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Kinetic-Ising-model description of Newtonian dynamics: A one-dimensional example

Wolfgang Tschop* and Rolf Schilling
Institut fiir Physik, Johannes Gutenberg Uniuersitat Mainz, D 550-99Mainz, Germany
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We show that the Newtonian dynamics of a chain of particles with an anharmonic on-site potential
and harmonic nearest-neighbor interactions can be described by a one-dimensional kinetic Ising model
with most general Glauber transition rates, provided the temperature is low enough compared to the
minimum barrier height. The transition rates are calculated by use of the transition-state theory. At
higher temperatures, memory effects occur which invalidate this kinetic description. These memory
effects are due to the appearance of dynamically correlated clusters of particles performing periodic os-
cillations over a certain time scale.

PACS number(s): 05.50.+q, 05.20.—y, 61.20.Lc, 63.10.+a

I. INTRODUCTION

The microscopic dynamical behavior of a system with
a macroscopic number of degrees of freedom is an ex-
trernely dificult problem to be solved analytically. Of
course, the goal cannot be to solve the Newtonian equa-
tion of motion for all the phase-space coordinates, since
such detailed information is not generally important for
the physical properties of a macroscopic system. There-
fore one has to single out the most relevant quantities and
their time dependence. The projection formalism by
Zwanzig [l] and Mori [2] allows one to eliminate all the
irrelevant degrees of freedom and leads to a generalized
Langevin equation for the slow (relevant) variables, in-
cluding memory effects and fiuctuating forces (see, e.g.,
Forster [3]). The choice of the slow variables is based on
physical intuition and experience, and is not always obvi-
ous from the very beginning.

In this paper we will not use this formalism but will ap-
ply the transition-state theory in order to reduce the
Newtonian dynamics to a kinetic one. In contrast to
some special cases, where a kinetic equation such as the
Boltzmann or Vlasov equation can be rigorously derived
from the original Newtonian dynamics (for a review see
Spohn [4]), our approach is approximate, and it is only
valid at low enough temperatures. The starting point is a
classical N-particle system with some interactions. In our
case it is a one-dimensional model with anharmonic and
competing interactions, but it could be a system with any
other potential energy, such as a Lennard-Jones poten-
tial, as well. Neither is the restriction to one dimension
essential. For any such classical system it is believed that
in general the potential-energy landscape in the
configuration space consists of exponentially many meta-
stable configurations (see, e.g., [5]). Each metastable
configuration is a local minima of a configuration cell S,
and the configuration space can be decomposed into a set
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of M disjoined configuration cells S, , i = 1,2, . . . , M.
Since we will assume Newtonian dynamics, which is

autonomous, the total energy E is conserved. Hence the
system can only explore that part of configuration space
for which V(x ) (E. Here, x = (x i, . . . , xz ) describes a
point in the N-particle configuration space, and V(x ) is
the potential energy. If the system is ergodic, a trajectory
x(t) may spend a certain time in the configuration cells
which are compatible with V(x ) E. The mean lifetime
within a cell S; will increase if the total energy E, or
equivalently the temperature T, becomes lower. When
the temperature is small enough compared to the relevant
barrier heights, the microscopic motion from one cell to
one of its neighboring cells may be described by a sto-
chastic motion from one cell to another. Since for low
temperatures the lifetime within a cell S, is rather large,
the system will lose its memory after a transition to S.,
before performing the next transition S —+Sk. Accord-
ingly, we assume that the stochastic motion within the al-
lowed configuration space is Markovian and that it can be
described by a master equation:

P(S, , t)= —g W(S, ~S, )P(S, , t)
J

+g W(SJ~S;)P(Si,t),
J

where P(S;,t ) denotes the probability to be in S; at time
t. The transition rate W(S;~S ) for a transition from
cell S; to S still has to be determined. This will be done
below by use of the transition-state theory.

