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A cluster Monte Carlo algorithm for the Ashkin-Teller (AT) model is constructed according to
the guidelines of a general scheme for such algorithms. Its dynamical behavior is tested for the
square lattice AT model. We perform simulations on the line of critical points along which the
exponents vary continuously, and 6nd that critical slowing down is significantly reduced. We find
continuous variation of the dynamical exponent z along the line, following the variation of the ratio
of specific-heat and correlation-length exponents n/v, in a manner which satisfies the Li-Sokal bound
z,&„,t„&a/v, that was so far proved only for Potts models.

PACS number(s): 02.70.Lq, 75.40.Mg, 75.10.Hk, 05.50.+q

I. INTRODUCTION

The Ashkin-Teller (AT) model [1] has been studied ex-
tensively, ever since its introduction, by a variety of meth-
ods. In two dimensions, in particular, much is known
about the phase diagram and critical behavior of the
model. Nevertheless there are problems that were not
addressed extensively before; the critical behavior of ran-
dom AT models is one such issue about which not much is
known, hope for analytic treatment is slim, and therefore
one expects numerical simulations to be the main tool of
investigation. With this aim in mind, we set out to de-
velop an eKcient Monte Carlo (MC) cluster algorithm
for the AT model.

A convenient representation of the generalized AT
model (GAT) is in terms of two Ising spin variables, o;
and w;, placed on every site of a lattice. Denoting by (ij)
a pair of nearest-neighbor sites, the Hamiltonian is given
by

'R = —) [K cJ;cd+ K r;7.s+ Lcr;crier, ws] .
(ij)

Here K (K ) are the strengths of the interactions be-
tween neighboring cr (r) spins, and L is a four-spin cou-
pling. The phase diagram of the ferromagnetic general
AT model is known in two dimensions from duality trans-
formations and renormalization-group studies [2,3 . The
three-dimensional model has been studied as well [4]. In
this paper we are concerned with the Z(4) subspace of
the general model, in which K = K = K. The phase
diagram in this subspace is reviewed in Sec. II. The criti-
cal properties of the model in this subspace are of special
interest, since it has a line of critical points, along which
the exponents vary continuously, and have been deter-
mined analytically [5], interpolating between Ising and
four-state Potts exponents. For instance, the value of
the ratio n/v varies &om 0 at the Ising (L = 0) critical
point to ci/v = 1 at the four-state Potts point K = L.
This exponent is of special interest to us since it has been
proved that for Potts models it serves as lower bound to

the dynamic exponent z of cluster algorithms [6]. Fur-
thermore, the bound seems to be reached in the case of
the Ising and Potts models [6).

Cluster algorithms [7) as introduced by Swendsen and
Wang (SW) [8], and extended by Wolff [9], are reviewed
briefly in Sec. III. These algorithms give rise to dynamics
whose relaxation time, vs~, is significantly shorter than
that of standard, single-spin flip MC methods. This is
most important at a critical point, where the relaxation
time of a finite system grows with its linear size I ac-
cording to

Cluster algorithms have a significantly lower dynamic ex-
ponent zs~ than that of standard MC. Hence if one is
interested in performing extensive simulations of a model
such as AT, it is well worth spending time on developing
an appropriate cluster algorithm.

Creating an efFicient algorithm can be a challenge.
Naive application of the original SW scheme does not
work (as explained in Sec. III and demonstrated in Sec.
IV). We set out to construct an efficient cluster algorithm
using the guidelines and methods that were presented by
Kandel and Domany [10] . This general scheme is guaran-
teed to yield an algorithm that satisfies detailed balance,
and once the important excitations of the model have
been identified and incorporated, we are guaranteed to
get a good algorithm. This general formalism is briefly
reviewed, and the resulting algorithm is presented in Sec.
III. Interestingly, the cluster algorithm found this way is
identical to what would have been obtained had we used
Wolff's Ising embedding method [9,11], as shown in the
Appendix. Numerical results are given in Sec. IV; in par-
ticular, efFiciency of our algorithm is tested by measuring
the dynamic exponent along the critical line, which is
indeed significantly lower than that of standard MC.

An interesting question we set out to resolve concerns
comparison of zsw with n/v along the AT critical line.
We found that the Li-Sokal bound [6]

1063-651X/93/48(5)/4080(11)/$06. 00 4080 1993 The American Physical Society



48 CLUSTER METHOD FOR THE ASHKIN-TELLER MODEL 4081

is satisfied, variation of the dynamic exponent follows
that of cr/v, and within our numerical accuracy and lim-
itations due to finite-size effects, our results indicate that
the two are equal.

where

yt ——2 —(2/g~),

l8 . , fl
gR = —»n '

~

—cath(2K) ~,
vr (2

(2)

II. PHASE DIAGRAM
OF THE ASHKIN- TELLER MODEL

We now review the phase diagram of the square-lattice
AT model [4] and some of its critical properties. Figure
1 gives the phase diagram of the model plotted as a func-
tion of the parameters X and Z where

and ~ =
4 all along the line. Lastly the lines X4B

and X4C How under renormalization to Ising type fixed
points.

