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We model the dynamics of avalanches in granular assemblies in partly filled rotating cylinders
using a mean-field approach. We show that, upon varying the cylinder angular velocity u, the
system undergoes a hysteresis cycle between an intermittent- and a continuous-flow regime. In the
intermittent-Bow regime, and approaching the transition, the avalanche duration exhibits critical
slowing down with a temporal power-law divergence. Upon adding a white-noise term, and close to
the transition, the distribution of avalanche durations is also a power law. The hysteresis, as well

as the statistics of avalanche durations, are in good qualitative agreement with recent experiments
in partly filled rotating cylinders.

PACS number(s): 46.10.+z, 05.40.+j

I. INTRODUCTION

The dynamics of granular materials is not well under-
stood in spite of its widespread scientific and technologi-
cal interest [1]. Bistability, segregation, arching, hystere-
sis, instabilities, and other properties found in nonco-
hesive granular assemblies make these systems very dif-
fi.cult to analyze. For over two centuries, most studies
have focused on the two extreme regimes: the fluidlike
continuous Bow and the static compact state. The in-
termediate quasistatic regime, with intermittent transi-
tions between Bowing and static behavior, has recently
generated a Burry of activity including several neat ex-
periments [1—5] and novel theoretical proposals (see, e.g. ,
Refs. [6,7]).

Several experiments [2—4] have studied the dynamics
of granular assemblies in partly filled rotating drums.
In particular, Rajchenbach [3] monitored the following
quantities: (i) the statistics of avalanches as a function
of the rotating speed of the cylinder w, (ii) the transition
from the discrete to the steady regime, including exper-
imental evidence of hysteresis as a function of u, and
(iii) the dependence of the current of particles j with the
angle 0 between the top layer and the horizontal. It is
the purpose of this work to study these issues by using
a simple mean-field model with two dynamical variables.
The recent studies on this subject raise many interesting
questions in granular transport, such as hysteresis in u
(see, for instance, Fig. 1 of Ref. [3]) and avalanche statis-

ties, and this work addresses some of them.
Our mean-field approach reduces the many degrees

of freedom of a granular material in a rotating drum
into two: the average velocity v(—:dx/dt—:x) of the
avalanche and the average angle 0 of the granular as-
sembly top surface (of length I, 0 ( x ( I) The.
grains move in the "downhill" x direction of motion,
which forms an angle 0 with the horizontal, and the
shear between two layers with a separation d is p = v/d.
An important feature of our approach is that the dy-
namics of the model used here predicts the occurrence
of avalanches as a function of w. By slowly increasing
u, we obtain the angular velocity u+ at which the sys-
tem undergoes a transition from the discrete Bow regime
to a continuous 8ow (see Fig. 1). At this point, if w

is decreased, the reverse transition is observed at u
where w ( u+. Thus, our model exhibits hysteresis in
cu during the transition between the "intermittent-" and
"continuous-" Bow regimes.

Bagnold [9] extensively studied the dissipation pro-
duced by the grain collisions in several regimes, including
the quasistatic intermittent state, Gnding in the latter a
periodic response over time. On the other hand, sim-
ple rules for the dynamics [6] do not predict a periodic
response over time but the absence of length and time
scales. Our model can produce distributions in agree-
ment with recent experiments [3,4]. Furthermore, when
w —+ w+, we predict that the system exhibits a power-law
critical slowing down.
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II. DISSIPATIQN IN GRANULAR MEDIA

FIG. 1. The time dependence of (a) the low velocity v, (b)
the angle 8 of the top layer, and (c) the angular velocity cu of
the rotating drum. Throughout this work, we use the follow-

ing parameters values: n = 1, ni ——2, P = 1/2, and p = 10
For these ramping rates, we obtain w+ ——4.76 x 10 and

4.66 x 10 for the Do ——O deterministic case.

FIG. 2. (a) Schematic plot of the friction force versus ve-

locity v for the case c & l. An initially flat (8 = 0) and
stationary (v = 0) granular surface is tilted with an angular
velocity ~, thus having the following sequence of values for
the friction force: O —+ A ~ B, from the E = v = 0 origin
O. The velocity v is zero in the stick-slip case with infinite
slope for the OAB segment. In the AB' branch, the loading
time r~ satisfies (T~) = (8 —8 )/cu. When the maximum
angle of stability is reached in B, an avalanche (v g 0) starts
and the system jumps to C. Diferent situations, described
in the text, can now develop according to the value of u. (b)
Schematic diagram of a rotating drum indicating the extreme
heights, the mean downhill velocity v, and the mean angle 0.