We think that such a description might also be suitable
for the dynamics of glassy structures at temperatures
below the calorimetric glass transition temperature T,
since an amorphous structure corresponds to one of the
metastable configurations and local rearrangements of
the atoms correspond to transitions between two different
configuration cells (see also Brawer [6] for similar con-
siderations). These rearrangements contribute to the
structural relaxation. Below, but near T, it could be
that memory effects have to be taken into account, similar
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to the recent mode-coupling approach to the glass transi-
tion starting from the liquid side of a glass (for reviews
the reader may consult Gotze [7], Gotze and Sjogren [8],
Schilling [9]).

Using a projector on the cells S;, Zwanzig [10] has al-
ready suggested a more formal way to reduce the
Newtonian dynamics to a master equation. In his general
approach, a memory kernel appears, which is simplified
by a Markov approximation. The result is a master equa-
tion like (1) with an expression for the transition rates
still involving the Liouvillian of the microscopic dynam-
ics. In order to improve our master-equation approach,
and in particular to account for memory eff'ects, one has
to follow Zwanzig's treatment, but without Markov ap-
proximation.

In the next section we will present our model, which al-
lows one to calculate details of the potential-energy
landscape exactly. Section III describes how to calculate
the transition rates in the framework of the transition-
state theory. The numerical procedure for the calcula-
tion of a distinct time-dependent correlation function
C(t) is given in Sec. IV, and Sec. V demonstrates how
C(t) can be calculated from the master-equation ap-
proach, also containing a comparison of both results for
C (t). In Sec. VI, we summarize and conclude our results.

C

V2"

by

x„(o ) = 3 +B o.„+g r)'[cr„,+o „+;]
i =1

(3a)

with

FIG. 1. Nearest- and next-nearest-neighbor potential (a)
double-well-like and (b) single-we11-like potential.

II. MODEL
(I+i)) a+ 2rib—B=a (3b)

N

V((x;] )= y [V](x;)+V2(x;+, —x;)], (2a)

with

Ci
V, (x)= [[x—a+ —a o(x)]

In this section we briefly describe the model we will
use. For more details the reader may consult Reichert
and Schilling [11)and Schilling [12].

We consider a one-dimensional chain of N classical,
identical particles with an anharmonic on-site potential
V, (x ) and a harmonic nearest-neighbor interaction
V2(x). The total potential energy is given by

and

C
il= —y(1 —+I—y ) with y =1+

2C2
(3c)

For this to be true it is necessary that ~il & —,'. This result
means that each configuration [x„(o) J is uniquely deter-
mined by a sequence o = [cr~ ], crt =+1,of (pseudo-) Ising
spins, i.e., there exists a one-to-one correspondence be-
tween the metastable configurations jx„J and the se-
quences cr of pseudospins. The energy of such a
configuration, up to a constant, is given by the Ising-like
expression

aIld

—[c—a+ —a cr(y)] J, C, )0 (2b)
E(a )=J

with

n, m

num

(4a)

C2
V~(x)= (x b), C2)0 or—C2&0,

where

o (x)=sgn(x —c) H (+1], a+ =
—,'(a&+a& ),

(2c)

(2d)
and

(1+g) a+ —(1—ri) c 2rib-
h =C,a

(1—g)'
=C,a (A —c) (4b)

and x,. is the displacement of the ith particle. We choose
V, (x) to be piecewise parabolic with the same second
derivative C& except for x =c, where both parabola are
patched together. a &, a2 are the positions of the parabola
minima. The function o(x) causes the particles to feel
the anharmonicity of V&(x) only when crossing the posi-
tion x =c. All the constants C„C2, a„az, and C are
model parameters (see Fig. 1). One can prove that all
metastable configurations of the infinite chain are given

Ci 1+nJo= — a (0 .
2 1 —9

(4c)

A schematic representation of these results is shown in
Fig. 2. The configuration space can uniquely be decom-
posed into cells S(o ) characterized by cr. The minimum
within a cell represents the metastable configuration
[x„(tr ) J and its energy is given by E(cr ).

