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The effect of energy conservation on the decomposition of unstable states is considered for systems un-

dergoing a first-order phase transition with a nonconserved order parameter. Thermodynamic stability
analysis shows that in a large enough initially supercooled adiabatic system the mixture of parent and
product phases separated by a domain wall is preferred. However, in a small particle a homogeneous
phase intermediate between the parent and product phase structures can form. Dynamic analysis of un-

stable phase decomposition identifies the thermodynamic and kinetic parameters defining different non-
linear dynamic regimes. This includes an interesting regime in which the order parameter is "slaved" to
the local temperature. Further evolution of the system has been studied by one-dimensional numerical
simulation which reveals three mechanisms of spontaneous domain formation: nonclassical nucleation,
continuous modulation, and a hybrid mechanism. Formation of a domain structure is followed by stages
of growth and coarsening. Growth can involve heat trapping by the product metastable phase, leading
to a transient "overshooting" of the transformed fraction. Coarsening exhibits both coalescence and dis-
solution and follows a path of sequential period doubling. The results are discussed in terms of applica-
tion to different first-order phase transformations, including "quasimartensitic" displacive transforma-
tion.

PACS number(s): 64.60.—i, 82.20.Mj, 05.70.Fh

I. INTRODUCTION

Kinetics and morphology of transformations in materi-
als are among the most important applications of thermo-
dynamics and statistical mechanics. Usually transitions
are studied under conditions of constant temperature and
described in terms of nucleation, spinodal decomposition,
growth, and coarsening. It is not only the ultimate equi-
librium state which is of concern, but also the nature of
transformation transients because, given the finite time of
processing, the actual structure of materials retains a
great deal of its transient morphology.

It is well known that a phase transformation can take
place very rapidly. In such a case, it cannot be truly iso-
thermal. Over the past several years much attention has
been given to this problem under conditions of conserva-
tion of energy, which can be especially important when
the transformation order parameter is not itself a con-
served quantity. Langer [1] and Metiu, Kitahara, and
Ross [2) showed that depending upon the nature of the
order parameter, its evolution in the framework of the
continuum theory is governed by equations of different
types: the Cahn-Hilliard equation [3], if this parameter
obeys a conservation law, or the relaxation equation if it
does not. The latter case is addressed in this paper.

The first attempt to describe the conservation of energy
was made by Halperin, Hohenberg, and Ma [4] and gave
rise to the so-called "model C," which utilizes the Cahn-
Hilliard-type equation for energy density evolution. Re-
cently an analogous equation for the same purposes was
employed by Penrose and Fife [5]. Another attempt has

been made to describe energy redistribution by the
diffusion equation for the entropy density [6]. The most
widespread is the so-called "phase-field" model, intro-
duced first by Caginalp [7] and Collins and Levine [8],
which describes the conservation of energy by an inho-
mogeneous diffusion-type equation for temperature, with
the constant density of instantaneous heat sources equal
to the latent heat of the transformation. All the equations
were proposed on a semiintuitive basis and are not exact.
Umantsev and Roitburd [9] developed a thermodynami-
cally consistent approach to this problem and derived the
evolution equation for the energy of a nonlocal medium.

Being cooled below the equilibrium point the high-
symmetry e phase becomes capable of a transition to the
low-symmetry P phase (e.g. , solidification or martensitic
transformation). The conservation law can lead to first-
order transformation kinetics controlled by the conserv-
ing quantity [10]. However, the dynamic equations em-
ployed for such cases [10] cannot describe the transfor-
mation with energy being the conserved thermodynamic
variable. Fife and Gill [11] studied a problem of energy
conservation in the framework of the phase-field model
and showed a possibility of transformation through a
fine-grained intermediate structure. Umantsev and Olson
[12] studied the linear and weakly nonlinear dynamical
behavior of the nonconserved order parameter in the
presence of energy conservation and found that the cou-
pling between these two modes is described by the mixed
partial derivative of the free energy with respect to the
order parameter and temperature. Also they found that
in the case of sufficiently strong coupling, early (but not
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necessarily initial) stages of the order-parameter evolu-
tion are described by the nonlinear Cahn-Billiard equa-
tion, which corresponds to conservation of this parame-
ter despite its intrinsically nonconserved nature.

Asymptotic regimes (growth stages) of this process in
an infinite one-dimensional (1D) system were studied
many times in the framework of a free-boundary prob-
lem, which is the sharp interface limit of the continuum
theory. Depending upon the supercooling of the a phase
three different regimes exist: (a) for supercoolings less
than critical, the diffusion controlled Stefan regime ap-
plies with the front velocity decaying as the square root
of time, equilibrium temperature at the front and an ex-
panding thermal field ahead of it; (b) for supercoolings
greater than critical, the kinetic controlled stationary re-
gime of the adiabatic transformation with the product
phase temperature below the equilibrium point; and (c)
the intemrediate regime with the front velocity decaying
as the cubic root of time obtains for the critical super-
cooling [13]. However, in the continuum theory there ex-
ist stationary solutions for supercoolings less than critical
[9,14,15]. This means that the P phase, appearing as a re-
sult of such transformation, is superheated above the
equilibrium temperature. This effect, called heat trap-
ping, consists of adiabatic absorption by the front of the
heat released by the transition from the unstable or meta-
stable a state so that the product phase appears to be
metastable (in the isothermal sense). It exists only in a
bounded interval of supercoolings, with the low limit de-
pending upon the thermal diffusivity and is absent if the
thermal diffusivity is above the critical value [9,14]. The
heat-trapping regime is due to heat diffusion inside the in-
terfacial transition region and is analogous to the parti-
tionless solidification of alloys (solute trapping), which re-
sults in the appearance of crystalline alloys with solute in
excess of equilibrium solubility [16].

In the present paper we examine the general effect of
energy conservation on the first-order-transformation
process in unstable systems with a nonconserved order
parameter. We aim to explore a thermodynamically
rigorous model and understand also the global equilibri-
um of a system brought initially to a certain degree of su-
percooling and then thermally isolated. Such an initial
state can also be achieved in a thermally isolated system
by application or release of an interacting field. For an
isothermal system the question of the global equilibrium
can be resolved easily from the consideration of the free
energies of the two phases: regardless of its size the sys-
tem ends up in a homogeneous phase with the lowest pos-
sible free energy. Obviously, in the adiabatic system the
tranditional picture of two intersecting convex free ener-
gies as functions of temperature is no longer valid for
determining the global equilibrium. The local thermo-
dynamic stability analysis of the unbounded adiabatic
system [14,17] shows that homogeneous and even inho-
mogeneous states which are absolutely unstable under
isothermal conditions may be stable under adiabatic con-
ditions. At first glance a supercooled and then thermally
isolated homogeneous system must end up at a mixture of
the two phases at the equilibrium temperature. Yet it is
not necessarily the case for a system of finite size.

II. EQUILIBRIUM STATE DIAGRAM
OF AN ADIABATICALLY INSULATED SYSTEM

The continuum theory of phase transitions assumes
that the state of a system at a given time t, in addition to
temperature T, and pressure, must be described by one
more function of the position vector x. We shall call it
the order-parameter field (OPF) g(x, t). The nonequilibri-
um Gibbs free energy (effective Hamiltonian) 4 of the
medium capable of undergoing a first-order phase transi-
tion can be written in the form of a functional:

4&= fgd x, g=y(g, T, b)+ —(Vg) (2.1)

where the free energy per unit volume y is the differential
expression in the Landau form with the square gradient
approximation for the nonlocal part [19]. The parameter
~ characterizes the nonlocal properties of the medium (in-
teractions between neighboring areas) and is assumed
here to be constant. To stabilize a homogeneous state ~
must be positive. The homogeneous part of the free ener-
gy density

p(g, T, b) =p (T)+by(g, T) bg—(2.2)

consists of the Gibbs free energy q& (T) of the high-
temperature (disordered) state a= [g =0, T J, the
double-well free-energy increment b,y((, T), and the gen-
eralized work term, where b is the outer biasing field con-
jugate to the OPF of the problem. The latter is the mag-
netic field for ferromagnetic transformations and stress
for displacive structural transformations in solids. The

There are a number of physical examples which can be
described by this type of theory. In the case of a displa-
cive structural transformation where the order parameter
is a strain, it has been suggested [18] that a first-order
transition might occur by a continuous strain-modulation
mechanism controlled by heat transfer; termed quasimar-
tensitic transformation, this constitutes an alternative to
martensitic nucleation and growth. The problem of in-
terest can also be relevant to magnetic and superconduct-
ing first-order transitions with magnetization and wave
function of the superconducting electrons, respectively,
as the order parameter, or liquid crystals which are
characterized by a certain degree of orientational order,
if the cumulative heat release of the transition is essential.
There also have been several attempts to build a continu-
um theory of crystallization with the order parameter re-
lated to the different symmetries of liquid and crystalline
phases. The results also can be used to discuss the
order-disorder transition in solids with concentration
field replacing the temperature field.