The exact location of the transition line XOX4 can
be found through the duality transformation of the AT
model [3]. It is given by the self-dual line Z = 1 —2X.

Z = exp( —4K), X = exp[ —2(K + L)] .
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At times we use the notation X = (X', Z) to denote a
point in phase space. Full lines of phase transitions sep-
arate three phases.

(a) Paramagnetic, labeled as P. The couplings are suf-
ficiently weak so that the system is in a paramagnetic
phase in which neither rr nor 7. (nor ow) are ordered.

(b) Ferromagnetic phase, labeled as F . The couplings
are suKciently strong so that o. and ~ independently or-
der in a ferromagnetic fashion so that (cr) = +(w). In
this phase (o7) is also different from zero and has the
same sign as (cr)(r).

(c) A phase labeled (ow), in which cr~ is ordered ferro-
magnetically but (o ) = (w) = 0. This phase arises only
for L )K.

On the dashed line Z = X we have L = 0; and thus
it is obviously a subspace of two decoupled Ising models,
having an Ising transition at the point Xo. The dashed
line Z = X has I = K, in which case the AT model
becomes the four-state Potts model. The point X4 is a
four-state Potts multicritical point.

A marginal operator generates a continuous variation
of critical exponents along the line XOX4, isomorphic to
the known critical line of the eight-vertex model [12].
Through an exact duality type transformation this line is
mapped onto the critical line of a staggered eight-vertex
model and through a relation with the Coulomb gas its
critical exponents are known exactly [5]:

III. CLUSTER METHOD
FOR THE ASHKIN-TELLER MODEL

A. SW cluster method

Cluster algorithms have proved to be a useful method
of reducing critical slowing down in MC simulations. For
completeness we review here the pioneering cluster algo-
rithm of Swendsen and Wang [8] for the Ising model [13]
with the Hamiltonian

The SW procedure stochastically identifies clusters of
aligned spins, and then Hips whole clusters simultane-
ously. Starting from a given configuration u, SW go
over all the bonds, and either "freeze" or "delete" them.
A bond connecting two neighboring sites k and j is
deleted with probability Pp, and frozen with probability
Py ——1 —Pd, , where

P —P (Jcr~ cry +J)g=C

Having gone over all the bonds, all spins which have a
path of frozen bonds connecting them are identified as
being in the same cluster. Now the new configuration
is generated by flipping every cluster with probability

Note that according to (5), only spins of the same
sign can be frozen in the same cluster. SW identify cor-
rectly the elementary large scale excitations as clusters
of aligned spins. This correct identification is essential
to the success of a cluster method for any more general
model.

In Sec. IIID we shall present a naive implementation
of the original SW scheme to the AT model, and explain
why it is not expected to work well. This necessitates
search for a different clustering rule; the one we found. is
based on a general scheme which we now describe.

B. General scheme for cluster methods

FIG. 1. Phase diagram of the Ashkin-Teller [Z(4)] madel.

A unifying view of all cluster algorithms has been given
by Kandel and Domany (KD) [10], which we now review.
The general scheme consists of two steps: given a spin
configuration u, the first step consists of stochastically
generating a new Hamiltonian &. The second step con-
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sists of simulating the model with the new Hamiltonian,
thereby bringing it to a new configuration u'. To carry
out the first step, KD write the Hamiltonian as

e~ ' " ~ if Vi(u) = E~ and 1 & m & iM

g 0 if Vi(u) = E and p & m & M,

'R=) Vi
and the modified interaction according to (9) is

(13)

For example, V~ can be the energy of a single bond in
the nearest-neighbor Ising Hamiltonian. Then to each Vj

they assign one of K possible integers i, in a stochas-
tic manner that depends on the starting configuration
u. That is, the probability to assign i to / is written as
P,' = P (u). This probability is normalized, i.e. ,

) P, (u) =1

for any term / and configuration u. Then they construct
a new Hamiltonian:

+I*i = )
I,

where (for any spin configuration u)

0 if Vi(u) = E and 1 & m & p,

oo if Vi(u) = E and p & m & M.

Again the constant C must be chosen so that P (u) & 1
for any u. This type of modification allows free move-
ments between some of the states u of Vi(u) which did
not have the same energy in the original Hamiltonian,
and we will use it for the Ashkin-Teller model in Sec.
III C. Perhaps it can be useful in general, in cases where
the Vj's can have more than two possible energies. This
type of operation has been used, for example, in [14].

