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Hexatic and fat-fractal structures for water droplets condensing on oil
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Experiments on water droplets condensing on a liquid substrate (breath figures) are reported. Attrac-
tive capillary interactions between drops lead to the formation of particular two-dimensiona1 structures.
An hexatic order with exponent g =0.9 is observed over a small length scale. At larger length scales the
defects in the structure exhibit a fat-fractal distribution with exponent P=3.3.

PACS number(s): 68.10.—m, 64.70.Dv, 82.70.Kj

INTRODUCTION

When water vapor condenses on a substrate under
partial-wetting conditions the drops conform to a pattern
(breath figures), for which the geometry can be very rich
[1]. We focus here on the case where the substrate is a
liquid (paraffin oil). A number of observations concern-
ing the growth and the geometrical characteristics of the
droplet pattern have already been reported [1,2]. In par-
ticular, the droplets are suspended at the surface of the
liquid (Fig. 1) because of a subtle balance between buoy-
ancy, droplet weight, and capillary forces [3]. The oil
surface is curved around each droplet and elastic energy
is stored. The bending of the substrate causes long-
ranged elastic interactions between the drops that are
able to aggregate, as observed for small solid spheres at
the surface of water [4]. In this paper we report the vari-
ous patterns that the droplets form under the inAuence of
capillary interactions.

A complete calculation of the dependence of the force
on the interdroplet distance is extremely difficult. How-
ever, some approximations are valid, such as the Nicol-
son method [3]. This method applies when the bond
number Bo=(R/l, ) is small enough. Here R is the ra-
dius of the droplet and l, is the capillary length defined as
1, =(cr/co)'~, where co=pg is the specific weight of oil, g
being the earth's gravitational acceleration, p the abso-
lute oil density, and o is the oil-air surface tension. In
our experiment where the radius of the droplets is of or-
der 10 pm, 80 is equal to 10 and hence the use of the
Nicolson method is applicable. According to this
method the attractive force F between two droplets
separated by a distance I is
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FICs. 1. Water droplet suspended at the surface of oil by
means of capi11ary forces.
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where d is the oil-to-air relative density. The quantity p
is a key parameter and is defined as the ratio of the ap-
parent drop radius (r) above the surface, to the drop ra-
dius (R) below the surface (Fig. 1). This parameter p is
related to the contact angles of the drop with the surface
and is therefore very sensitive to the wetting properties of
the oil-water interface. By varying p the force can be
magnified by two orders of magnitude. Since the interac-
tion force can be directly deduced from Eq. (1), the pa-
rameter p, which can be easily determined by microscope
observation, can be used as a quantitative measurement
of the interaction between the drops. Note that any tern-
perature gradient around a drop would be of radial sym-
metry and thus will not affect Eq. (1).

EXPERIMENT

A flow of nitrogen gas saturated with water is passed
onto the surface of paraffin oil. The gas is at room tem-
perature (23+0.3'C) and oil is maintained at 5'C to
within 0.1'C. Water droplets nucleate and grow at the
oil surface. These droplets attract each other as de-
scribed above. When two droplets touch each other, they
do not coalesce due to the presence of a film of oil at the
contact point [2]. In fact, the droplets stay in contact
during the course of the experiment. Note that the link
between the drops is not rigid; one droplet can easily slide
around another droplet. When more than two droplets
are in contact, they can rearrange themselves to reach a
more stable configuration in two dimensions, which is the
compact hexagonal structure. We indeed observe islands
of droplets that are arranged in such a structure (Fig. 2).
The islands, in turn, attract each other in a much
stronger way than the single droplets. This is because the
attractive force between the islands is proportional to the
sixth power of their radii as in Eq. (1). After they collide,
the islands rotate around the point of contact in order to
minimize the elastic energy. This is made possible be-
cause the friction between the droplets is negligible. As a
consequence, the orientation of the hexagonal structure is
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FIG. 2. Formation of islands at the beginning of the vapor
deposition. The smallest dimension of the picture corresponds
to 650 pm.