In granular Bow, the friction force depends on v
for large values of the velocity. The models of Bag-
nold [9] and Jenkins and Savage [10] correctly describe
this limit. Jaeger et al. [8] analyzed how the stress varies
as v approaches zero, obtaining the following form for
the total friction force: m, v2/2A + nmgcos0/v, w'here
K = 1 + niv /gdcos0, which in dimensionless form
can be written as I' = Pv2 + ncos0/K, where now
K = 1+ niv /cos0, v = v/vrdg, and n, ni, P, A are
constants. Here the first (second) term dominates the
frictian force at high (law) velocities and, when v ~ 0,
the second term represents the maximum dry friction due
to rubbing forces.

the time evolution of the mean angle 0. For this pur-
pose, let us consider the two extreme heights [shown in
Fig. 2(b)] of granular vertical columns. Since the column
heights are proportional to the mass of the columns, the
rate of mass transport is proportional to the height dif-
ference (0 & x & L),

ah y v 662 V

Bt L
= ——(hi —h2), = +—(hi —h2) .

Ot

The proportionality constant is the inverse of the prop-
agation time. The sum of these equations gives the mass
conservation condition Oi(hi + h2) = 0, which is valid in
a closed rotating drum, while substracting them gives

III. DYNAMICS 0 = —2 —tan 0
L

(2)

The equation of motion is v = a —F, where F
I" (0, v) is the friction force and o is the gravitational
force (Ix sin0). If c = nni/tr3 ) 1, then the frictional
force decreases as a function of v, until a minimum is
reached at v„, and then increases. We focus on this case
c ) 1, illustrated in Fig. 2(a). The stationary points of
I" determine the maximum 0 and mirumum (or repose)
0„angle of stability. Explicitly 0 = arctan(n) and 0„=
arctan [n (2~c —1)/c].

Let us consider a stationary (v = 0) granular assem-
bly with a horizontal (0 = 0) top surface contained in
a partly filled cylinder If we slowly rotate the cylinder
at an angular velocity 0 = u, the average angle of the
granular assembly surface 0 grows until it reaches the
maximum angle of stability 0, where the system sud-
denly produces avalanches. During this sudden transport
of mass, the average velocity of the sand grains v becomes
nonzero and 0 decreases until it reaches the angle of re-
pose 0, where the system relaxes (v=0). At this point
the cycle repeats itself.

In order to model this dynamics, it is useful to know

since hq —62 ——L sin 0.
In this work, we concentrate our eKorts in this 0 0

0 case. Elsewhere, we will consider the case with local
spatial variations in 0(2:, t), relevant to describe the S-
shaped curves seen in the continuous Bow regime for very
large values of u.

We thus model the dynamics of avalanches with the
following equations of motion:

icos 0
v = sin0 —Pv = sin 0 —E'(0, v), (3)1+ niv /cas0

0 = —pvtan0+(u+ rl(t), (4)

where p = 2~dg/L, Eq. (3) is Newton's equation of mo-
tion, and the very small Gaussian naise term il(t) simu-
lates small fluctuations in w and satisfies (g(t)) = 0 and
(TI(t)q(t')) = Do S(t —t'), with Do &( w.
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In the continuous-flow regime, the equation for the
steady state (v = 0, 0 = 0) is

(
sin 0 = P Iqptan0)

+n cos 0 cos 0+ ni
I(p tan 0)

This solution corresponds to any point in the branch
DC in Fig. 2(a) with positive slope in I" (v). Let us
denote by v, (v ) the velocity corresponding to 0„(0 )
in Eq. (3) when v = 0. When w « pv„ tan 0„ the
system has intermittent avalanches, and in each one of
them Eq. (4) predicts that 0 relaxes quickly to 0„. When
w ) pv tan0, the system is certainly in the continu-
ous fiow regime at some point C' above C [see Fig. 2(a)].
If pv„ tan0„& w ( pv tan 0, then the system evolves
from C to a point between C and D and either remains
there (if the stationary solution is stable at this point)
or jumps back (i.e. , 0 -+ 0„and v -+ 0) to the AB seg-
ment and the avalanche stops. If u ( pv„ tan 0„, then the
system certainly decays to the AB segment and has in-
termittent avalanches evolving through the loop ABCD,
and so on, since D is unstable.