A particular case of this operation is obtained if p = 1,
and we set

(15)

Substitution into (13) yields

V,'(u) = Vi(u) ——ln[P,'(u)] + C,'. (9) pi( )
pi if Vi(u) = Ei
0 otherwise

The free parameters C,'. are configuration independent.
The second step consists of simulation of the

model with any procedure whose transition probability
TI;& (u ~ u ) satisfies the detailed balance condition with
respect to the new Hamiltonian, i.e.,

After completing the second step, a new configuration u'
is arrived at, the original Hamiltonian is restored, and
the process is repeated. Equations (9) and (10) ensure
that the whole procedure satisfies the detailed balance
condition, with respect to the original Hamiltonian (for
the proof see [10]),but ergodicity needs to be proved for
each application separately.

We give now two types of modifications to the Hamil-
tonian. Consider a term Vi(u) that can take M distinct
energy values E;, i = 1,. . . ,M. The first is the deletion
operation, used by SW, which eliminates the interaction
Vi(u) that gets replaced by

V„'(u) = 0,

for any configuration u. To get this, we must have [see
Eq. (9)

pi ( )
P[vi (~)+&a]

The constant C&i must be chosen so that Pd(u) & 1 for
any u.

The second modification is a "generalized" freezing op-
eration which we will later use in our scheme for the
Ashkin- Teller model. Its probability is

and from (14), the modified interaction takes the form

-i(
)

0 if Vi(u) =Ei
oo otherwise .

This operation assigns infinite energy to any configura-
tion u for which Vi(u) g Ei. That is, in the ensuing sim-
ulation the interaction V~ is frozen at energy Ez. Freez-
ing of V~ is assigned with probability pq, and only when
Vi(u) = Ei. It is easy to see that the SW &eezing is
precisely of this form.

C. Cluster method for the Ashkin-Teller model

We describe now the cluster algorithm we devised for
the GAT model and the considerations that led us to
it. It consists of a &eeze-delete scheme which generates
noninteracting clusters of aligned 0 spins and of aligned
w spins. We will phrase it in terms of the general scheme
described in Sec. III8.

The first decision one needs to make when coming to
design a freeze-delete scheme is the choice of the basic
interaction term Vj. Our choice is to associate all inter-
actions that reside on an edge (jk) of the lattice to one
VI, -

Vi = [K oi,o~ + K ~i,7;—+Lo.i, ~go;~,].. .

Since the model is invariant under any permutation of
K, K, and L (to make this symmetry explicit, define
a new Ising spin 8~ = o~~~ along with the constraint
s~o~7& ——1), it is possible to choose L & K, K (the
reason for this choice will become clear later). The inter-
action Vj depends on four independent Ising spins that
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can have 16 states. Every Vj can take one of four possible
energy values:

i=1 i=2 i=3 i=d

Ei ———K —K —L,
E2 ——K —K +L,
E3 ———K +K.+L,
E4 ——K +K —L.

Every energy is fourfold degenerate; we denote by u; all
(four) states for which Vi = E;. I et u, represent the state
of the spins sr~) ~y, w~) ~y of a particular pair of nearest-
neighbor sites 0, k). Four representative possible states
are depicted in Fig. 2. ui is a ground state in which both
the o and the w bonds are satisfied. u2 and u3 are excited
states in which one Ising bond is broken and the other is
satisfied. Our choice L & K, K makes u4 the highest
energy state [15], in which both Ising bonds are broken.

The general philosophy of our keeze-delete scheme is
as follows. We wish to build clusters of cr spins and of
7 spins since we know that these clusters are the ba-
sic excitations of the model. Clusters of 8 = o.7. spins
are not important because L, the bond between them,
is the weakest. In order to build clusters, one needs to
freeze parallel o spins to each other and parallel w spins
to each other, and delete the bonds between antiparallel
spins. For example, in the state u2 we wish to &eeze the
bond between the w spins and delete the bond between
the o. spins. This consideration leads us to include in
our scheme two operations. The operation which we will
identify as i = 2 &eezes the bond between v~ and &A, and
deletes the bond between cr~ and o'i, (see Fig. 3). Ac-
cording to the discussion above, we want to perform this
operation with some probability p2 g 0 for the state uz,
and with probability 0 for the states uq and u4. This
operation allows one to move Rom u2 to ui, so in order
to maintain detailed balance, we must perform it with
some nonvanishing probability q2 g 0 on ui too. All this
is achieved by assigning, in the modified interaction term
V2, infinite energy to u3, u4 and zero energy to uq, u2.
This modification is precisely of the form of Eq. (14) so
it is of the generalized &eezing type described at the end
of Sec. III 8 and hence the probabilities must be [see Eq.
(»)] [16]

e '("l+ ' if Vi(u) = E2 or V((u) = Ei
2 0 if Vi(u) = Es or Vj(u) = E4 .

u,
pl q2 q, p, (u )

0 p 0 pd (u, )

0 0 p p„(u)

+ — +
0 0 0 p, (u) =1

FIG. 3. Freeze-delete scheme for the AT model. The four
states of two neighboring sites are denoted in the left column;
four freeze-delete operations are denoted in the top row, and
the respective probabilities are denoted in the table. A frozen
bond is denoted by a double thick line, while a deleted bond
is denoted by a blank.