Transitions between diff'erent configurations are most
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pot. energy
/3

config. space

FIG. 2. Schematic representation of the potential-energy
landscape for the potential energy [Eq. (2)]. The configuration
space can be decomposed into cells characterized by sequences
o. of Ising spins.

simply described by spin Aips. Flipping the nth spin cor-
responds to crossing the point c by the nth particle. The
barrier height for such a Aip can easily be calculated.
One obtains

b„(o ) = [x„(o) —c ]2 1+g
The energy difference between both minima is given by
[11]

h„(cr ) = —Jo —2C, a o „[x„(o) —c ] .

III. KINETIC DESCRIPTION

One of the most interesting quantities to study the dy-
namics of the chain of particles is the time-dependent
correlation function S(t) = ( x(t) x( o)0) —(x„) . ( )
denotes the canonical average over the initial conditions
in the X-particle phase space. It is a crucial aspect of our
model that S„(t)can be exactly related to the correlation
function of the configurational degrees of freedom, i.e., to
the dynamics of the pseudospins [13]. This is due to
the fact that the vibrational (phonons) and the
configurational degrees of freedom (described by the Ising

I

spins) can be separated from each other. Accordingly,
we can consider the spin-correlation function
C„(t)= ( cr „(t)oo(0) ) —( o „) to study the relaxation
behavior of the system. For simplicity we restrict
ourselves to the autocorrelation function C(t)
—=Co(t ) = ( cr „(t)o „(0)) —( cr„),which does not depend
on n. In the following we choose the model parameters
in such a way that h =0 [cf. Eq. (4b)]. Hence ( o „)=0 at
nonzero temperature due to the one-dimensionality of
our model.

At low temperatures (compared to the minimum bar-
rier height) a particle will oscillate for a long time around
one of the local minima in the configuration space. This
means that transitions between different local minima
(i.e., crossing the point x =c) become very rare, com-
pared to the frequency of oscillation. We assume these
transitions to be uncorrelated to previous ones and in-
dependent from the transitions of other particles, i.e., the
spin configurations change only by single spin fit'ps. If
these assumptions are fulfilled we can describe the dy-
namics of o, (t) at lo.w temperatures by a Markovian pro-
cess. With p(cr, t) the probability to find the system in
the configuration cell S(o ) at time t, p(o, t) is the solu-
tion of the master equation:

p(tr;t)= —g W,.(. . . , o;, . . . )p(. . . , o;, . . .;t)

+g W, (. . . ,
—o, , . . . )p(. . . , —o;, . . .;t),

where W;(cr) is the transition rate for a single spin fiip
o.;—+ —o.;, provided all other spins remain unchanged.
Thus the original microscopic (Newtonian) dynamics has
been reduced to a kinetic Ising model, and the microscop-
ic details are condensed to the transition rates W, (o ).
W, (o ) follows from

W;(rr, At)
W, (o )= lim

Et~0 Atp rr

with W;(o, b, t) the probability that the ith spin fiips in
the time interval [t, t +At ] and p(o ) is the canonical dis-
tribution function for the pseduospin configurations cr,
which is given by

2

p(tr)= —I + dp; I Q dx; exp —P g + V([x })
l i

where

(9)

[ —~,c],
S(o)—:IIS& & S~—:'

[ + ] cT; —+ 1
(10)

p= I lkT, m is the mass of the particles, and Z is the partition function. The p; integration in Eq. (9) is easily per-
formed. The remaining configurational part has been calculated by Tschop [14]. In a low-temperature and small-q ex-
pansion one obtains in leading order

1 pH ~(o,T)—
p o —= e

o

with

(11a)
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jeff(a, T)
Z =Tre (1 lb)

and an effective, temperature d-ependent Hamiltonian

N

H,z(o, T)=E(cr)+—g I (cr,.T),
j=1

where

(1 lc)

(1 ld)

a= —(C, +2C2), b=pC~ . (1 le)

Note that H, ft(tr, T) converges to E(o)for T~. O.

For the computation of W;(o, At) we apply the transition-state theory (see, e.g. , Hanggi, Talkner, and Borkovec
[15]). Since the on-site potential V, does not have a quadratic maximum but a cusp, the particles have jtnite momenta
when crossing the cusp at x =c. Therefore the ith spin can only flip in the interval [t, t+b, t], if the following condi-
tions for the displacement x, and the conjugate momentum p; hold:

[c—(1lm)p;(t)bt &x;(t) &c, p, (t) )0] ~o, = —1 —+o.;=+1,
[c &x;(t) &c+(1lm)p;(t)bt, p;(t) &0I o; =+ l~o; = —1 .