The paper is organized as follows. Section II is devot-
ed to the global thermodynamic stability of all equilibri-
um states in a thermally insulated system, determining
the ultimate product of the transformation. In Sec. III
we analyze the initial and late stages of the transition
leading to domain structure formation. In Sec. IV we
take advantage of the method of direct numerical simula-
tion and discuss the results in Sec. V, which is followed
by the conclusions in Sec. VI.
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(functions with a bar should be taken at equilibrium).
Locally stable HES's we shall call phases.

If adiabatic conditions are maintained for a system (mi-
crocanonical ensemble) then its energy W (or enthalpy if
pressure is constant), which can be written as a function-
al, is conserved, i.e.,

W—= I w(g, T, b)+ —(Vg) d x =const .
2

(2.4)

There are no conservation constraints on the OPF be-
cause the latter is assumed to be nonconserved. The en-
tropy functional takes on a maximum at the stable equi-
librium states [20]:

S = f s(g, T, b)d x —+maximum, (2.5)

where w =qr —T(Brp/r)T)t and s = —(r)tp/AT)& are the
energy and entropy per unit volume, respectively. Nega-
tive entropy is a Lyapunov functional of the problem.
Such a system has the same equilibrium states as that un-
der isothermal conditions. They are represented by solu-
tions of the equation

T =const . (2.6)

However, adiabatic conditions can change stabilities of
these states [14,17], and a uniform isothermally unstable

0.1
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FIG. 1. Gibbs free energy increment hy/a as a function of
the order parameter g at different scaled temperatures h. Two
different values of the constant G that correspond to monotonic
solutions of Eq. (2.8) at the equilibrium temperature in large
( GI ) and small (G, ) systems are shown.

free-energy increment b.tp(g, T) should determine the iso-
thermal transformation from the a state to the low-
temperature (ordered) state P= [hatt) g', T I, separated
from the a state by the unstable equilibrium state
y= Ig &g &gati, T], corresponding to the free-energy
crest (Fig. 1). The equilibrium point To of a and P states
is defined so that b,y(hatt, To) =0. The isothermal stability
of homogeneous equilibrium states (HES's) is known to
be governed by the isothermal modulus y+..

(2.3)

( tp~~ & 0) equilibrium state (i.e., y =
I gr, T ] ) can be ther-

modynamically stable under adiabatic conditions if the
adiabatic modulus (rp&& tp—&T /tpTT ) of this state is
positive —the "adiabatic state" (AS). With the help of
the modulus M,

—2
0'g T

f'g+TT
(2.7)

which represents thermodynamic properties of the HES,
this thermodynamic criterion can be expressed as follows:
M & 0 or M ) 1, while isothermal stability corresponds to
the case M &0 only.

Besides homogeneous solutions, Eq. (2.6) is known
to have bounded inhomogeneous solutions-
inhomogeneous equilibrium states (IES's). In the 1D
case they break into three classes: periodic, solitonlike
(critical nucleus), and kinklike (domain wall) solutions
[21,1,22]. IES's for all temperatures are isothermally un-
stable except for the domain wall in the infinite system at
the specific temperature To (the equilibrium point)
[21,1,23], which is a refiection of the Gibbs phase rule.
Adiabatic insulation can also change stability conditions
of these states and the critical nucleus or a periodic solu-
tion can be thermodynamically stable, if the adiabatic
modulus (g&&

—g&T/@TT) is positive at all points of the
system [14]. Hence one can say that the adiabatic system
is "more stable" than the isothermal one [24]. It has
been also demonstrated [14] that, except for the solutions
of Eq. (2.6), the adiabatic system (2.4) and (2.5) has an
equilibrium state which is inhomogeneous in OPF and
temperature but homogeneous in entropy density. This
state is thermodynamically unstable and represents a sad-
dle point.

The problem addressed in this paper is a disintegration
of unstable and metastable equilibrium disordered states
under constraint of adiabatic insulation which is
guaranteed by the Neumann-type boundary conditions:
B„g=r)„T=O, where t)„denotes differentiation normal to
the boundary. In the 10 case a system of finite size occu-
pies the closed interval O~x ~XO ~ ~. The inAuence of
pressure is not the issue of the present work, so it will be
considered invariable. The inhuence of the outer biasing
field b was addressed in [12) and below only the case
b =0 is considered.

The transformation starts from the parent state
a =

I g, T I, where temperature T & To characterizes
the initial degree of supercooling, and may arrive at one
of the uniform equilibrium states: product P= I g&, T&]
which is globally stable if its temperature T& & To or at
the state y= Igr, Tr], which may be stable either only
thermodynamically (AS) if g' &g &g& or even dynami-
cally (linearly stable) if g &g or g ) g'&. Starting from
the unstable or metastable a state the system may also ar-
rive at one of the IES, because the thermodynamic cri-
terion of the global stability, Eq. (2.5), requires that the
system generates the state which has more entropy than
any other state with the same energy, Eq. (2.4). Simply
stated, the system may break down into domains if the
entropy of this state is greater than that of all possible
HES's. For this reason we shall calculate entropies of
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For the existence of bounded solutions of this equation an
arbitrary constant G must satisfy the condition

max[0, hy(gp, T)] & G & 4q (gr, T) . (2.9)

Under this condition the equation b,y(g, T)=G has four
real roots g, , i =1,2, 3,4, while two of them are between

and g&. g g, & gz g&. Suppose we determine an axis
x so that g(0)=gz. Then the bounded solution of Eq.
(2.8) takes the form [22]

diferent IES's Versus their energies, which will enable us
to build an equilibrium state diagram of our system. It is
possible to implement this program by analyzing dynam-
ic stabilities of dial'erent IES's existing in the system.
However, this mathematical problem is not solves as yet
and we take a more physical approach.

To study the IES's we multiply all terms of Eq. (2.6) in
the 1D case by dg/dx and integrate them with respect to
x. This yields

2

=hy(g, T) G. —dg (2.8)
2 dx

For the continuum approach to be applicable the interfa-
cial width should be much larger than interatomic spac-
ing.

The excess entropy AS of IES's can be determined as
follows:

(2.15)

Analyzing this expression one can see that being in the
inhomogeneous state the system tends to decrease the
number of half-periods X until one is left and to form a
monotonic state of the unit aspect ratio: X =1 (P =Xo)
[24], which corresponds to the complete phase separa-
tion.

Differentiating b, &P in Eq. (2.13) with respect to tem-
perture, taking into account that limits g, are roots of the
equation hy(g;, T) =G, hence functions of temperature,
and comparing with the expression (2.15) we obtain

(2.10)
dde
dT

(2.16)

To characterize the periodic solutions we introduce the
half-period P so that g(P)=g, and the product phase
fraction f

1 4 /de ~2 dg'f =— gdx= —— P=—
P o P ki dg/dx '

ki dg/dx
(2.11)

which means that the excess entropy and free energy of
IES's are connected by the usual thermodynamic expres-
sion.

Being supercooled below the equilibrium point To the
n state becomes unstable against the IES formation. As-
suming that the specific heat C = —Td y /dT of the o.
state is constant in the temperature range of transforma-
tion, the condition of conservation of energy (2.4) yields

where 0&f &1 according to the definition. Due to the
Neumann-type boundary conditions T =T+

CXo
(2.17)

df dT =0 for x =0, x =Xo
dx dx

(2.12) where the excess internal energy of the IES at the temper-
ature T can be written as follows:

=X/2ir f V'bg(g, T) —Gdg+XOG, (2.13)

where Eqs. (2.1), (2.2), and (2.8) were used, and the in-
tegration is over the whole volume occupied by the sys-
tem. The domain wall at the equilibrium point
(% = 1,G =O,Xo —+ ao ) can be characterized by the excess
free energy (the surface free energy or surface tension):

2

cr = f [g—
q& (To)]dx =sf . dx (2.14a)

and the width of the transition region

kp
—4 kp

—4
max~ V'g

~

(2.14b)

the aspect ratio of the state N =Xo/P, the number of the
half-periods, is a monotonic function of the constant G.

Now we shall define the free energy of the state AN per
unit area in excess to the parent phase free energy
y (T)XO..

+G dxdg

(2.18)

According to the thermodynamic criterion, IES's branch
oA' the line of homogeneous a states at the bifurcation
point where their entropies are equal:

s (T )=s (T)+
Xo

Expanding entropy density s of the a state in tempera-
ture and utilizing (2.17) we obtain the expression for the
bifurcation point:

(b, W)
2CTAN

(2.19)

This expression, together with Eq. (2.17), describes the
boundary of the global stability of the homogeneous e
state so that for temperatures greater than T from Eqs.
(2.17) and (2.19) this state is absolutely stable, although
supercooled, while for temperatures less than that T the
a state should transfer to the IES. The apperance of in-
homogeneous states on the equilibrium state diagram of
an adiabatically insulated sytem brings also a significant
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size dependence [the criterion of bifuraction, Eqs. (2.17),
and (2.19), depends upon Xo], while the equilibrium state
diagram of an isothermal system is absolutely indepen-
dent of its size (if the Neumann-type boundary conditions
for the OPF are imposed).