Again we define the probabilities:

~Vi (u3)+C3 eVi (u1)+ C3P3 ——e ) g3 —e (23)

The third operation we wish to perform is a freezing
operation of the form defined in Sec. III 8, Eqs. (16) and
(17). In our case it freezes the bond between oz and oi,
and the bond between w~ and 7k, so it also builds the
7. and o. clusters. We will denote it by i = 1 and its
probability is

pi( )
pi if Vi(u) = Ei
0 otherwise . (24)

The fourth and last operation is the deletion opera-
tion defined in Sec. IIIB, Eqs. (11) and (12), with the
probability

The operation which we identify as i = 3 &eezes the
bond between o~ and o.I, and deletes the bond between w~

and vg. It follows the same logic as the operation i = 2
and its probability is

e '("l+ ' if Vi(u) = Es or Vi(u) = Ei
3 0 if Vi(u) = E2 or Vj(u) = E4 .

(22)

(20) pl ( )
V((u)+Cg (25)

The choice of C2 will set the values of p2 and q2.

v, (u, )+c,p2=e eVi (u1)+C,g2=e

Hg,

FIG. 2. States of spins at a pair of nearest-neighbor sites
j, k. Each state u; represents one out of four states with the
same energy E,.

These four operations define completely our freeze-
delete scheme, summarized by Fig. 3. In the first column,
in each row, one or two representative configurations of
u; appear, depicting the state of 0~, v~, OI„and v.y. In the
first row the four modified interactions V~ are depicted.
An upper double line, for example, denotes a kozen bond
between o~ and cry) a blank denotes a deleted bond. We
have yet to determine the constants Cp, C3, p~, Cp. In
the case of u4, we want to delete the bond between the 7

spins and the bond between the o spins with probability
1, as we never want an unsatisfied bond to be frozen, so
we choose |g = —E4, to get Pd(u4) = 1. Having cho-
sen Cg, all deletion probabilities are set. The rest of the
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constants are determined by the normalization condition
(7), i.e. ,

p2 ——1 —Pz(u2),
ps ——1 —Pg(us) . (26)

Consequently, Eqs. (21) and (23) determine the con-
stants C2, C3 and the probabilities q2, q3. Finally, p~ is
determined again by the normalization condition

pi = 1 —Pg(u, ) —
q

—q . (27)

For completeness we will list all the probabilities of our
scheme which follow from Eqs. (20)—(27):

eR, —R

eR, —E'4

q,. =p;e
pi ——1 —Pa(~i) —q2 —qs .

Vi,
i=2 3
i=23 (28)

Checking that all the probabilities of the scheme fulfill the
condition 0 & P;(u) & 1 for all i and u is trivial for all
probabilities except for pi which is a bit more laborious,
but still straightforward.

We have described how we generate a new Hamilto-
nian of noninteracting clusters of o spins and of ~ spins.
Now we have to choose some legitimate MC procedure to
simulate this Hamiltonian. We chose to do it in a simi-
lar fashion to the single-cluster algorithm of Wolff [9], but
the SW version is equally applicable. To be more explicit,
we choose a site j of the lattice at random and a random
spin, either oz or w~ (the choice of o or r was done with
probability 2 which is sensible in the case K = K, but
in general any probability is acceptable, and an optimal
choice can be made to minimize the autocorrelation time
r). This spin will belong to the cluster we will flip, and
the cluster will contain only r (o) spins if we initially
chose wz. (o~). We perform the freeze-delete operations
only on bonds belonging to the surface of the cluster.
For example, suppose at some stage w~ was joined to the
cluster, and suppose that the term V~ k was modified ac-
cording to i = 3, then rk will not be joined to the cluster
and we need not perform &eeze-delete operations on the
other three bonds connecting the site k. If it is modi-
fied according to i = 1 or i = 2 then wI, is joined to the
cluster. Since our cluster algorithm fits into the general
scheme, we do not need to prove detailed balance, while
ergodicity is ensured by the deletion operation.

We have explained the reasoning behind our algorithm.
We believe that the clusters we build of parallel 0 spins
and of parallel w spins are the basic excitations of the
model. We therefore believe that it will be efBcient. It
is encouraging to notice that in the decoupled Ising sub-
space and the four-state Potts subspace our freeze-delete
scheme is identical with SW's freeze-delete operations for
these models. In the Appendix we show that our algo-
rithm is equivalent to the idea of embedding into the
AT model an Ising model and simulating it by Wolff's
single-cluster procedure. In Sec. IV we present numeri-
cal evidence for our algorithm's eKciency.

