition turns
out to be

0.2
0z

—4i =exp
02+Pi

(61)

For the range of temperatures we are interested in, the
above condition is reasonably well satisfied if we take
0,=02 and P, =Pz, i.e., the left-hand side of (61) is iden-
tically zero, while the right-hand side is small (worst case
of order 10 ). Therefore for this state we do not need to
carry out a minimization of the energy as long as high ac-
curacy is not required. In the low-temperature limit,

(62)

The first term in (62) is just the energy of the first excited
harmonic-oscillator state as expected. The other terms
represent anharmonic corrections and overlap contribu-
tions as usual. In Fig. 5, the first three energies (as calcu-
lated in double-Gaussian approximation) are plotted

0 2 I i I & i i i I . i « i I

FIG. 5. The ground state, first excited, and the odd second
excited state energies computed in the double-Gaussian approx-
imation (the lowest, middle, and uppermost solid lines) plotted
against P. The ground-state energy has further been decom-
posed into the contributions from the "diagonal" (dot-dashed
line) and "overlap" (dashed line) pieces.
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against the inverse temperature. While at intermediate
temperatures 602 and Aoi are of similar magnitude, at low
temperatures, Ao2&&hoi which, of course, is just the
WKB regime. It is clear that for values greater than
P-6, the WKB results should hold.

The behavior of the energies of the ground and first
two excited states (Fig. 5) allows the identification of
three qualitatively different regimes: (1) all the energies lie
above the classical barrier, (2) the ground-state energy
lies below the classical barrier height (at 13=1.734), and
(3) the energy difference between the first two states be-
comes negligible in comparison with the energy difference
between the ground and the second excited state (at
P-6). Our simulations confirm the theoretical expecta-
tions of the previous section that kinks cannot be
identified in region (1), that there are kinks, but that the
dilute-gas approximation is invalid in region (2), and
finally, that the dilute-gas approximation is accurate in
region (3).

The classical single-point field distribution function
P (P) can be measured directly from our simulations. For
the analogous quantum-mechanical problem arising from
the transfer-operator method this is just the square of the
ground-state wave function 'Po. Results from the simula-
tions are compared with %Do at P= 2 and P= 4 in Fig. 6
and are in reasonable agreement. The presence of kinks
implies a double peak in P(P) [23] (the converse is false)
while a single peak centered at the origin means that
kinks and large amplitude thermal phonons can no longer
be distinguished. From the simulations such a transition
occurs at P= 1.7, in agreement with the theoretical calcu-
lation of when 4&& goes over from a double- to single-
peaked distribution. (The double-Gaussian method com-
pares favorably with the numerical evaluation of the
transfer operator in Ref. [20], which predicts 13= 1.8 as

—a exp
(Qgo —Q, P, )

4o
(63)

the transition point. ) As expected, this is also the tem-
perature (see Fig. 2) where the ground-state energy
crosses the classical barrier height. (A discussion of vari-
ous methods to determine this characteristic temperature
is given in Ref. [24].)

It is also apparent from Fig. 6 that the double peaks in
the distribution function move inward from the minimum
of the classical potential as the temperature increases
(eventually coalescing at P-1.7). Physically this can be
understood as nonlinear phonon corrections due to the
fact that near each minimum, the potential is not sym-
metric under reflection around the minimum.

The correlation function as determined by (25) can, of
course, be directly evaluated in the double-Gaussian ap-
proximation. The correlation length is determined by the
long-distance behavior of the correlation function, and as
is clear from (38), one needs only the energy difference be-
tween the ground and first excited state to determine the
correlation length. In Fig. 3 the correlation length as
given by the double-Gaussian and WKB approximations
[see (13)] is compared with the results from the simula-
tions. As expected, the double-Gaussian prediction is
borne out at intermediate temperatures (up to P-4)
whereas the WKB results are in agreement with the data
at low temperatures (above P-6).