FIG. 4. Fat-fractal structure that has been emphasized by
coloring in black (white) the zones with (without) droplets. The
smallest dimension of the picture corresponds to 650 pm.

not very different from one island to the other (Fig. 3),
and we will see further that an hexatic phase can be
found in such a stage of aggregation. However, if one
looks at a larger scale, one can see a large number of
holes in the pattern. This is shown in Fig. 4 where the re-
gions filled with droplets have been blackened and the
empty zones whitened. The formation of holes is un-
avoidable because the islands are too densely packed to
rotate freely. These holes have a fractal-like geometry. In
fact we show below that the holes can be described as fat
fractals.

All the patterns that we have described until now (hex-
atic and fat fractal) are not observed on the whole oil sur-
face. In some places the interaction between the droplets
is not large enough to create islands; the pattern is only
weakly ordered. This case has been considered in detail
elsewhere [2]. One can ask why, in the same experiment,
there are regions where droplets form hexatic patterns
and other regions where they do not. The answer lies in
the variations of the parameter p, whose value ranges
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from 0.4 to 0.8 in the hexatic zones and from 0.2 to 0.4 in
the rest. This means that the force between the drops is
60% higher in the hexatic zones. Although the inhomo-
geneity in the interaction explains the inhornogeneity in
the patterns, the physical origin of the difFerence is not
well understood. We suggest that impurities in water and
oil could be the cause. The parameter p is an increasing
function of o., the oil-air interfacial tension, which is
known to decrease drastically with contaminants, acting
as surfactants. Indeed, experiment performed under very
clean conditions, where o. is large, greatly facilitates the
formation of hexatic zones.

We now present a quantitative analysis of the patterns.

HEXATIC PHASE

We consider the hexatic phase only as a geometrical
way to characterize a two-dimensional assembly of
points. The complete theory by Nelson et al. [5] is not
relevant to our system, where no quantity equivalent to
temperature is explicitly available. In the following we
will only consider in their model the geometrical ap-
proach where an hexatic phase is a two-dimensional pat-
tern with long-range orientational correlations. One can
prove the hexatic order by considering the spatial corre-
lation function of the order parameter

66(r) = ( exp(6i|)(r) ) ), (2)

FICx. 3. Islands that have merged. The smallest dimension of
the picture corresponds to 350 pm.

where i =&—I and 6(r) is the angle (with respect to
some fixed direction) of the segment between two neigh-
boring droplets whose centers are separated by r. The
averaging procedure denoted by ( ) is performed over
the different droplets. In an hexatic phase, 66(r) de-
creases as r " (q is an exponent that we discuss below),
whereas G6 is exponentially decaying in a random struc-
ture.

We have determined the G6 function from the experi-
rnents by using an image-processing system. In order to
determine which drops are neighbors, we used a method
based on Voronoi polygons. Such a polygon is the small-
est convex polygon surrounding a drop whose sides are
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the bisectors of the lines between the drops and its neigh-
bors. Two drops are said to be neighbors if their respec-
tive Voronoi polygons have one side in common. The re-
sult is shown in Fig. 5. The range over which the hexatic
order extends is of order 10 drops, which is close to the
diameter of the islands. This shows that the orientational
order persists only from one island to the nearest-
neighbor island.

The measured value of the exponent g is always close
to 0.9. This value can be interpreted in terms of structur-
al defects according to Ref. 2. With c the concentration
of defects in the structure, it can be shown [5] that
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q=9c/~ . (3)
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The concentration c can be deduced from the Voronoi
polygons as the fraction of polygons that do not have six
sides. By using the same technique as in Ref. [2] we ob-
tain c =0.35, in close agreement with the value (0.32) de-
duced from g. The large value of g is thus the conse-
quence of the large number of defects in the pattern.

FAT FRACTAL

We consider now a larger scale where droplets are not
resolved. At this scale, the holes can be clearly identified
as shown in Fig. 4. We want to quantify their distribu-
tion.