D. "Naive" SW option

IV. SIMULATIONS OF THE AT CRITICAL LINE

In addition to checking the efBciency of our method at
the AT critical line, we also wanted to check a prediction
made by Li and Sokal [6], who have proved a rigorous
lower bound

l=2 l=3 l=d

~ ~

+

p, (u, ) 0 0 p„(u, )

0 p, (u, ) 0 p, (u, )

0 0 P, (u) pd(u)

0 0 0 P (upi

FIG. 4. "Naive" SW freeze-delete scheme for the AT
model. The four states of two neighboring sites are denoted
in the left column; four freeze-delete operations are denoted
in the top row, and the respective probabilities are denoted in
the table. A frozen bond is denoted by two thick lines, while
a deleted bond is denoted by a blank.

We find it illuminating to compare our algorithm to
a cluster algorithm which one could regard as the naive
generalization of the SW method to the AT model. Such
an algorithm would. define Vj in the same manner as our
scheme does [see Eq. (18)]. For each u, , the bonds be-
tween the two neighboring sites get either deleted [with
our Pg(u, )] or frozen with Pf(u;) = 1 —Pd(u;). Figure
4 can clarify how this scheme fits into the general one of
Sec. IIIB and how it compares with our scheme. Since
it fits into the general scheme we do not need to prove
detailed balance, while the deletion operation ensures its
ergodicity except for T = 0.

This scheme also generates clusters of 0 spins and clus-
ters of ~ spins, but with the "naive" scheme, antiparal-
lel Ising spins can be found in the same cluster, so this
scheme does not identify the elementary excitations of
the model. Moreover, the 0 clusters' structure is forced
to match the w clusters (and vice versa). This is to-
tally unphysical since in practice it is energetically fa-
vorable for the two cluster structures not to match (for
L & K, K ). At T = 0 this scheme could freeze the
whole lattice into a single cluster even when it is not in
the ground state. This is in contrast to the ability of our
scheme to relax excitations on any scale even at T = 0 (in
other words, at T = 0 our algorithm will bring any initial
configuration to the ground state in a short time). At a
finite temperature the "naive" SW scheme will produce
clusters that are too large. In Sec. IV A we list results of
simulations using the single-cluster (1C) version of this
naive SW scheme, which show that it is indeed much less
efBcient than our algorithm.
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zsw & ~/& (29) per site follows from the energy fluctuations

Z = 1 —2X. (30)

Our measurements were done at the decoupled Ising crit-
ical point Xo and at the four-state Potts critical point
X4 (see Fig. 1 and exact definition in Sec. II). Three
additional measurements were carried out at three inter-
mediate equidistant points in the X —Z plane, on the AT
critical line. So a total of five measurements were done
at the points

for the dynamical critical exponent of the SW algorithm
for the ferromagnetic q-state Potts model. More pre-
cisely, the Li-Sokal bound is 7 & t & const x Ch, , from
which Eq. (29) follows (for definitions of r,„~y;„t and
z,„~y;„t see [17]). This bound relates dynamics to the
static properties of a model and is thus of great impor-
tance. Their proof is for both z;„t and z, ~. We wanted to
check whether this bound holds all along the AT critical
line, which connects the decoupled Ising critical point
with —= 0 at one end to the four-state Potts critical
point with —= 1 at the other end. At both of these
points our algorithm is identical to Wolff's 1C version of
the SW method for Potts models. The Ii-Sokal bound
was proved for the SW dynamics, but perhaps it is valid
for Wolff's 1C dynamics as well (at least for d = 2). We
are unaware of any rigorous proof for that, but our re-
sults for z for q = 2 and 4 seem to indicate zi~ ——zs~
and are in accordance with previous results for the Ising
critical point (see [8] and [18]). Besides estimating the
dynamical exponents, we have estimated, using finite-size
scaling, the critical exponents —and ~ along the AT crit-
ical line. As stated in Sec. II the AT critical line is given
by

= L'((E') —(E)').

We calculated the magnetic susceptibility of the 0. spins
defined as [19]

y=L (M ), M= 2)

X = (c). (35)

To get the dynamic properties we calculated the time-
dependent autocorrelation functions P@(t) and Pz(t) de-
Bned as

(&(0)&(t)) —(&)'
(&') —(&)' (36)

where A stands for E or y. A typical plot of Pz(t),
measured from the X~ model at I = 128, is presented in
Fig. 6.