To accomplish the thermodynamic description of the
system we now adopt a double-well free-energy increment
of the form [14]

by(g, h)=a [—,'cu (g)+Qbhv(g)], co(g)=g(1 —g),
v(g)=$2(3 —2g), 0=j ro(g)dg= —,',

48

p 05—
CC1

CCl

scaled temperature h(T)
1

hh =h —1= T To

ETO ETO

(2.20)
Qa

h ( T* ) =0, h ( To ) = 1, h ( Ti3 )=2,
where the constant a scales the free-energy increment and
defines the barrier height of the free-energy density at
equilibrium: hy(gr, TO)=a/32, L is the latent heat of
the reaction, T;* is the critical point of instability (such as
a spinodal point) of the disordered (i =a) or ordered
(i =P) phases, b, h is the normalized temperature calcu-
lated from the equilibrium point To, and h is the normal-
ized temperature calculated from the instability point T .
In Fig. 1 the increment Ay is represented as a function of
g for different scaled temperatures h. In Fig. 2 HES's
[homogeneous solutions of Eq. (2.6)] a =

I g =0, h I,
P= [ g&= l, h ], and y = [g,h =2/ ] are depicted as solid
lines in the plane (g, h). Heavy lines in Fig. 2 stand for
the phases. The instability points T;* are intersections of
two equilibrium lines. Together with HES s in Fig. 2 are
depicted the lines of states with constant energy (dashed
lines):

u)(g, bh)=a —bh ——v(g)+ —,'co (g) =const,0 A

J
To

temperature ——

FICz. 2. Equilibrium diagram of the homogeneous states: the
solid lines represent equilbrium states, the heavy lines represent
their locally stable parts (phases), and the dashed lines stand for
level lines of constant energy for the systems with E =0.25 and
different values of the parameter Q. Open circle, the adiabatic
state; solid circle, the initial state for numerical simulation.

s =C ln(1 —Qb, 9) (2.24)

and the P states

s& =C [ln(1 —Qb.g+ Q) —Q] (2.25)

To T~b8= =r(1 —h ),L/C
(2.26)

which is a measure of the total energy of the system:

as functions of the dimensionless initial supercooling of
the a state:

LQ=
CT

(2.21)

s (g, bh ) =C [ln(1+ Eh h ) —Qv(g) ], (2.22)

where the state a= Ig =O, h =1I at the equilibrium
point is the reference state for energy and entropy density
calculations.

For the temperature of the P state after transformation
T&, the constraint of energy conservation (2.4) yields

T& = T +L /C or in the scaled units

aCTO
h =h +—,r= —=Q

r '
Q

(2.23)

Parameter r is the relative measure of three different en-

ergy scales b,y(g, To ), CTo, and L existing in the system.
From Eqs. (2.21) and (2.22) one can obtain expressions
for the entropy densities of the a states

for two different values of the parameter Q, which is the
ratio of the two temperature scales of the transformation:
temperature increase due to heat liberation and the equi-
librium point temperature. Entropy densities of these
states are

8 = —EOLX (2.27)

s =C I in[1 E(1—2g') ]
—Q—v(g') },

b8=v(g) — co (g)+r(1 —2$) .
E

2Q

(2.28a)

(2.28b)

An analysis of Eqs. (2.24) and (2.28) shows that for the
system with r (3/4 [the condition of the AS existence,
see Eq. (3.14) of [14]]there exists a bifurcation point b, O

wher entropies of the a and y states are equal. For su-
percoolings larger than 60 the y state is preferable
(AS).

The temperature of the IES after transformation in a
large system should be close to To. So, for the periodic
IES J=

[f, b,h I with small b,h andN = 1 [and small con-
stant 6 of Eq. (2.8), see condition (2.9) and Fig. 1] one
can obtain the approximation

For small supercoolings s )s&, for 50 close to one,
s&)s, and for b, O &=Q ' —(e~—1) ', the entropy of
the product state is equal to the entropy of the parent
state from which it emerges [14,25].

Also Eqs. (2.21)and (2.22) yield an implicit expression
for the y-state entropy density vs supercooling:
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=+—,5=&~/a
dx 5

P
fXp f vdx

0

(2.29)

(2.30)

(2.31)

which shows that for the fixed initial supercooling 60:
S ——

( b, h ), i.e., the IES temperature after
transformtion tends to To. This confirms our assumption
of small Ah. However, hh is not identically zero, which,
according to Eqs. (2.10) and (2.11), would require practi-
cally the same transformation fraction (50%) for different
values of the initial supercoolings. To determine the tem-
perature of this J=

If, Ah j we utilize the approximation
(2.29) for Eq. (2.11) which yields the relations

where 6 is the characteristic length scale. In fact, the
J=[f,hh], described by Eqs. (2.29)—(2.31), is a two-
phase state where product and parent phases are separat-
ed by a domain wall, which has the well-known form of a
hyperbolic tangent and is characterized by the width of a
transition region: I =45, Eq. (2.14b). The excess free en-
ergy of this IES takes the form

'2

b,N„=f —co (g)+ — +Gab, hv(g) dx
0 2 2 dx

=o+QahhfXp, o =OP~a (2.32)

The surface tension introduces another (capillary) length
scale a /L to the problem which, as can be seen from Eqs.
(2.20), (2.30), and (2.32), relates to the scale 5 as follows:

Tp Ta o/L.
To 6

(2.33)

Utilizing (2.32) for (2.16) and (2.18) we can express the
excess entropy and energy of this IES:

b,S„=— Xpf,L
0

(2.34)

b, W =o LXpf . — (2.35)

f=68+—+rhh .
A

(2.36)

Here A—=Xo/5 is the dimensionless size of the system.
The first term of this relation is analogous to the lever
rule in alloy solidification, the second one is the surface
tension contribution which is present even in the sharp
interface limit due to the surface-to-volume ratio, and the
thrid term reAects a small deviation of temperature from
the equilibrium point and occurs in the continuum ap-
proach only. Finally from Eqs. (2.34) and (2.36) we ob-
tain the expression for the average entropy of the
I=If,hh]:

The condition of energy conservation, Eq. (2.17), together
with Eqs. (2.21), (2.33), and (2.35), yields the relation for
the fraction of this state:

Af = —ln(1 —gz), A= —1ng, —ln(1 —g2) .

Excluding g, and gz we obtain the equation for the devia-
tion of temperature Ah from the equilibrium point for the
J =If, bh]:

Qhh =sinh(f —
—,
'

) exp( —A), (2.38)

which shows that hh is exponentially small for large A
[26].

Applying Eqs. (2.32)—(2.38) to Eqs. (2.17) and (2.19)
one can obtain the bifurcational value of the supercooling
of a particle of size A, when the two-phase state with a
domain wall branches off the a phase:

b6 =&2r/A . (2.39)

Equilibrating the average entropy of this 2= If, b h ] [Eq.
(2.37)], with the entropy density of the a state [Eq. (2.24)]
yields the same expression (2.39). Comparing the average
entropy of the IES, Eq. (2.37), with the entropy density of
the P state, Eq. (2.25), yields the bifurcational value of the
supercooling of a particle of size A, when the two-phase
state with a domain wall branches off the P phase:

&Op =1 &2r/A—. (2.40)

Thus Eqs. (2.39) and (2.40) constitute, respectively, the
left and right boundaries of global stability of two-phase
states.

The IES after transformation is described satisfactorily
by Eqs. (2.36)—(2.40) only if the amount of the product
phase is sufficient to generate a domain wall. The prod-
uct phase can sustain a domain wall if the width of the
latter fXp is greater than that of a transition region
(domain wall): I =45. As the transformation fraction
for the bifurcational value of supercooling is &2r/A
[Eqs. (2.36) and (2.39)], this criterion takes the form
A ~ 8/r. The transformation in a smaller particle close to
the left boundary of stability, Eq. (2.39), is better
represented by the critical nucleus solution, despite a
small inconsistency in the boundry condition (2.12) at one
of the boundaries (the order-parameter gradient is small
but nonvanishing). The critical nucleus corresponds to
the case Ah (0 and 6 =0, which yields for the OPF

S AS=s (hh)+ =C in(1+Eh.h)
Xo Xo

L 60+ rhh +—
To A

(2.37)

gi =0, g2—:g, =
—,
' [2+h —&(1—h )(4—h ) ] . (2.41)

The half-width of this state l,+ can be characterized by
the distance between the maximal point g(0) =g, and the
point of inAection which, according to Eq. (2.6), corre-
sponds to the y state: g'(l,+)=g =h/2. Then Eq. (2.10)
yields
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dg
~r h ——h +2 +

1
1

&3+&4—h

&h &I —h

ln(2+ 3 )

&h
2&3ln, h~1 —0 .