70— I
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I I

60—

tween avalanches, where the angle increases linearly in
time &om 0„ to 0 . For clarity, only three avalanches
are shown. They are approaching the transition point
u+ to the continuous-flow regime, and their periods be-
come longer close to ~+, i.e. , the system exhibits a critical
slowing down. The values of both u+ and u depend on
w and the constants cr, nq, P, and Do in Eqs. (3) and (4).
The addition of noise also reduces the hysteresis.

Notice the asymmetric form of the velocity peaks in
Fig. 1(a). During a loading time 7'~, the system moves
Rom A to B, on the branch AB in Fig. 2(a). Right after,
an avalanche starts and v has a sudden increase lasting
a time 7~ [B ~ C in Fig. 2(a)], a slow decrease with
duration rc (C + D), and a final decrease lasting a time
rg) (D w A).

Equations (3) and (4), without a random source
term, and for a fixed ~, produce a periodic sequence
of avalanches. However, the real many-body system in-
evitably has disorder. When Do g 0, we observe a richer
behavior [see Figs. 3 and 4(b)] with broad distributions.

IV. NUMER, ICAL RESULTS 50—
Figure 1 shows the time dependence of (a) the fiow

velocity v, (b) the angle 0 of the top layer, and (c) the
angular velocity u of the rotating drum, obtained by nu-
merically solving Eqs. (3) and (4) with Do ——0. For
each avalanche, v has a peak and 0 has a sudden de-
crease from 0 0.8 to 0„0.65. The v = 0 regions
in between peaks correspond to the loading time in be-
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FIG. 3. Statistics of the avalanche durations. Distributions
1V for (a) wz, (b) wz, (c) 7z, and (d) TD for ~ = 3 x 10
and Do ——10

FIG. 4. (a) Time evolution of ro(a) when
: w+(Do = 0). This critical slowing down with a power-law

divergence is shown in the inset by the dashed line corre-
sponding to the right vertical logarithmic axis. For compari-
son purposes, the solid line in the inset, corresponding to the
left vertical linear axis, has a small curvature because of the
small value of the power (p 0.34). (b) Distribution of 7o
for w = 4.6 x 10, which is slightly below su+(Do = 0). The
inset shows the same data in semilog and log-log scales.
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The statistics of the avalanche durations are shown in
Fig. 3. In order to gain more insight into the several time
scales involved in the problem, we show the distributions
jU for (a) r~, (b) r~, (c) rc, and (d) rii, for ~ = 3x10
and Dp = 10

Figure 4(a) shows the evolution of r~ when w

u+. We have considered two diferent possibilities for the
divergence: logarithinic (left vertical axis of the inset)
and power law (right vertical axis). For Do ——0, the
behavior of vD at the transition is found to be

V. LIMITATIONS

Our mean-Geld equations have only two degrees of free-
dom for modeling an extremely complex system. Thus,
it might need to be extended in order to provide a more
complete description of the system. The beauty of the
model lies precisely in its simplicity and in the fact that
it can naturally describe several dynamical features ob-
served in experiments in granular media.

TD ~ (co+ —Lu) form(u+.

v —v„ - (8 —8„)'i' (7)

for the relationship between the mass current flow and
the angle, for w & u . This result is consistent with
experimental results by Rajchenbach [3].

Temporal critical slowing down behavior has also been
found in bistable optical systems [ll]. From Eq. (6) and
recalling that u + g is a Gaussian random variable, one
obtains that K(r~) r&". This is checked numerically
in Fig. 4(b) where we have obtained the distribution of w~
for fixed ~ = 4.6 x 10 s, which is slightly below u+(Do ——

0), with Do ——10
In the intermittent-flow regime, our dynamical model

exhibits an attractive limit cycle around an unstable fixed
point. For 0 (0, e = 0 is a stable attractor manifold.
In the continuum-flow regime, the dynamical system is
in an attractive fixed point with nonzero velocity. Here a
harmonic approximation to Newton's equation [Eq. (3)]
with v = 0 gives

VI. CONCLUSIONS

We have studied a mean-field model of granular assem-
blies driven to the threshold of instability, where they
produce avalanches. Prom this simple model, we ob-
tained the distributions of durations of avalanches, the
transition between the two flowing regimes, and the hys-
teresis between them in a natural manner, and with a
good qualitative agreement with results recently obtained
using experiments in rotating cylinders. Furthermore,
when u m w+, the avalanche durations exhibit a critical
slowing down with a temporal power-law divergence.
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