A. MC results and discussion

Susceptibility and specific heat

and also measured c, the size of the cluster Hipped at
each step, and calculated (c). There is a connection be-
tween the size of the clusters and the susceptibility, [20]
which is common for algorithms which build noninter-
acting clusters of spins (if all spins in a cluster have the
same value). For 1C algorithins it has the simple form
[91

X, = Xp+ 4(X4 —Xp), i = 0, . . . , 4. (31) According to finite-size scaling theory [21] one expects

Q ~ LvAll the points X, are marked in Fig. 1. We simulated
lattices with periodic boundary conditions of up to size
128 x 128, and up to 5 x 10 clusters were Hipped for each
lattice size.

We calculated the energy [19] per site:

for large enough I. Fitting our measurements of y to
Eq. (37) for lattice sizes L ) 16 fits the exact universal
value ~ =

4 within errors (see Table I) as expected.
Our measurements confirm the equality (35), where (y)
and (c) have an error of the same magnitude. Plots of
log C vs log L for the five models can be seen in Fig.
5. From linear Gts to the log-log plots, estimates for-
are obtained which do not agree with the exact known
values. For comparison with the exact values see Table
I and Fig. 13. The differences may be due to Hnite-size
eKects and corrections to scaling. An exception to this

(32)

where L is the linear lattice size, and the angular brackets
denote the usual thermal MC average. The specific heat

1E = (E) = — ) [KolctT~ + K7g7~ + LogTyo~ 'r~]'.
(k,.)

TABLE I. Results from the AT critical line. The errors in parentheses are only the statistical
errors of the fit in our 6tting interval. They do not include systematic errors stemming from
Gnite-size e8ects and corrections to scaling.

Xo
Xg
X2
X3
X4

1.751(4)
1.751(1)
1.752(3)
1.763(6)
1.752(4)

V

0.23(1)
O.38(2)
0.542(8)
0.655(13)
0.747(3)

&int, E

0.26(3)
0.396(5)
O.61(1)
0.719(2)
0.92(l)

Zexp, E

0.23(2)
0.40(3)
0.68(3)
0.74(2)
0.99(5)

&int, g

O.13(1)
0.273(3)
0.532(5)
0.717(8)
0.99(3)

+exp

O.267(4)
O.47(2)
0.62(1)
0.72(3)
0.94(3)

& exact
0
0.2096
0.4182
0.6383
1
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X&

CO
1 o

Xo

I

10
I

100 100
MC Step

200 600

FIG. 5. A log-log plot of specific heat vs linear lattice size
at the five critical models Ao, . . . , X4. The solid lines are the
linear fits. The critical exponents —are given in Table I.

mismatch is the decoupled Ising point for which the value
of —= 0 fits nicely according to the semilog plot in Fig. 8
(for completeness we also quote in Table I an estimate
for —at Xo from the log-log fit of Fig. 5). The slope of
the C curves at Xq and X2 does tend to a lower value
with increasing lattice size. The four-state Potts model
is known to have a logarithmic correction to scaling: C
L/ln ~ L [6]; in any case, our result —= 0.747(3) agrees
with previous MC results obtained from lattices of sizes
up to L = 256 [6].

FIG. 6. The ln of the time autocorrelation function of the
susceptibility P~(t), measured for the X2 model at L = 128.
The unit of time is a single MC step or a single-cluster Hip.
The vertical lines are the error bars. The exponential fit is
also shown.

I zexp ~ ~. ~ Lzintexp. ~ int ) (38)

for large enough L, yielded the dynamical critical expo-
nents listed in Table I. Figures 7 and 8 are both from
the decoupled Ising model point Xo. In Table I we list
values of z obtained from the power-law fits of Fig. 7.
None the less, comparing these fits to the log L fits of
Fig. 8, we feel that the latter ones are better and that
the true value is z = 0 for all four autocorrelation times

&exp +'+~ &int

In order to check the eKciency of our algorithm and
to see whether the Li-Sokal bound holds, we measured
7, p and r;„t, for both the energy E and the susceptibility

This was done by the following procedure. P~y~(t)
was plotted on a semilog plot, the unit of time being a
single cluster Gip. ~, p was then consistently estimated
by the slope of ln P(t) in a window from r „~ to 3r,„~. A
typical example for P(t) and the linear 6t to extract &,„p
can be seen in Fig. 6. To calculate w;„q, we integrated
numerically P(t) in the interval Rom t = 0 up to t
1.57;„z and estimated the tail (t & 1.5r,„~ ) of P(t) by
the exponential fit. The error of both ~'s was estimated
&om repeated experiments when the statistics were large
enough and otherwise &om subjective estimates from the
fluctuations in 7 p in the window 7 „p —3w, p. Each MC
step, or cluster Rip, involves on the average the Gipping
of (c) spins. Since the natural unit of time is a sweep
over all spins of the lattice, we multiplied v' by (c)L

In Figs. 7—12 we plot measured values of 'T
p and 7'

for E and y as a function of the linear lattice size L. In
Figs. 7—10 we display the measurements of 7~ at diR'erent
models X; separately, while in Figs. 11 and 12 we display
7 p & and 'T' t ~ for the five models jointly. Fitting our
results to the forms

Xo

r &C«c' x

O

C

FIG. 7. I og-log plots of autocorrelation times v~ and the
specific heat C as a function of linear lattice size I, at the
decoupled Ising point Xo. The values of z listed in Table I
are the slopes of the fits.
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10
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FIG. 8. Semilog plots of autocorrelation times v„and the
specific heat C as a function of linear lattice size L, at the
decoupled Ising point Xo. This fit seems to be better than
the log-log fit, yielding values of z = —= 0.