1 —h

(2.42)
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Contrary to the classical and quasiclassical [27] con-
siderations, the half-width l,+ of the 1D critical nucleus
(critical platelet) is nonzero, of the order of 5, and even
diverges when the temperature approaches the equilibri-
um point from below (h ~1—0). However, this diver-
gence is logarithmic, while the critical radii of the 2D
and 3D classical and quasiclasical nuclei diverge linearly
in (T&&

—T) or Ah. It is interesting to note that I,+ also
diverges as l,+ -6/&h when the temperature approaches
the instability point T from above (h ~0+0). This is
refiected in Fig. 3, where l, /5 is depicted as a function
of h [thick line, Eq. (2.42)] together with the order-
parameter value at the center g, [dashed line, Eq. (2.41)],
which is monotonically decaying from g, =1 at h =1 to
g, =0 at h =0. It will be helpful to compare l, with the
half-width of the domain wall —,'l =26. In the vicinity of
the equilibrium point (h ~1—0) the critical excitation
with the half-width l,+, Eq. (2.42), represents a classical
critical nucleus because it is much thicker than the inter-
face and the order parameter at the center g, ~1. In the
vicinity of the instability point (h ~0+0)l, ))—,l also.
However, the critical excitation has strongly nonclassical
nature [28], because g, —+0 here.

According to the definition (2.11), the transformation
fraction f of this state takes the form

0
-0.2 0.2 0.4 0.6

scaled temperature h
0.8

FIG. 3. Parameters of the 1D critical nucleus: scaled half-
width l, /6 (thick line), free-energy barrier b,4, /o (solid line),
and order-parameter value g, at the center (dashed line) vs

scaled temperature h. For h (0 the thick line represents the
scaled half-period l, /5 of the critical excitation.

dg
o Vh —2(I +2)g/3+g'

&(I—h)(4 —h)=ln
(1—V'h )(2—&h )

+h, h ~0+0
2&3ln, h~1 —0 .

1 —h

(2.43)

A comparison of Eqs. (2.42) and (2.43) shows that for
h ~0+0, f~0, although I,+~ec. When h —+I —0 1,

+

diverges also and f~l,+/Xo. The latter means that the
"critical nucleus" tends to the solution of the domain-
wall type. For the critical nucleus (N = 1, G =0,
Xo~+ oo ) the formula (2.13) applies also:

J Vhq)(g, h)dg= —,
' 3&It (4—h +h )+—,'(2+h)(1 —h)(4 —h) ln

(7 0 (I+&h)(2+&h )

0.9h5 ~+O(h ), h ~0+0
2v'3

1 —(1 —h) ln h~1 —0 .&I —h

(2.44)

The excess free energy (nucleation barrier) is the free en-

ergy barrier in the functional space of inhomogeneous
states and is also depicted in Fig. 3 (solid line). In the
limit h —+ I —0 (T~ To from below) the excess free ener-

gy b,@„Eq.(2.44), can be separated into surface (first
term) and bulk (second term) contributions and Eq.
(2.42) gives the correct value of the product phase bulk
width. In the limit h ~0+0 (T~T* from above) the
free-energy barrier decays rapidly, and these contribu-
tions cannot be separated because bulk is indistinguish-
able from the surface. Utilizing expression (2.44) for Eqs.
(2.17) and (2.19) one can obtain the bifurcational value of

b,@„=Qa b,hXo+ b,@,( 1 —b,h ), (2.45)

which, together with Eqs. (2.17) and (2.19), yields the bi-

I

the supercooling 60, when the critical nucleus solution
branches ofF' the a phase.

Transformation in a small particle close to the right
boundary, Eq. (2.40), finishes in the IES, which may be
characterized by the solution of Eq. (2.8) with b, h )0,
G =b,y(g&, h) and consists of totally transformed P state
minus the critical nucleus (the "critical hole" solution).
Changing variables to y =Xo —x, il(y) =1—g(x),
hh = —Ah one can show that
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gg+K
X0

=0 (2.46)

and defines the bifurcational value 60* of the supercool-
ing of the a state that coresponds to this point. Here and
below functions with an asterisk should be taken at the
bifurcation point y"=If'*,T*J. These solutions may
represents IES's in very Pne particles. To study their
locus on the equilibrium phase diagram we introduce a
small parameter E as a measure of the distance from the
bifurcation point, Eq. (2.46), so that

furcational value of the supercooling 60&& when the criti-
cal hole solution branches off the P phase.

There is another set of solutions of Eq. (2.8). As is
known [29], if the domain size Xo exceeds a certain value,
the latter branches off the line of y states and can be
viewed as small-amplitude modulations on the top of the

y states [G~b,y(g, h); see condition (2.9) and Fig. 1].
The thermodynamic criterion for the bifurcation of
monotonic solutions with the unit aspect ratio (% =1)
from the line of y states takes the form

2

1

~ W
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~ Q.S-
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4i
C4
O
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of the 0t state
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~W
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c44

.- 0.2—
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8
CO
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0.1
I
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Supercooling Pe
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FICi. 4. Inhomogeneity amplitude A and transformation
fraction f of a harmonic wave vs supercooling b, o for the system
with E =0.5, Q =2, and A =5. Analytic results are represented
by solid (f) and thick ( 3) lines. Results of numerical simulation
for the system with R =4 below the instability point of the a
state are depicted by open circles for the transformation frac-
tion f and solid circles for the inhomogeneity amplitude A.

T = T +ET0c. (2.47a)

and expand the solution of Eq. (2.8) in powers of E:

g=gr*+Eu, (x)+E uz(x)+E u3(x)+ (2.47b)

The singular perturbation analysis of Eq. (2.8) shows [29]
that

KX
Q l =00 COS

0

&NR4T +N T+8'
u 0 =24ET0

3&lupk 5(«u '
(2.48)

In order to find the supercooling of the parent state that
leads to the creation of the IES (2.47) we shall calculate
its total energy. Utilizing Eq. (2.27), the conservation of
energy, Eq. (2.4), takes the form

instability point of this state 60= r where the entropy of
the AS is larger than that of any other state. In this
range of supercoolings the AS is a phase and may be ob-
served, which gives one a unique opportunity to study the
convex-up regions of the free energy.

The calculations of entropies of different equilibrium
states versus their energies are summarized in Fig. 5
where entropies of the a state, Eq. (2.24), P state, Eq.
(2.25), y state (AS), Eq. (2.28), and IES, Eq. (2.37), are de-
picted as functions of the dimensionless initial supercool-
ing 58 of the a state of the system with Q = 1, E =0.25,
and A=400. The product P phase has larger entropy
than the parent a phase for 50 &=0.4. But both of them

scaled temperature h(T)

-0.2

2
uo

X +
4

(2.49)

Equations (2.48) and (2.49) give the expression for the
harmonic wave amplitude A =Euo of the IES, Eq.(2.47),
versus the initial supercooling 60 of the a state beyond
the bifurcation value 60*. For the system of the size
A=5 with the free energy, Eq. (2.20), and parameters
E =0.5, Q =2 (r =0.25) this amplitude is depicted in Fig.
4 (thick line) together with the average value of the OPF
(transformation fraction f, solid line):

2
2 ET VgT + %gg' 0

y
0'g

(2.50)

If b,o(b,8" the y state stays globally stable (AS) and
disintegration does not occur. Thus there is a range of
supercoolings of the a state 60 z

~ 60 ~ 60* around the

V

~ -Q.4i
4
C4
O~ -0.6
4k

Ok

-0.8

-1
0 0.2 0.4 0.6

sup ercooling LW

0.8

FIG. 5. Scaled entropy densities s/C of equilibrium homo-
geneous a, P, and y states (heavy lines) and average entropy
density of the inhomogeneous state (IES, dashed line) of the sys-
tem with E =0.25, Q =1, and A=400 as functions of the di-
mensionless initial supercooling 60 of the a state.
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are unstable (have smaller entropy) against the AS, which
branches off the a state at b,8 =0.25 and off the P state
at b, 8& =0.75. In a large system (A=400) for supercool-
ings 60 & 60 & 60p„ the greatest entropy has the
2= [f,hh I of the aspect ratio one, and transformation
should go in the direction of disintegration into a mixture
of parent and product phases separated by the 1D
domain wall. This is also true in 2D and 3D cases, be-
cause a curved interface has more surface energy and this
state should have less entropy than the 1D state with the
same energy.