Then, we get for W;(o, b, t):
2

W(o, bt)= f Q dPj exP —PZ — . (+.)
. (+.)

2m

(12)

Xf ~dx,
S(a) (~ )

1+g . o p. c+pht/m
dp; exp —P

oo 2m c

—PV( I x. I )
dx e

c
2

+ ' f dp, exp —P
' f dx, e

—PV( Ix. I )
(13a)

For b, t ~0 the x, integration and p integration (j Wi ) is easily performed, leading to
(N —1)/2

b, t 1 2m.m

m Z p f "dp;p;e
—PV(I I ~.. .= )

(13b)

with

X [1—
—,'y(T)o;(o, , +o., +,)], (14a)

The right-hand side of Eq. (13b) is rather similar to the
right-hand side of Eq. (9), but with the main difference
that the ith particle is taken at x; =c, the transition state.
S;(o) is the configuration cell under the constraint that
x; =c. W; (o, b, t ) can also be calculated in a low-
temperature and small-q expansion. Substituting this re-
sult and Eq. (11) into Eq. (8), one obtains [13,14]

W;(o ) —=a(T)[1+5(T)o;,o;+,]. IC =2Prjl Jol + —gB(a b)' e-
~7r

~2Pr/IJOI for T~O. (14c)

erf denotes the error function.
This transition rate is precisely the most general rate of

Glauber's kinetic Ising model without external Geld, and
only nearest neighbor interaction [16]. That only the
nearest-neighbor interaction appears is due to the as-
sumption that q«1. The parameters a, 6, and y are
uniquely determined by the microscopic parameters of
our model defined by Eq. (2).

a(T) == 1

2&

1/2
C) +4C2

IV. MQLKCULAR-DYNAMICS SIMULATION

Xexp[1 —erf[B(a /j )' ]+PJO ]cosh—IC,

5(T)=tanh K, y(T)=tanh2K,

and

(14b)

We studied the dynamics of our model by numerically
integrating Newtonian equations of motion. We have
used a predictor-corrector algorithm of Oesterwinter,
which has shown to have the largest accuracy with
respect to speed. Other integration schemes had
difficulties to handle the nondifferentiability of V, (x) at
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x =c (for more details see [13]). We used scaled vari-
ables, i.e., we set C& =m = 1. Hence a time unit is always
given in units of (m /C, )'~ . The temperature T can be
obtained from the mean kinetic energy of the particles

(15)

and is measured in units of 7.25 X 10 [C, (kg/sec )] K.
To equilibrate the system, we first generated X Gauss-

ian distributed random numbers with the mean value
equal to c for the coordinates and X further numbers gen-
erated in the same way for the velocities of the particles.
The standard deviations for these numbers were chosen
such that the resulting temperature was high with respect
to the minimum barrier height 6;„ for the single spin
Rip. After equilibration we switched on a small damping
force leading to a decrease of the temperature. Depen-
dent on the time the damping force was active, we could
extract (after further equilibration) several initial
configurations for the system corresponding to di6'erent
temperatures.

To calculate the spin-autocorrelation function C(t)
= (o, (t)o;(0) & we did not store the exact coordinates of
the particles but only the spin configuration of the sys-
tem. Having stored m =kh, k =0, 1,2, . . . (h is the time
step of the algorithm) configurations, we can proceed as
follows:

m —1 N
C(t)=C(kh)= — g g a;(Ih)cr;. ((1+k)h) .Xm(

The summation over l is the time average. For the simu-
lation we have chosen %=5000 particles for ternpera-
tures not far below the minimum barrier height b;„and
X =2500 for rather low temperatures. As the time step
we chose h between 0.008 and 0.025 time units for low
and rather high temperatures, respectively.