FIG. 10. Log-log plots of autocorrelation times 7~ and the
specific heat C as a function of linear lattice size L, at the
point X3. The values of z listed in Table I are the slopes of
the fits.

At X'0 ( and all along the Z = X or L = 0 line)
our algorithm is identical with the Wolff 1C algorithm
for the Ising model. Our results for z;„t from the fits in
Fig. 7 are consistent with those of Wolff [18]. A log L
behavior has been measured for w, p ~ and 7;.„q M for SW
dynamics in [22].

At the point A4, the four-state Potts critical point (and
all along the X = Z line), our algorithm is again identi-

X)

cal with the Wolff 1C algorithm for the four-state Potts
model. Our result for z;„t ~, obtained &om the fit in
Fig. 12, is consistent with the result of Ref. [6] for SW
dynamics. This result can be added to the accumulating
evidence, indicating zs~ ——z~ ~g for d = 2.

The continuous variation of z along the AT critical line
can be explicitly seen in Figs. 11 and 12 where we plot
7 p F and 7' t, g for the five points X,. In Fig. 12 we also
plot results &om simulations at X2 using the Metropo-
lis method and the "naive" SW method described in
Sec. IIID. For the Metropolis method, we measured
a value of z;„t @ = 1.64(8), which should be compared

int, g

C
Xq

X, o

Xo

10 100

10 1 00

FIG. 9. Log-log plots of autocorrelation times zx and the
specific heat C as a function of linear lattice size L, at the
point Xq. The values of z listed in Table I are the slopes of
the fits.

FIG. 11. A log-log plot of w „~,z vs linear lattice size at the
five critical models Xo, . . . , X4. The solid lines are the linear
fits. The critical exponents z „~,@ are given in Table I.



4088 SHAI WISEMAN AND EYTAN DOMANY

X& SW~

CO

P — X Met~2

X~ x

Xi o

Xo

X,.

FIG. 12. Log-log plots of 7; g, E as a function of linear lattice
size L, at all five points X,, i = 0, . . . , 4. The continuous
variation of the slope z along the AT critical line is easily
seen. Metropolis results and "naive" SW results for Xq are
also plotted.

FIG. 13. Comparison of z and — at the Ave points
X,, i = 0, . . . , 4. The line denotes the exact value of —,
while our estimated values for the Gve models are denoted
by full circles. Values of z;„z,~ (z,„p z) are denoted by empty
circles (crosses).

with z;„q @ = 0.542(8) using our method. The naive
SW method almost froze the whole lattice, into a sin-
gle cluster, the size of which was almost independent
of the lattice size L. For example, the average cluster
size for I = 32 was &, ——0.868(2), as compared with&) =
() 0.481(1) using our algorithm. We found deter-
mination of w for the naive SW method of lattice sizes
I ) 32 so time consuming that it was impractical. The
advantage of our method is clearly demonstrated. The
three methods yielded the same results for the static ob-
servables (within errors).

The main question we wish to answer is whether the
Li-Sokal bound is fulfilled and whether it is sharp. In
Fig. 13 we compare, for the five points X, , i = 0, . . . , 4,
the exact values of —and our estimated values of —,
z;„q ~, and z,„~~. We see that the rise of our estimated
values of z follows that of —,&om the decoupled Ising
point Xo to the four-state Potts point X4. Except for
the point X4 the Li-Sokal bound is fulfilled with respect
to ( —),„,q. The anomalously low values for z at X4 are
probably caused by the multiplicative logarithmic cor-
rection for C described in the discussion of the specific-
heat results. This explanation has been suggested by Li
and Sokal [6] to explain the low value of zsw for this
model. From Table I we see that z & ( —)„q; q, with
only one exception at the point Ai (see Fig. 9). The
fact that z;„q x & ( —)est;~~q, could be due to a diKer-
ence in the finite-size corrections or in the corrections to
scaling. w;„& ~ is probably less influenced by one or both
of these two factors, in comparison with the large diKer-
ence between ( —),q; t and ( —),„«q. At the point As,
where the difFerence between ( —„)est;~st, and ( —„),„s,t is
the smallest, no anomalies in the Li-Sokal bound occur
(see Fig. 10).