Umberger and Farmer [6] have proposed a new
definition for fractal objects of nonzero surface, called fat
fractal. The relevant exponent (P) for such structures
with holes can be obtained as follows. Let us consider
S(RE), the total surface of these holes which have
a radius of gyration smaller than the length Rg.
The radius of gyration of a hole is defined as
RE =g;[(x;—x ) +(y; —

yE) ]'~ where x; and y; are the
coordinates of an element i of the hole and xg and y are
the coordinates of the center of mass of the hole. Then P
is defined as the limit of the ratio ln[S(R )]/ln(R ) when

Rg becomes smal l. Experimental ly, we use a two-step
method to determine P. First, we consider the relation-
ship between the surface S of the holes and their radius
RE (Fig. 6). For the ten diff'erent patterns that we have
analyzed we find that the data can be fitted to the power
law

S(RE)-R
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FIG. 6. Surface S of holes vs the hole gyration radius Rg in a
log-log plot. Rg is expressed in units of R, the radius of the
drops (typically 10 pm).

Here, 5=1.85+0.25 (the uncertainty corresponds to two
standard deviations). The fact that 5 is close to 2 is a
mere consequence of compact holes. Second, we calcu-
late the size distribution function F(R ) of the holes (Fig.
7), which is the number of holes whose radius of gyration
is less than Rg For holes that are not too large we find

F(RE ) —RE (5)
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with the exponent a = 1.4+0. 1 (two standard deviations).
This law breaks down for large values of R because of
the finite size of the analyzed picture. The power laws
[Eqs. (4) and (5)] confirm that the patterns observed in
breath figures are fat fractals. One can easily deduce now
from the definitions of P, 5, and a that
P=5+a=3.30+0.35. This value, which characterizes
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FIG. 5. 60' angle orientation correlation function (G6) as a
function of the distance r in a log-log plot. r is expressed in
units of R, the radius of the drops (10pm in this experiment).

FIG. 7. Number of holes of size smaller than Rg in a log-log
plot. Rg is expressed in units of R, the radius of the drops (typi-
cally 10 pm).
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the structure of the pattern, should not be compared with
the space dimensionality.

CONCLUDING REMARKS

Breath figures appear to be a very convenient way for
generating various two-dimensional structures such as
hexatic phases, fractals, or other less-ordered patterns
[2]. More than a simple model, breath figures offer a
number of interesting features. The first interesting
feature is the negligible friction between drops. This a1-
lows many rearrangements in the global structure to
occur and leads to a pattern —a fat fractal —which is
more compact than a classical fractal. The possibility for
rearrangements also leads to the persistence of an orien-
tational order of about the size of an island and to an
hexatic order. The second interesting aspect is the possi-
bility of observing hexatic and fractal patterns simultane-
ously. Furthermore, we find a quantitative link between

the two structures: the more fractal the structure, the
less long-ranged the hexatic order. One can imagine two
extreme situations, one being a large hexatic phase with a
few holes in it. Then the exponent g is small and P can-
not be determined. The second case is a pattern similar
to classical branched fractals with no orientational order.
The breath-figure experiments on liquids provide patterns
that are in between these two extreme cases. It would be
of interest to obtain the numerical values of rI and P from
the numerical simulation of interacting drops and com-
pare with the experiments. However, the physico-
chemical origin of the inhomogeneities in the capillary in-
teractions still remains unclear. This aspect deserves fur-
ther studies.

ACKNOWLEDGMENTS

We are grateful to M. Cloitre and J. Van Duijneveldt
for very fruitful discussions and to A. Engelman and A.
Stegner for their help in the measurements.

'Present address: Ecole Nationale des Telecom-
munications, F-75013 Paris, France.

[1] See, e.g., D. Beysens, A. Steyer, P. Guenoun, D. Fritter,
and C. M. Knobler, Phase Transitions 31, 219 (1991),and
references cited therein.

[2] A. Steyer, P. Guenoun, D. Beysens, and C. M. Knobler,
Phys. Rev. B 42, 1086 (1990), and references cited therein.

[3] M. M. Nicolson, Proc. Cambridge Philos. Soc. 45, 288

(1949); D. Y. C. Chan, J. D. Henry, and L. R. White, J.
Colloid Interface Sci. 79, 410 (1981).

[4] C. Allain and M. Cloitre, Ann. Phys. 13, 141 (19881.
[5] D. R. Nelson, M. Rubinstein, and F. Spaepen, Philos.

Mag. A 46, 105 (1982).
[6] D. K. Umberger and J. D. Farmer, Phys. Rev. Lett. 55,

661(1985).