We calculated the correlation function for C (t) ~ 10
For values of C(t) smaller than 10 the integration al-
gorithm became incorrect. C (t) can be fitted by a
Kohlrausch-Williams-Watts (KWW) law, also called
stretched exponential, but the decay of the correlation
functions is too small to determine the Kohlrausch pa-
rameters properly. The simulation runs were performed
over 10 —10 time units, depending on the temperature
and the choice of the model parameters. For very low
temperatures kz T «b;„(o ) the exploration of the
configuration space wi11 progress only slowly, since the
potential-energy landscape has exponentially many val-
leys and the transitions between them become very rare.
To get a reasonable statistic at low temperatures also, we
had to perform simulations much longer than the times-
cale on which C(t) decays to 10 . We also determined
an error for C (t) by choosing different initial
configurations.

For most of the temperatures, there was a small in-
crease of the temperature which could not be eliminated
by a smaller integration time step h. When this tempera-
ture drift exceeded 1%% we used a "heat bath" to keep the
mean kinetic energy constant. The simulations were

done on an IBM computer work station 320H, where the
longest runs took about 100 h CPU time.

V. KINETIC DESCRIPTION VERSUS
MOLECULAR-DYNAMICS SIMULATION

In order to compare the molecular-dynamics (MD) re-
sults for the spin-autocorrelation function C(t) with the
corresponding result from the kinetic description, de-
duced in Sec. III, we have to calculate C(t) from Eq. (7)
using the transition rates Eq. (14). For 6%0 this cannot
be done rigorously. Among several approximation
schemes (e.g. , a continued fraction expansion [17]) we
will choose the generalized moment expansion (GME) by
Bauer, Schulten, and Nadler [18]. This approach enables
us to calculate the spin-correlation functions even for ar-
bitrary transition rates and particularly for 5%0. This
method is valid for all times and all temperatures, as long
as the correlation length g(T) is smaller than the system
size. The GME can reproduce the long-time as well as
the short-time behavior of dynamical observables in a
stochastic system. The method requires the numerical in-
version of the corresponding master operator I and
therefore can only be applied to ftnite systems. In the fol-
lowing we shortly review the GME in matrix notation,
which is suitable for the discrete state space of a spin sys-
tem. Numbering the 2 Ising spin configurations o of
the X-particle system by i =1,2, . . . , 2 and representing
the set of probabilities [p(o )] by the 2 -component vec-
tor p with p;="p(cr), the master equation (7) takes the
simple form

a
Bt

p(t)=Lp(t) . (17)

M(t)= ( f(t)go &
= f e 'g, (19)

where f denotes the transposed vector of f and

g; =go;p;(t =0). If f is identical to go and p(t =0)=po,
then M ( t) is an equilibrium autocorrelation function. In
the following we determine the deviations hM of M(t)
from the equilibrium value

bM(t) =M(t) M(t~ ~)—
=(f(t)g &

—(f &(g &

= f'e "g & f;po, ; & go, ,po—,
I

AM(T) =M(t) if the expectation value of go in equilibri-
um vanishes. This means that go is orthogonal to po.
Furthermore, we define a projection operator Jo which
projects onto the equilibrium distribution po. Conse-

A formal solution of Eq. (17) is

p(t) =e 'p(t =0) .

The matrix element (e '); gives the probability of finding
the system in state i at time t, provided it was in state j at
time t =0. The equilibrium distribution po represents the
eigenvector of I.with eigenvalue zero.

We consider a correlation function M(t) of an observ-
able f at time t and an observable go at time t =0
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quently ( 1 —Jo ) projects onto the orthogonal complement
of pp. Since the operators L and Jp commute, we can
write

bM(t)=f (1—Jo)e '(1 —Jo)g . (21)

Next, we consider the Laplace transform b,M(co) of
EM(r):

bM(co)= f dt e 'M(t), Re(co) &0
0

=I dt e 'f (1—Jo)e '(1 —Jo)g

C (t) from the MD simulation and the kinetic-Ising mod-
el are represented in Figs. 3(a)—3(c) for different tempera-
tures and model parameters. We stress that the choice of
the model parameters [cf. Eq. (2)] uniquely determines
both the numerical result and the result following from
the kinetic approach. Thus there is no fit parameter. The
temperatures for these three examples are about one-
fourth of the minimum barrier height b;„. Both results