In Fig. 6 the criterion (2.46), together with the analo-
gous criteria for the "critical nucleus" and domain-wall
solutions, is depicted in the plane (A, b, 8) for a system
with the free energy (2.20), Q =1 and E =0.25. In a
large particle (A ~ 50) supercooling of the a phase above
60 leads to the apperance of the IES of a domain-wall
type on the equilibrium phase diagram with the transfor-
mation fraction f, which obeys Eq. (2.36). Below b,8 „
the transformation does not occur and the parent phase
remains globally stable (not only metastable). Cooling the
a phase deeper than 60& leads to the appearance of the
homogeneous /3 phase on the equilibrium state diagram.
Moreover, if b, 8& (b,8 ( 1, then the globally stable P
phase is superheated above the equilibrium temperature.
For smaller particles (A~ 20), the first IES appears on
the phase diagram after supercooling to 60, and looks
more like the critical nucleus, which may transfer to a
domain-wall-type solution for deeper cooling and to the
superheated P phase for still deeper cooling. The latter
transition may occur through the "critical-hole"-type
solution. In very fine particles (A ~ 8), cooling of the a
state first causes appearance of the AS (68 ~=0.221)
with the bifurcation of a harmonic modulation for fur-
ther cooling deeper than 60*.For example, in a fine par-

50

ticle of the size A=5 the IES with a small amp1itude of
modulation branches off the line of AS's at the bifurca-
tional point 60*=0.265. Thus the homogeneous AS,
which is designated by an open circle in Fig. 2, is an abso-
lu.tely stable phase of this particle (A=5) supercooled for
0.221 ~ 60~0.265. From Fig. 5 notice that the entropy
versus energy function of this phase is nonconvex because
this is not a bulk phase, but is possible in confined geom-
tries only. A stable AS may also appear in such a particle
for large supercoolings, but the parent state is deeply
below the instability point for these supercoolings, which
may not be attainable in physical systems. In platelets
thinner than minA=vrV'2=4 4[s.ee Eq. (2.46)] the AS is
absolutely stable below the supercooling 68 r (i.e., does
not decompose into IES's).

These criteria show the global stability boundaries of
HES's and the energy band for the two-phase region
(IES) on the equilibrium state diagram. The mathemati-
cally exact solution of the stability problem for IES con-
ceivably would give us an envelope of these lines60,60&,50 „40*, but should not differ strongly
from the diagram depicted in Fig. 6.

III. EARLY STAGES OF DECOMPOSITION
OF UNSTABLE STATES

Thermodynamic analysis (local and global) gives the
stability condition of the equilibrium states only with
respect to static fluctuations and does not fully describe
the physical origin of transformation mainly because it
assumes little about the evolutionary processes in a sys-
tem. The evolution of a thermodynamic system in dise-
quilibrium is accompanied by processes of ordering field
relaxation and heat redistribution. For the system where
the heat fiux can be written in the form ( A.V T) the heat—
transport equation is given by [9]

40—

Two-phase region (IES)
Bw

'0 T

(3.1)

~ 30

C4

&~ 20
~ lal

8~ 10
ae.

I & ( & I & i & I

0.2
ae

0.4 0.6
supercooling Qe

FIG. 6. Equilibrium state diagram of the adiabatically insu-
lated system with E =0.25 and Q = 1. Regions of global stabili-
ty of the HES's (a, P, and y phases) are separated from the re-
gion of global stability of the IES (two-phase region) by the
equilibrium phase boundaries 60 [Eq. (2.39)], 68& [Eq.
(2.40)], 68, and 68* [Eq. (2.46)]. The dashed lines are invalid
continuations of the above equilibrium lines into the two-phase
region and are artifacts.

where k 0 is the thermal conductivity. This equation
couples to the relaxation equation for the OPF evolution:

+aV g,1 ag a&

y ar ag
(3.2)

where the coefficient y) 0 determines the characteristic
time of relaxation. Different dynamical regimes of evolu-
tion in the vicinity of equilibrium states are governed by
the modulus M, Eq. (2.7), which is responsible for interac
tions between energy and OPF modes, and by the ratio
R =A, /Cya of thermal diffusivity A, /C and interfacial
mobility y~, which represents kinetic properties of the
system [14].

The linear (normal modes) and weakly nonlinear
dynamical analysis of HES's of the general system de-
scribed by Eqs. (3.1) and (3.2) is addressed in [12] and
shows that the dynamical criterion of linear stability of
an infinite system (Xe~ oo) takes the form of the in-
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equality (2.3), i.e., M (0, which differs from the local
thermodynamic one for an adiabatic system and coin-
cides with that of an isothermal one [see Eq. (2.7) and the
explanations below]. The latter is also true for an IES.
This discrepancy between criteria of stability occurs be-
cause the normal-mode perturbations in general do not
satisfy the energy consrvation requirement, Eq. (2.4), but
satisfy the conditions of the microcanonical ensemble
[30]. Thus adiabatic and isothermal systems have the
same stable HES's (phases), because their dynamical cri-
teria of linear stability coincide. In the unstable region
there always exists a band of modes with the cutoff wave
number k, =Q —y+/v, which destabilize the HES even
if its adiabatic modulus is positive. From Eq. (2.20) one
can see that k, =&—h /6 for the unstable u state. This
critical excitation of the unstable cx state below the insta-
bility point has the half-period l, =~/k, =m 5 /& h-
and is complemen, tary to the critical nucleus with the
half-width l,+ above the instability point, because both
have vanishing growth rates. In Fig. 3 both widths l,—
are depicted as functions of h and diverge when h ~0+0.

In a finite 1D system which satisfies the boundary con-
ditions (2.12) only linear modes with wave numbers
k& z =~N /Xo are permitted, where the aspect ratio is
% =0, 1,2, . . . , and only those with k&~&k, can grow.
Thus for HES s with positive adiabatic modulus (e.g. , AS
of Sec. II) the dynamical condition of marginal stability
takes the form k& z=k, or

vg+Kk1A —0 (3.3)

(3.4a)

Analysis of the dispersion relation (see Eq. (7) in [12])
shows that this condition is size dependent and yields

1 for Xo))m/k,M«-
R for Xo=m. /k, . (3.4b)

For the a state of the system with the free energy (2.20)
M =0, which according to the above-described criterion

because the uniform mode is neutral P(ko+)=0 [12].
Applying Eq. (3.3) to the y state one can see that the sta-
bility of this state in a small particle is possible because
there are no wave modes permitted in the unstable re-
gion. Comparing Eq. (3.3) with Eq. (2.46) we infer that
for small size systems the linear dynamic stability cri-
terion coincides with that of the global thermodynamic
stability criterion.

The linear analysis enables us to assess the inhuence of
nonisothermal effects in an open system. Given the iso-
thermal (Dirichlet-type) boundary conditions the inner
thermal Auctuations are important for the dynamics if
the amplification rate of the permitted mode P(k~~)
differs from that for the completely isothermal system.
As this difference is the largest for the first mode with the
wave number k& z (the uniform mode is prohibited for
the isothermal boundry conditions) the criterion of
insignificance of thermal effects takes the form

excludes any significance of thermal effects around this
state, while for the y state

co(gr )T
2QrTO

(3 5)

As the growing long and sluggish waves are small, we re-
scale disturbances b, T —E,b,g- e and spatio-temporal
coordinates X=Ex,r=e t of the system (3.1) and (3.2).
Analysis shows [12] that as a result we obtain the non-
linear Cahn-Hilliard equation for the OPF evolution:

Bg A, —~V g (3.7)

If the scaling T-E ' in (3.6) does not hold (M —1),
then for a small ratio R =c. the temporal coordinate
should be scaled at ~=8 t and disturbances AT-c,
b g- E obey the quasiadiabatic system

—2

err»+V ~r~k=0
(3.8)

which is equivalent to Eq. (3.2) where the isothermal
modulus is replaced by the adiabatic modulus.

For a large ratio R =c. ' the tempora1 coordinate of
the system (3.1) and (3.2) should be scaled as r=Et,
moduli as g&&-g&r-s, grz —1(M-E), and disturbances
as b, T-e, b,g-E. In this case equations decouple and
we obtain the governing quasi-isothermal system:

ag a&
ar ~

ag

(3.9)

The resuts of the linear [12] and nonlinear study of the
HES stability can be summarized in the parameter space
(M, R) as represented in Fig. 7. The uniform mode is the
fastest growing mode if 0(M ((1+R) ' [the interac-
tion modulus is small and the adiabatic modulus is
strongly negative, case (a) of Fig. 7]. This is similar to
the isothermal system with the only difference that the
uniform mode stability is determined by the adiabatic
modulus instead of the isothermal one. If the thermal
diffusivity is much weaker than the interfacial mobility
(R —e) and interaction is not small (M —1), Eqs. (3.8)
hold and imply that ordering modes are "slaved" by ener-
gy modes and, as a result, the transformation is quasiadi-

and nonisothermal effects are significant if the parameter
r is small (e.g., surface tension is small).