The kink number as determined by (42) requires the
calculation of the matrix elements (O~g~n ). The first
two nonzero matrix elements as given by the double-
Gaussian approximation are

( Q(t'o+ Q i(t'i )'
(O~y~l&=r a+exp 4o.

I I
i

I I I I
(

I t I I
I

I
1 +a+ —a~y, exp2'

(Qgo+ Q, P, )

0.2 + +a +a
20

X exp
«(t'o —

Q ikey
)'

(64)

0.1
where

' 1/4+1 —(1/2)(&P +0 P )

g 2 (65)

o =
—,'(Q+Q, ),

Q4'o+Qi(t i

0+0

(66)

(67)

FICx. 6. The classical distribution function P([P]) (solid
lines) given by the simulation and the distribution %~ from the
double-Gaussian approximation (dashed lines) plotted against P
for P= 2 and 4. The underestimation of the wave-function over-
lap in the double-gaussian approximation is already visible at

=4.

As the energies for the first three states are already
known we can now evaluate the kink densities as given by
(42). Theoretical estimates (for different choices of /, and
L, ) are compared with results from the simulation in Fig.
2. The double-Gaussian results for the kink density are
entirely consistent with the numerical data at P(5.5
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(beyond this temperature the double-Gaussian approxi-
mation underestimates the number of kinks due to the
underestimation of b, o, ). Due to the ambiguity in the
concept of kink number discussed earlier, the significance
of this comparison at high temperatures is not clear.

The internal energy and the specific heat can be com-
puted straightforwardly from the double-Gaussian ap-
proximation. The behavior of the specific heat with tern-
perature is of particular interest: it is known that at a
temperature relatively close to, but somewhat below the
characteristic temperature where kinks appear, the
specific heat attains a maximum value. Though a real
phase transition cannot occur in this system, it can be ar-
gued that this peak is a signal for the emergence of a new
degree of freedom, in this case presumably, the kinks.
While this peak has been seen in numerical calculations
of the partition function [20], it has not been unambigu-
ously established that this feature is due to kinks. As
remarked earlier, the ground-state energy as given by the
double-Gaussian approximation breaks into two contri-
butions: one given by an overlap contribution and argu-
ably associated with kinks, the other associated with pho-
nons. This feature allows one to analyze the nature of the
peak in the specific heat.

To begin, we recall the definitions,

U = (PF)
8

(&9)

for the internal energy U and the specific heat C, . In our
case, the free energy F has four contributions: one from
the kinetic term in the original field Hamiltonian, one
from the term given by the normalization of the function-
al integral, one from the overlap contribution, and one
from the (potentially nonlinear) oscillations around the
potential minimum of H&. The first contribution stems
from (19) giving rise to the free energy density

ln(Z„)1

I.

linear phonons. The nontrivial contributions are there-
fore included exclusively in F„, and F,„„„.At low tem-
peratures, the WKB result for the ground-state energy
may be used to show that [9]

1/2
3Ek13

(73)

In this regime F„, does not contribute to the specific
heat at all while the kink contribution is exponentially
suppressed. The constant term due to linear phonons (72)
is dominant.

The situation can be dramatically different at inter-
mediate temperatures. The specific heat as calculated
from the double-Gaussian approximation is plotted in
Fig. 7: A prominent peak in the specific heat appears at
13=5.4. To understand whether this peak is due to kinks,
the individual contributions from F„, and F,„„„arealso
plotted. There seems to be a delicate interplay between
these two contributions. While the rise to the peak with
increasing p is due to nonlinear phonons, just before the
peak this contribution drops off steeply and eventually
leads to a reduction in the height of the peak. The over-
lap or kink contribution exhibits a slow initial decline as
P increases, followed by a relatively sharp peak: it is this
peak that is the dominant contribution at P-5.4. We
can therefore conclude that it is indeed the kinks that are
responsible for the peak in the specific heat at this tem-
perature. At larger values of P, both contributions fall off
smoothly to zero as expected from the 1ow-temperature
result (73).

We have also calculated the internal energy U. The
nonlinear phonon and kink energies are plotted in Fig. 8.