= f (1—Jo) (1—Jo)g .1

N L

51&(co) can be expanded around co =0 and co = ~:

(22)
C.'([)

b,l&(co)-
g p „,( —co), co~0
v=p

Q)~ OO

(23a)

(23b)

The expansion coefficients are called the generalized rno-
rnents p,

p =( —1)'f L'g . (24)

The moments with v ~ 0 and v & 0 are the high-frequency
and low-frequency moments, respectively, which charac-
terize the short- and the long-time behavior of M(t). po
is just the initial value bM(0).

The crucial point of the GME is that the high- and
low-frequency behavior of hQ(co) is interpolated by an
[Nz, N, ] Pade approximant b,m(co) which yields a high-
and low-frequency expansion consistent with the expan-
sion of AM(co) around co=0 and co= ~. Then the La-
place transform b,M(co) can be represented by

a„
AM(co)=b, m(co)= g +CO

(25)

If we have calculated N& high- and X& low-frequency mo-
ments with Np +NI =2%0 we get in the time regime

C(t)

No

b,M(t)—=b, m(t)= g a„e
n=1

(26)

where a„and X„are uniquely determined by the general-
ized moments p .

The final step is to evaluate the transition-rate matrix
L for the kinetic Ising model. There is a state space of di-
mension 2 X2 for an N-spin system. The elements of L
are the transition rates between two difFerent states. For
two states not connected by a single spin Hip, the corre-
sponding matrix elements vanish. An appropriate order-
ing of the spin configurations is such that the ith spin
configuration is given by the binary representation of i,
implying a 1 for spin up and a 0 for spin down. For p
(v& —1) one needs L ' [cf. Eq. (24)], which can be ob-
tained exactly from L for N not too large.

In our application of the GME we have chosen
X&=N& =7 and Xp =—%=14. The results obtained for

FIG. 3. Spin-autocorrelation function C(t) for different tem-
peratures and model parameters. (a) T=0.0183, C

&

= 1,
C2= —0.044 (—+g=0.0483), a+ =5, a =0.4, b =10, c =5
(~b;„=0.0711). (b) T=0.0096, C, = 1, C2 = —0.044
(~g=0.0483), a+ =5, a =0.3, b =10, c=5 (~b;„=0.040).
(c) T—0.0043 C& =1 C2 = 0.044 (~7)' —0.0483) a+ =5,
a =0.2, b =11.7, c =4.818 (~b;„=0.178).
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agree better than 10% over the time scale where C(t) de-
cays from 1.0 to about 0.1, in the cases of Figs. 3(a) and
3(b). If we consider that even a small deviation of the
mean relaxation time for both results manifests itself in a
large relative deviation of the corresponding correlation
functions C (t) at large times, the results in Figs. 3(a) and
3(b) are surprisingly good. Therefore the huge discrepan-
cy of both results in Fig. 3(c) of more than a factor of 5 at
t =900 does not necessarily imply a failure of the
kinetic-Ising-model approach. This can be demonstrated
by the direct determination of the three transition rates
for the transitions:

ttt~tlt,
tlt~tTt,
ttl~tll,

from the MD simulation. For instance, for the transition
1' t t —& 1 1 1' the number N t t t (t) of up spins with two
neighboring up spins are deduced as a function of time.
For temperatures low enough composed to b;„, an ex-
ponential t dependence was found. The corresponding
transition rate W;(1 1 f~ 1'$1) is just the decay rate. By
use of Eq. (14a), these three transition rates allow one to
determine cx, 5, and y for a given temperature. On the
other hand a, 5, and y, following from the transition-
state result Eq. (14b), can be calculated for that tempera-
ture and the microscopic model parameters. A compar-
ison between both results is shown in Table I for three
different temperatures. For T=0.0043 [the case of Fig.
3(c)] there is a discrepancy for a, |j, and y of -25%,
30%, and S%%uo, respectively. With decreasing tempera-
ture, the deviation between both results decreases,
confirming our expectation that the kinetic-Ising-model
description should become better at lower temperatures.