The nonlinear dynamics near the limit of linear stabili-
ty of the HES (@&=0)can be expected to differ in cases of
various parameters M and R. To examine the nonlinear
development of unstable long waves we introduce a small
parameter E which determines the departure from the in-
stability point (&p((=0):

(3.6)
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FIG. 7. Instability diagram in the plane (M, R). Hatched
areas are the regions of validity of the quasiadiabatic Eq. (3.8),
3; quasi-isothermal Eq. (3.9), 8; and Cahn-Hilliard Eq. (3.7) of
strong correlations, C.

abatic (hatched region A of Fig. 7). If (1+R) ' &M & 1

[the adiabatic modulus is still negative, case (b) of Fig. 7]
the fastest mode has finite wave number and the uniform
mode (k =0) grows also. For strong thermal diffusivity
(R -e ') and weak interaction (M-E) Eqs. (3.9) apply,
wihich means that the ordering process dominates the
heat redistribution and the transformation is quasi-
isothermal (hatched region 8 of Fig. 7). For M ) 1 [the
interaction modulus is not small and the adiabatic
modulus is positive, case (c) of Fig. 7] the wave number of
the fastest mode is finite, but the uniform mode is neutral.
Thus over this range of conditions the HES is unstable
with respect to the continuous modulation of the OPF.
For large interaction modulus M-c. ', growing modes
obey the nonlinear Cahn-Hillard equation (3.7) with
strong correlation of energy and ordering modes (hatched
region C of Fig. 7). A large coefficient I = A, /Tqr&T -E
is independent of the relaxation constant y of Eq. (3.2),
which means that such a decomposition is totally con-
trolled by heat transfer. We note that an equation analo-
gous to Eq. (3.7) can be derived when the conservation of
energy is replaced by the conservation of matter.

The above-described results of dynamic (Sec. III) and
thermodynamic (Sec. II) stability analysis allow us to
characterize early and ultimate stages of the unstable e-
state decomposition during a first-order phase transition.
While the process starts as an isothermal one (M=0 for
the a state) it may later develop short-range instabilities
with rather fine structure due to gradual release of latent
heat. Eventually the system should reach the more uni-
form equilibrium state. To more fully examine the com-
pletion of microstructure formation, we have chosen to
numerically simulate the transformation process. Simu-
lation of the dynamical system of Eqs. (3.1), (3.2), and
(2.20) was carried out for g' and h in the spatiotemporal
coordinates scaled with the characteristic space 5 and
time r=(ya) ' intervals. The original problem (for zero
biasing field) has seven internal parameters (C,L, TO,
a, v, A, , y ), an initial temperature T, and a size of the sys-
tem Xo. After the scaling we obtain three dimensionless

internal parameters: E, Q, R, a dimensionless initial su-
percooling 60, and a dimensionless size of the system A.
In this scaling, parameter E is a measure of the surface
energy relative to the latent heat of transformation. In
Sec. IV results are presented for systems with different
values of these parameters. First we discuss the transfor-
mation process for small particles (small A) of systems
with E=0.5, different parameters Q and R, and different
initial conditions 60. Then we give the results of simula-
tion of initial and late-time stages of transformation in
large-size systems with A =400, Q = 1, and varying
E, 68, and R.

Simulation starts from the parent state which consists
of "thermal fiuctuations" superimposed on a microstruc-
tureless unstable state a=[/ =O, h &OJ (see Fig. 2).
The role of thermal fluctuations has been substantially
elucidated in the literature. Thermal fluctuations help
the system to surmount the barrier for the transition
from a weakly metastable state and may also smooth out
the critical point. For the transition from an unstable
state thermal Auctuations affect significantly the half-
completion time of transformation. In the present simu-
lation thermal fluctuations in initial conditions were imi-
tated by a random function with zero mean and mean
square ( 4g ) = ( b, h ) = 10 and were "turned off" dur-
ing the calculations in order to study the dynamic prop-
erties of the simulating system. The transformation frac-
tion f (2.11) and the total entropy S, Eq. (2.5), were mea-
sured, and the conservation of the total energy (enthalpy)
W, Eq. (2.4), was checked because of the nonconservative
fully explicit numerical scheme employed. Energy was
usually conserved better than within l%%uo. When "entro-
py change" due to the numerical "thermal Aux" outside
the system bS =6W/T was larger than that due to ir-
reversible processes inside the system computations were
interrupted. Also in numerical "experiments" with an
advanced growth stage the dimensionless front velocity U

and width l& were measured:

where V and X& are dimensional front velocity and
width, respectively. For the system with Q =0.25,
E =0.5, R =0.1, and 58=2.02(h = —0.01) the values
of V=0.91 and l&=4.086 were obtained in the simula-
tion. For the same parameter values, a study of a station-
ary moving traveling wave (Fig. 5 of [14])gives the veloc-
ity 0.918, which is in very good agreement with the
present result. The front width I& coincides within the
"experimental" error with the analytical estimate of the
domain wall thickness, Eq. (2.14b). Note that for the free
energy (2.20) the front width is independent of tempera-
ture. The comparison of these results helped us to choose
parameters of the grid: Ax =0.4, ht =0.05. So far only
1D simulation has been performed, employing a personal
computer.

IV. RESULTS OF SIMULATIONS

To study the mechanism of decomposition of the un-
stable o; state simulations for the system of small size
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have been carried out first. In such a system only a few
modes have positive amplification rates and the most un-
stable of them is the uniform mode because the interac-
tion modulus is vanishing for this state [M=0, case (a) in
Fig. 7]. Therefore the system initially smoothes out tem-
peature and ordering field fluctuations and, depending
upon the structure of the latter, drags towards one of the
HES's. The HES y =

I g & 0, h =2/ I was metastable
(linearly stable) and the system remained there for the
time of simulation. In the system of length A = 5 with pa-
rameters R =4 and Q=2 the AS y= IO&g & l, h =2/ I

appeared and did not decompose for supercoolings
b.8 &0.285 (h ) —0. 14), which proves its global stabili-
ty in this range of supercoolings. For larger values of 60
the stable OFF distribution appeared to be modulated by
a harmonic wave of a small amplitude. In Fig. 4 this
amplitude A and transformation fraction f, together with
the analytical results, Eqs. (2.48) —(2.50), are depicted as
functions of AL9 and give the local supercritical bifurca-
tion structure from homogeneous to periodic solutions.
The theoretical value of the bifurcation point [there are
no permitted wave modes k& ~ in the unstable interval
0 & k & k,~, case (c) in Fig.7] is b, 8"=0.236. The
discrepancy between analytical and numerical results is
caused by the higher-order terms omitted in Eqs.
(2.48) —(2.50).

When the system of length A=10 with parameters
R = 5 and Q =5 was supercooled up to
b,8=0.111(h = —0. 11), it arrived at the AS
y= Ig'~=0. 164,h~=0. 328I and stayed there for some
time. Further evolution of the system passed through a
modulation with the wave number k& z =0.314 of the AS
[Fig. 8(a)] with strong correlation of temperature and or-
dering fields. The wave number of the fastest linear
growth mode for the AS of this system kr =0.320 [see
Eq. (9) of [12]] is very close to ki z. Later modulations
gave rise to the isothermal nonlinear IES [Fig. 8(a)],
which had the form of a critical nucleus. In Fig. 8(b) the
time dependences of the transformation fraction f, aver-
age energy w, and entropy s densities for this system are
represented. After the incubation period of -60 the sys-
tem bursts and the transformation fraction increases tof=0.164, which corresponds to the AS. For the next 60
time units the transformation fraction remained un-
changed in spite of the rapidly growing amplitude of
modulations, which is quite typical for conserved fields,
described by Eq. (3.7). The transformation fraction de-
creased during the nonlinear process of domain forma-
tion. Total energy was conserved, the total entropy of
the system increased in time and had a terracelike form:
horizontal plateaus alternated with steps as a result of
growth and modulation.

For Q= 1, R =1, A=25, and b,8=0.505(h, = —0.01)
the first modulation of the AS y = [gz =0.679,
h =1.358] appeared with k3 &=0.378, which was very
close to the fastest one with k~ =0.384. In the late
stages the structure coarsened to the wave number
kz z =0.253 (Fig. 9). The transformation fraction did not
change during modulations, but was nonmonotonic in the
coarsening process. Coarsening is a strongly nonlinear

eAect which was not incorporated in our weakly non-
linear analysis of Sec. III. For A=50 the first modula-
tion of the HES appeared with k, & =0.063, but was ex-
ceeded soon by the modulation with k5 z =0.314, which
had larger amplification rate.

In the system with Q =0. 8,R =5, A =20, and
b,g) 0.656(h & —0.05) transformation starts as a linear
modulation of the u state with the wave number
k, A=0. 157 and growing amplitude [case (a) of Fig 7].
By the time -200, an almost isothermal nonlinear state
reminiscent of the "critical hole" was established in the
system as a transient (Fig. 10). In the range of supercool-
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completely isothermal state with 78% of the product
phase (Fig. 12), which is very close to the equilibrium
fraction for this system obtained from Eq. (2.36). Here
9% of the ultimate state's parent phase was recovered.
Thus one can say that because of relatively high speed of
transformation the front "oveshoots" and then "comes
back" to the truly equilibrium state. For the system with
R =0. 1 on the stage of growth the stationary traveling
wave with U =0.77 (heat-trapping regime) was estab-
lished, because for this system the critical supercooling
for heat trapping is 60„=0.5 and this regime is allowed:
b,8„(b,8(1 [b,8„=8&+I; see Eqs. (4.22) and (4.24) in

[14]]. By the time -2000, the front reaches the opposite
side of the box, the uniform completely transformed P
state with h&=1.295 is ultimately attained, and the sys-

tern never reaches the globablly stable two-phase IES
with a domain wall. In this "experiment" the system did
not exhibit the stage of recovery and eventually ap-
proached the adiabatically metastable P state (T&) To)
because the overshooting was too strong. Similar evolu-
tion takes place for the systems with Q (E, but here
from Eq. (2.23) one can obtain that h~=h +Q/E (1,
i.e., the product phase temperature is below the equilibri-
um point and the P state is globally stable.