3

1 2m
ln

2P5 5P
(70)

(71)

=1C (O)—
V

(72)

Put another way, (71) and (72) are the contributions from

The other pieces come from (32). The contribution F„,
is just the first term of (51) while F,„„„is the second term.
The normalization contributes the V& term. From (70)
and (29) we can immediately calculate the contribution to
the internal energy density and the specific heat (per unit
length) of the kinetic and measure terms. This gives just
the results for a free field theory

I I I I I I I I I I I

FICx. 7. The specific heat C, as calculated from the double-
Cxaussian approximation plotted against P (top curve). The
peak in the specific heat occurs at P=5.4. The contribution of
the linear phonons to the specific heat is the constant value
1/5=2. The individual contributions arising from the kinks
(solid line) and nonlinear phonons (dot-dashed line) are shown
below. The WKB calculation for the kink contribution (dashed
line) is plotted from P=6.5 onwards.
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FIG. 8. The internal energy plotted against P in double-
Ciaussian approximation (solid line). Kink (dashed line) and
nonlinear phonon (dot-dashed line) contributions are shown
separately (modulo an irrelevant constant energy shift). Note
that kinks dominate over nonlinear phonons in the region where
the specific heat has a maximum.

V. DISCUSSION

In summary, we have shown that the dilute-gas or
WKB approximation is excellent for P) 6 with no further

There is a clear indication of an intricate energy sharing
mechanism operating between the nonlinear phonons and
kinks at intermediate temperatures with kinks dominat-
ing the internal energy in the neighborhood of P-5.4.
Presumably this is due to the fact that at these tempera-
tures kinks emerge as well defined localized objects and
are created with relative ease.

The results from the double-Gaussian approximation
as shown in Figs. 7 and 8 are not quantitatively
trustworthy for P ) 5 as the approximation breaks down
at that point. However, we expect them to be correct
qualitatively: since this method underestimates the over-
lap at low temperatures, it, in fact, suppresses the kink
contribution at lower temperatures. Therefore it is high-
ly unlikely that the peak in the specific heat due to the
kink contribution is an artifact of the approximation. A
direct comparison of the theoretical results for the
specific heat with numerical simulations is possible but
requires high statistics. Work in this direction is in pro-
gress.

phonon dressing of the bare kink energy beyond that al-
ready included in (11) and (13) at these low temperatures.
In particular, we see no evidence of a reduction in the
kink mass as suggested in some previous simulations
[13—15]. At higher temperatures, the WKB analysis
fails, though theoretical progress is possible with the
double-Gaussian technique. In this temperature regime,
we have shown that the correlation length as measured in
the simulations in very good agreement with the theory
and that the kink number density, while not being a
well-defined quantity, can still be understood at least
qualitatively. The double-Gaussian approximation also
accurately predicts the onset of short-range order in the
system as evidenced by the probability distribution func-
tion crossing over from a single- to a double-peaked dis-
tribution.

The work reported here contains some of the largest
simulations carried out to date on the N model. The ad-
vantage of size is apparent: we have been able to go to
low enough temperatures to unambiguously verify the
WKB predictions for this model. Furthermore, the large
system size enabled us to check for finite-size effects and
to be confident of their absence.

The decomposition of the specific heat into two contri-
butions via the double-Gaussian approximation appears
to demonstrate the existence of a nontrivial energy shar-
ing interaction between kinks and nonlinear phonons in
the neighborhood of the temperature where the specific
heat is a maximum. At this temperature (P-5.4), kinks
exist as well-defined objects (Fig. 1) but the dilute-gas or
WKB theory is not valid. It would be interesting to see if
an analytic study of the thermodynamics of kinks and
phonons is possible in a phenomenological theory in this
temperature regime.

We expect to apply the double-Gaussian variational
method to other problems in the future, e.g., sine-Gordon
and 4 field theories in 1+1 dimensions. Work on the
Langevin simulation method applied to calculate dynami-
cal correlation functions is already in progress.
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