VI. SUMMARY AND CONCLUSIONS

For a chain of classical particles exhibiting a complex
energy landscape in configuration space with exponential-
ly many metastable configurations, we have investigated
its dynamical behavior. This has been done in two
di6'erent ways. First, the deterministic microscopic
(Newtonian) equation of motion has been investigated nu-
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merically. From this simulation we determined the
time-dependent spin-autocorrelation function C(t) of the
pseudospins o;(t), which specify whether the ith particle
displacement x; (t) is larger [ = c"r; ( t) = + 1] or smaller

[ ="0;(t)= —1] than c. Second, considering that (under
some conditions) all the metastable configurations are
in a one-to-one correspondence with Ising spin
configurations cr = [o, ], the dynamical exploration of the
configuration space can be regarded as a deterministic dy-
namics cr(t) in pseudospin space. Since Kob and Schil-
ling [13]have found strong evidence that this dynamics is
ergodic, it is tempting to describe the deterministic dy-
namics of the pseudospin by a stochastic process, i.e., by
a kinetic equation. Assuming Markovian behavior, this
has been performed in the framework of the transition-
state theory. The result was a one-dimensional kinetic Is-
ing model. For low temperatures and g«1 the transi-
tion rates W;.(o ) agree with the most general Glauber
rates for an Ising model with nearest-neighbor coupling.
A comparison [Figs. 3(a)—3(c)] between the numerical re-
sult for C(t) with that obtained from the kinetic Ising
model yields without any fit parameter fairly good agree-
ment, at least at low enough temperatures. This result is
also supported by a direct determination of the transition
rates from the MD simulation which are in reasonable

TABLE I. Comparison of a, 6, and y obtained from the
transition-state result [Eq. (14b)] [upper half] with the corre-
sponding values deduced from the MD simulation [lower half]
for three different temperatures and the same model parameters
as for Fig. 3(c).
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100-
ll
(1
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0.0043 0.0032 0.0020
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FIG. 4. Pseudospins o.;(t) as a function of time for a part of
the chain. o.;(t)=+1 and cr;(t) = —1 are represented by white
and black dots, respectively. C, = 1, C2 = —0.094, a+ =5,
a2=0.2, b =11.7, e =4.487 (~b;„=0.0138). (a) T=0.0312,
(b) T =0.0054.
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agreement with the rates obtained from transition-state
theory.

For higher temperatures the kinetic description by the
master equation (7) becomes worse. The reason for this is
the appearance of dynamically correlated clusters of parti-
cles performing collective oscillations over a certain time
scale. This behavior is reminiscent of intermittency in
chaotic systems [19], since the collective oscillations are
followed by chaotic motion, which again may result in os-
cillatory motion. This behavior is depicted in Fig. 4(a),
which shows the pseudospin dynamics for particles
&
= 1,2, . . . , 300. 0.; = + 1 and 0.; = —1 are presented by

white and black dots, respectively. The collective oscilla-
tions show up as periodic stripes along the time axis. The
size of the clusters is the extension of the stripes in the
vertical direction, which is about five particles. It is also
interesting that it has recently been speculated [20] that
such dynamically correlated clusters play a role for the
glass transition. That their existence invalidates our
kinetic approach is obvious since the periodic oscillations
between o.;=+1 and —1 represent a sort of memory,

which is not accounted for by the master equation (7).
For low enough temperatures these periodic oscillations
disappear, as shown in Fig. 4(b). Large domains of up
and down spins occur and the dynamics results in sto-
chastic single spin Aips leading to, e.g., Brownian motion
of the domain walls. In this temperature regime the
kinetic description of the Newtonian dynamics becomes
meaningful.

To conclude, we have demonstrated that the Newtoni-
an dynamics of a one-dimensional model with competing
and anharmonic interactions can be mapped onto a one-
dimensional kinetic Ising model, provided the tempera-
ture is low enough compared with the minimum barrier
height. At higher temperatures memory effects due to
collective oscillations of small clusters occur.
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