The transition from quasistationary to the Stefan re-
gime does not necessarily happen smoothly in time. In
Fig. 13 the consequent stages of evolution of the thermo-
dynamic system with E =0.555, R =1, and 60=0.561
are depicted. By the time —1000, a nonsymmetric front
forms which is more elongated into the superheated P
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rapidly by the modulation n =9 with k9=0.314 and
larger amplification rate [kr =0.384, case (c) of Fig. 7,
also see Eq. (9) of [12]]. On this stage the structure [Fig.
14(b)] has clear signs of these two wave modes, and the
decomposition process is described by Eq. (3.7). The ap-
pearance of the long-wavelength modulation with the
wave number far from the maximal was caused by ex-
istence of long-range fluctuations of the AS prior to
modulations. By the time t =1400 [Fig. 14(d)], the sys-
tem finishes formation of a symmetric front moving in
the Stefan regime and completion of the space behind the
front by a domain structure. The fastest modulation,
which at first was confined to a sma11 region, resulted in
the formation of the domain structure behind the front
with the same "zero-time" wave number [Fig. 14(d)],
reminiscent of the unstable nonlinear periodic equilibri-
um solution of Eq. (2.8). Thus one can see that the trans-
formation process may take the form of nucleationlike
front creation and subsequent decomposition into
domains behind the front resembling spinodal decomposi-
tion. The number of interfaces per unit length depends
upon the parameter E, which is the ratio of the surface
energy and latent heat.

The moving front and decomposed "material" are
separated by the region of vanishing temperature and
OPF gradients. Therefore further ripening of the struc-
ture passed almost absolutely independently in these two
adjacent regions and was represented by front advance-
ment (growth) in one of them and coarsening in another.
The latter consisted in the disappearance of one of the
domains at a time with a full recovery of the P phase in
the closest domain [Figs. 15(a) and 15(b)]. At t =4200
the coarsened structure again had a quasiperiodic form
reminiscent of the unstable equilibrium solution of Eq.
(2.8) with the wavelength tioice as large as that at zero
time [Fig. 15(c)]. During coarsening the average domain
size (spacing) followed approximately a logarithmic time
law. The interaction between coarsening domains went
effectively through the temperture field. Two types of
coarsening were observed in numerical experiments:
coalescence and dissolution. The former consisted in the
straight transformation of the interdomain parent phase
and was accompanied by a substantial elevation of the
temperature field in this area [Figs. 15(a) and 15(b)], fol-
lowed by fast relaxation by virtue of domain-wall motion.
The coalescing particles were connected by a "neck"
[Figs. 15(a) and 15(b)]. The dissolution consisted of the
reverse transformation of a domain and was accompanied
by a drop of temperature [Fig. 15(d)] and, as a result of
the coarsened domain's wall adjustment, temperature
recovery to nearly the equilibrium point. Slight varia-
tions in the initial conditions may strongly affect coarsen-
ing, for instance, significantly retard the process of dou-
bling [Fig. 15(d)]. Eventually the system should come to
its global equilibrium state with complete phase separa-
tion under a temperature very close to the equilibrium
point To [see Eq. (2.38)]. However, after the first period
doubling not a single coarsening event had occurred dur-
ing the next 100000 time steps of simulation.

For larger supercoolings, when shorter waves are al-
lowed to grow from the very beginning of transformation,

the particles "nucleate" closer to each other and coarsen-
ing starts from early stages, resembling the Langer-
Schwartz mode of transformation [31].

V. DISCUSSION

In this work the thermodynamics and kinetics of first-
order transformation from a metastable and weakly un-
stable state have been studied under conditions of adia-
batic insulation. In an isothermal system the homogene-
ous low-temperature product phase will result after all
stages of transformation from the high-temperature
parent phase supercooled below the equilibrium point.
Even at the equilibrium point, where the last step of
coarsening driven by domain-wall expulsion is very slow,
eventually a uniform product phase is attained [32]. This
is very different from the ultimate state in a large enough
adiabatic system where the thermodynamic analysis
shows that an initially supercooled (but not hypercooled)
parent phase will transform to a mixture of product and
parent phases with a temperature very close to the equi-
librium point and the transformation fraction dictated by
the conservation of energy. The latter is analogous to the
lever rule for alloys. The analysis has been made for the
1D structure, but the same inference remains valid in 2D
and 3D cases, because a curved interface has more sur-
face energy and this state should have less entropy than
the state with the 1D domain wall and the same energy.
Hence the creation of an interface (domain wall) is a re-
sult of the conservation law in our system. A stable
domain wall can also be created in a system obeying the
Cahn-Hilliard equation for the conserved order parame-
ter [33]. Conceivably, this is true not only for a domain
wall but for creation of stable defects of other types such
as line and point defects.

The small-particle phase diagram is more complicated:
there is an interval of supercoolings where the transfor-
mation does not occur and the parent phase remains glo-
bally stable (not metastable). For large supercoolings a
partially transformed region appears in the system that
grows in size and degree of transformation with increase
of supercooling. Strong cooling (but not hypercooling) of
the high-temperature parent phase leads to the appear-
ance of the globally stable low-temperature product
phase superheated above the equilibrium temperature.
For very fine particles with sizes of the order of the inter-
facial region the intermediate equilibrium (adiabatic)
state, which differs from product and parent phases in the
degree of transformation and corresponds to the free-
energy crest, turns out to be globally stable in a certain
range of supercoolings of parent phase in vicinity of the
instability point. This unique property of adiabatic sys-
tems gives one a chance to study the convex-up segment
of the free energy. For larger supercoolings, inhomogene-
ous equilibrium states modulated by a harmonic wave of
small-amplitude branch off the line of adiabatic states.
Thus supercooling (or energy) of a small particle does not
reAect exactly its tendency towards transformation and
the product phase fraction gives one a better idea about
the driving force of transformation. This bifurcational
picture of a small-particle equilibrium phase diagram
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may be relevant for the theory of nanostructural, powder,
and composite materials where small particles capable of
undergoing a transition are immersed into a poorly con-
ducting matrix, which makes the particle effectively insu-
lated during transformation. The same approach can be
applied to small particles of solid solutions where mass
conservation replaces the conservation of energy. In this
case the present results would predict the appearance of
new stable phases with compositions deeply inside the
miscibility gap in the equilibrium phase diagram of a
small particle.

Numerical simulations were used to track early and
late stages of transformation in the 1D system. The cal-
culations verified the theoretical predictions and showed
that depending upon initial conditions and internal pa-
rameters, the system tends either to completely transform
to the stable phase or to form a microstructure consisting
of domains of both product and parent phases. Simula-
tions also revealed three mechanisms of domain forma-
tiorl.

(1) "Nonclassical nucleation "In ea. rly stages, an iso-
thermal mechanism of correlation of initial fluctuations
creates inhomogeneities on the scale of the cutoff wave-
length of instability. This mechanism is analogous to non-
classical nucleation which is effective for metastable
states just above the instability point and consists in the
creation of a diffuse heterophase fluctuation with an am-
plitude of transformation far below that of the product
phase.

(2) Continuous modulation If pa.rameters of the sys-
tem allow it (e.g. , parameter E is small enough), modula-
tions, which emerge from the finite wavelength instability
of the adiabatic state, create an almost perfect periodic
domain structure in early stages of decomposition. Thus
we infer that, for systems with a nonconserved order pa-
rarneter, decomposition of an unstable state can follow a
path of finite-wavelength modulation governed by energy
conservation, with a behavior directly analogous to the
spinodal decomposition of a system with a conserved or-
der parameter. The difference is that for the conserved
order-parameter modulations start immediately from the
beginning of the process while in our case transformation
at first reaches the intermediate equilibrium state along
the stable manifold and only then moves along the unsta-
ble manifold exhibiting modulations of the order-
parameter field. For a weakly metastable system such a
mechanism of first-order transformation represents an al-
ternative to nucleation and growth. Achieving the condi-
tions necessary for this mechanism in a specific system
will of course depend on the ability to suppress compet-
ing nucleation.

(3) Hybrid transformation. In the stage of growth, ad-
ditional domains and their boundaries may appear in the
system as the result of a front-splitting instability and a
kinetic transition from the stationary to the Stefan re-
gime. Careful study of the equilibrium state diagram of
the system shows that front splitting is a result of the
continuous modulation mechanism also.