We conclude that the Li-Sokal bound is fulfilled in
a moderately sharp manner. The smallest z (which is
z;„t x) fulfills ( —)„t; t, & z;„t x & (—)„t; t, + 0.1 (not
including the anomalies of the models X4 and Xq dis-
cussed above). Note that we are comparing estimated
values of z with estimated values of —. This is the cor-
rect comparison to make, assuming that w and C have
similar finite-size corrections and similar corrections to
scaling.

V. SUMMARY AND DISCUSSION

The correct identification of the basic excitations of the
model lead, along with the guidelines of a general scheme
for cluster algorithms, to the construction of a cluster
algorithm for the AT model. The algorithm was shown
to be identical with the one obtained by embedding Ising
spins into the AT model. Our algorithm is suitable for
spatially varying coupling constants under the restriction
I '~ & K"'~, K"'~ everywhere on the lattice. We are
currently carrying out intensive simulations of a random-
bond version of the AT model.

The dynamical behavior of the cluster algorithm was
examined on the AT critical line. Critical slowing down of
the algorithin (0 & z & 1.0) was found to be significantly
smaller than that of the standard Metropolis method. A
continuous variation of the dynamical exponent z along
the AT critical line was seen, along with continuous varia-
tion of the static exponent —.The Li-Sokal bound z & —,
that was proved only for q-state Potts models with SW
dynamics, is satisfied for the AT model with single-cluster
dynamics. The bound is moderately sharp. Another re-
sult is z~ ~g

——zs~ for the four-state Potts model, which
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can be added. to the accumulating results indicating that
in two dimensions z~~~~ ——zs~ .
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APPENDIX: ISING EMBEDDING

Our algorithm can also be seen from a totally diferent
point of view; as an example of an embedding algorithm
[9,11]. The main idea is to embed into the AT model an
Ising model of space-dependent couplings J~A, and sim-
ulate it using the SW or WolK procedure for the Ising
model. To be explicit, consider the Hamiltonian (1), and
take the w variables as Axed, so we can write

'R ='Rg+'Rz ———) (K +LE,r, )oj,cr,

(k,&)

(Al)

'R2 represented by the second sum is a constant, and
remembering that we chose L ( K,K, 'Rq is a ferro-
magnetic Ising model in the o. variables with couplings
J~I, ——K~ + L7I,&~. Simulating this Ising model with any
procedure that will maintain detailed balance with re-
spect to 'R~ and will not change the value of 'R2 will also
maintain detailed balance with respect to Q. So we can
use, for example, the SW or WolK procedure for the Ising
model, explained in Sec. IIIB. This by itself will main-
tain detailed balance but will not be ergodic since the 7-

variables will not be updated. Obviously to update the
v variables the same process should be repeated, holding
the o variables Axed and simulating an Ising Hamiltonian
with the w variables. To summarize, a possible procedure
would go as follows: Choose at random whether to em-

bed into the AT Hamiltonian an Ising Hamiltonian in
the o spins or in the w spins. Pick a random site in the
lattice, grow a cluster of 0 or ~ spins using the WolfF
(1C) procedure using the Ising Hamiltonian and flip it.
As we will now show, this process (we will call it IE, de-
noting Ising embedding) is exactly equivalent to the AT
algorithm (ATA) we suggested in Sec. III C .

A first argument which is really suKcient goes as fol-
lows. Suppose we perform the IE freeze-delete scheme for
the a spins for the whole lattice, viewing the w spins as
constant. We could say we have generated a new Hamil-
tonian of noninteracting clusters of o spins and which
assigns infinite energy to any configuration which divers
from the current configuration of 7 spins. Now suppose
we perform the ATA freeze-delete scheme for the whole
lattice. Then we get a new Hamiltonian of noninteract-
ing clusters of 0 spins and of w spins, but if at this stage
we decide to flip only 0 spins, then in practice we have
assigned infinite energy to any configuration which dif-
fers &om the current configuration of w spins. In practice
we flip only one cluster of the o. spins, so what we do is
identical to the Wolff (1C) version of the IE. Since both
processes maintain detailed balance using the same new
Hamiltonian they must do so using the same probabil-
ities (the general scheme in Sec. IIIB shows a one to
one correspondence between probabilities and the new
Hamiltonian), which completes our argument that the
two methods are actually identical.

One can, of course, check that the probabilities of the
two procedures are the same. For example, denote the
probability to delete a bond between 0 spins in ATA as
P& (u) for uq, for example, from Fig. 3:

PATA( ) P ( ) + Er Er —zlK—+I )

(A2)

Now with the Ising embedding algorithm, according to

PIE ( ) —(Kcr +I 7 Ie r& ) (g ge O
& +1)

a, (~) —~ )

so P& (uq) = Pd (uq). This check can be carried out
for all u;.
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