Real transformations that proceed with appreciable
speed and a substantial amount of latent heat cannot be
truly isothermal. Thus the present analysis may help to

understand experimental results of the study of martensi-
tic transforrnations [34] and solidification [35] in small
particles. Solid-liquid transitions in small clusters have
been studied previously by the Monte Carlo method [36],
showing the solid-liquid coexistence region for the micro-
canonical ensemble of particles. These results are in good
agreement with the present calculations of the equilibri-
um phase diagram, although the stability of the adiabatic
phase was not achieved, presumably because of different
boundary conditions. The existence of a mechanism that
hinders the martensitic transformation in small particles
has been studied in [37] by the molecular-dynamics
method. For the boundary conditions that correspond to
adiabatic insulation the results indicate the stability of a
small particle of the order of nanometers even below the
instability point. !n the case of a displacive transforma-
tion with strain as a nonconserved order parameter, the
modulation mechanism (quasimartensitic transformation
[18]) may cause the appearance of a periodic platelet
structure observed in many experiments. As shown in
[12], the modulation process can start even from a high-
symmetry parent phase (austenite) if the biasing field b
(stress) is applied, because in this case the parent phase
symmetry is broken and the interaction modulus M ap-
pears to be nonzero from the very beginning of transfor-
mation.

The observation of the periodic structures during the
order-disorder transition in the Fe-rich Fe-Al alloys [38]
may be explained by the above described mechanism:
long-range order is a nonconserved parameter that, in
principle, excludes the development of modulations dur-
ing transformation, but being coupled to the conserved
concentration field may exhibit the modulation mecha-
nism.

There is a discrepancy between the ultimate state of
the system and the fine-grained structure which appears
in the early stages of transformation. Two mechanisms
help the system to attain a stable equilibrium: growth
and coarsening. Growth is a fast mechanism which
occurs usually far from equilibrium and may involve a
heat-trapping regime with metastable product phase for-
mation. Notice that this regime exists even in an
infinitely large system, in contrast to the equilbriumal su-
perheating of small particles. In this stage, depending
upon the kinetic properties of the system, relaxation to-
wards equilibrium may be accompanied by an overshoot-
ing with subsequent recovery of the parent phase and
achievement of the globally stable structure or even trap-
ping by a metastable homogeneous state (locally stable,
not unstable globally).

Coarsening is a slow mechanism of establishment of
the global two-phase equilibrium with a complete phase
separation. It is customary to view coarsening as a
curvature-driven motion. In this case, there would be no
coarsening in the 1D system where all boundaries are flat.
In fact, coarsening is driven by the reduction of surface
energy which has the form of reduction of the number of
domain walls in our system. When the volume fraction of
coarsening particles is rather high the coarsening process,
which is a result of strong short-range interaction be-
tween close particles through the order-parameter field,
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dP P
dt r(P)

(5.1)

where r(P) is the sum of all "unstable" eigenvalues of the
state with the period P, which characterizes the decay
time of the latter. Operation of this mechanism was ob-
served during numerical simulation of the coarsening
stage after the spinodal decomposition in a binary alloy
[39]. Numerical simulations of dendritic growth [40]
show that the coarsening process of the sidebranch struc-
ture during the growth stage also exhibits the mechanism
of period doubling which was substantiated by the direct
experimental observations of growing dendrites of succi-
nonitrile [41] and ammonium bromide [42]. Thus the
mechanism of sequential period doubling is robust for
coarsening of systems with a conserved quantity.

Summing up the results of numerical simulation and
attempting to describe the scenario of transformation in
the functional space one can say that the representative
point of our system travels rather quickly from one un-
stable inhomogeneous equilbrium state to another "less
unstable" one (i.e., with longer lifetime), spending much
time in the vicinity of the latter, until it reaches the glo-
bal optimizer and the Lyapunov functional (negative en-
tropy in the present case) attains a minimum. Entropy
increase governs pattern formation in an insulated sys-
tem. The principle of minimum-entropy production does
not seem applicable to this strongly nonlinear system.
Even slight variations in initial conditions and the system
parameters may lead to substantial differences in the
kinetic paths toward the ultimate equilibrium state, or
even trapping in a metastable state (not allowing the sys-
tern to attain the global equilibrium, at least in finite
time). The results may raise a legitimate question as to
why the system generates many interfaces at the begin-
ning (decomposition stage) and slowly eliminates them
later (coarsening stage). The answer is in the parameter
E =o./5I. . If this parameter is small, it is beneficial to
create many "inexpensive" interfaces which helps the sys-
tern to diffuse the latent heat away. Otherwise, a gradual
release of heat in the stage of growth, when a relatively
small number of interfaces is involved, becomes favor-
able.

The present study also enables us to conjecture on the
transformation scenario from a weakly metastable state.
Initial stages will be similar to that of an isothermal sys-

takes the form of the sequential doubling of the structural
period (spacing). Two types of coarsening may occur:
dissolution of a particle, accompanied by a local tempera-
ture dip, or coalescence of two neighboring particles, ac-
companied by the creation and growth of interconnecting
neck and strong local elevation of temperature. Both of
them eventually lead to a new equilibrium state with the
double period.

The system under study is not the only example of
period-doubling during coarsening. The evolutionary pic-
ture drawn by the results of simulations in a nonequilibri-
umal system correlates qualitatively with that proposed
by Langer [1] for spinodal decomposition. However, the
scenario of period doubling requires a different time law
of the evolution:

tern and consist of the nucleation process which is fully
determined by thermal fluctuations, because effects of
heat liberation are not essential for the a phase (the in-
teraction modulus is zero). However, evolution of the su-
percritical nuclei will be very much different from iso-
therrnal by virtue of coupling between energy and order-
ing modes in the region of the y state because here the in-
teraction modulus does not vanish. This coupling may
lead to the pattern formation analogous to that during
the unstable state decomposition.

Expansion of the considered problem to 2D and 3D
systems will increase the rate of coarsening because of the
curvature effect and bring a new issue of morphological
stability of growing particles [43], but should not change
the scenario of transformation substantially: Initial al-
rnost completely isothermal stages do not involve consid-
erable heat cruxes and consist of nucleation-type events.
Later, due to the continuous modulation mechanism or
morphological front instability, there appears a two-
phase "mushy" zone with high density of interfaces (large
surface-to-volume ratio), large transformation fraction,
and temperature very close to the equilibrium point. The
results of the numerical simulation confirm the
quasiequilibriurn hypothesis of the theory of the mushy
zone [44].

VI. CONCLUSIONS

The results of the present study lead us to the following
conclusions. (i) The equilibrium phase diagram of an adi-
abatically insulated system is very much different from
the isothermal case. Inhornogeneous states that corre-
spond to complete phase separation may be globally
stable under adiabatic conditions while being even locally
unstable under isothermal conditions. Stabilization of a
domain wall separating parent and product phases is due
to the conservation law in our system.

(ii) The conservation law also brings a strong size
dependence of the equilibrium phase diagram. For very
fine particles the intermediate equilibrium state, corre-
sponding to the free-energy crest, turns out to be globally
stable, which is uniquely different from larger particles.
This property of small particles potentially gives one a
chance to study the upward-convex segments of the free
energy.

(iii) There are several mechanisms of the creation of in-
terfaces in our system. In early stages, an isothermal
mechanism of correlation of fluctuations creates a diffuse
heterophase fluctuation on the scale of the cutoff wave-
length of instability. Due to the coupling between non-
conservative ordering and conservative energy modes
early stages of the unstable state disintegration can follow
a path of finite-wavelength modulation directly analogous
to a spinodal decomposition. The interaction of this
mechanism with the traditional growth can lead to a hy-
brid mode of transformation which is responsible for the
kinetic transition from one growth regime to another.

(iv) Two mechanisms, growth and coarsening, help the
system to attain a stable equilibrium; these can proceed
simultaneously. Growth is a fast mechanism which
occurs usually far from equilibrium and under adiabatic
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conditions may involve overshooting and recovery or
even a heat-trapping regime with metastable phase for-
mation.

(v) Coarsening is a slow mechanism of establishment of
the global two-phase equilibrium with a complete phase
separation. Two types of coarsening may occur: dissolu-
tion of a domain, accompanied by a local temperature
dip, or coalescence of two neighboring domains, accom-
panied by the creation and growth of an interconnecting
neck and strong local elevation of temperature. The
coarsening regime in the conditions of high volume frac-
tion exhibits a mechanism of sequential period doubling,
which leads to a time law di6'erent from that of other
coarsening mechanisms.

(vi) The scenario of transformation is characterized by
relatively quick hops from one unstable or metastable
equilibrium to another one, spending a substantial part of
the transformation time in the vicinity of these equilibria.
Moreover, difFerent parts of the system may be occupied
by different equilbrium states with a transition region be-
tween them.
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