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We investigate the re8ection coefficient of a fractal layer in the small-wavelength limit. Taking
the layer structure simulated by a devil's staircase on the Cantor support as an example, we B.nd
numerically that the decay of the refiection coefficient with the wave number can be approximated
by a power law. We explain this phenomenon analytically based on the two-scale method.

PACS number(s): 03.40.Kf, 02.70.—c

I. INTRODUCTION

One of the main results in the scattering theory is that
the reflection coefFicient of a layer, whose permittivity is
described by an infinitely difFerentiable function, expo-
nentially goes to zero with the wave number (see, e.g. ,

Refs. [1,2], and also Ref. [3] related to reflectionless po-
tentials). However, existence of boundaries, where the
function describing the medium properties is not contin-
uous, can give rise to the so-called resonance efFects, and
in this case, the reflection coefIicient does not go to zero
with the wave number (see, e.g. , Ref. [4]).

It is interesting to consider an intermediate case in
which the permittivity function is continuous, but its first
derivative has an infinite number of discontinuous points.
An example of such a function is given by the fractal
devil's staircase [5, 6]. The aim of the present paper is to
investigate the behavior of the reflection coefIicient of a
layer described by such a fractal function.

There are at least two reasons why this problem is in-
teresting. First, an extent transition between two me-
dia having difFerent dielectric permittivities may have
irregular structure and a rather rich spectrum of inho-
mogeneities. The classical way to simulate such transi-
tions is to describe them by random functions [7]. Mean-
while, there is a great number of processes characterized
by structures with power dependent spectra and frac-
tal geometry configuration [8]. In this sense, introduc-
ing models in which the media is described by difFerent
fractal function can essentially diversify physical systems
that may also be interesting to experimentalists. Second,
most of the previous considerations on wave interaction
with one-dimensional fractal objects [9—13] deal with the
scattering caused by layer "boundaries. " In that case the
reQection coefIicients are mainly determined by a struc-
ture, whose characteristic scales are much larger than the
length of the incident wave. In other words, the resonant
interaction was d.iscussed. As it has been shown in Refs.
[11,13], the relative contribution of small-scale structure
to the scattering data (in comparison with the large-scale
one) grows either with the slab length or with the wave
number. The model in the present paper allows us to
exclude "bound. ary" efFects and to concentrate only on
the small-scale scattering.

II. THE MODEL AND NUMERICAL RESULTS

Let us consider the one-dimensional Helmholtz equa-
tion,

d2@
+ k [1 —el, (x)]g = 0, (1)

where k plays the role of the wave number, and el. (x) is
defined by an integral,

el, (x) = t ~(&)« (2)

The function yl. (() is assumed to be a multifractal based
on the Cantor support, and it is constructed in the fol-
lowing way [6]. Starting with a function pp(x) = pp

At the first sight, there is not an evident small param-
eter in the problem of the scattering by a fractal layer,
if the strength of inhomogeneities is not assumed to be
rather small a priori. However, as it has been shown
in Refs. [11, 13] an efFective small parameter related to
a small wavelength can be introduced if the wavelength
is small enough. Thus it is possible to employ the two-
scale method to construct some perturbation (or asymp-
totic) expansion for the scattering data. In this way, we
can investigate the properties of the scattering by fractal
structures in the small wavelength limit.

In the case of resonant scattering, the leading order of
the expansion mentioned above is determined by an effec-
tive large-scale component of inhomogeneities. However,
the dimension of the fractal depends on a small-scale part
if the fractal is generated by the infinite splitting of a
structure [5, 6], thus the results of the resonant scatter-
ing contain no information about fractal dimension. To
obtain such information we must take into account the
next order of the expansion.

The paper is organized as follows. In Sec. II we give
a brief description of the model under consideration and
present our numerical results of the reflection coefIicients
for difFerent parameters of the fractal layer. Explanation
of the behavior of the reflection coefIicient on the basis
of two parameter expansion is given in Sec. III. Finally
in Sec. IV we discuss the numerical and the analytical
outcomes, and draw the conclusions.
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FIG. 1. In(~r
~ ) vs 1n(k), where r is the reffection coeffi-

cient and k is the wave number. Dashed line has the slope,
—P, given by formula (23). Here p, p —0.05.

FIG. 2. The same as in Fig. 1, but po ——0.07.

(=const) for x E [0, L] and po(x) = 0 for x I" [0, L],
we put p, (x) equal to zero in the middle third interval
(L/3, 2L/3), and we increase the value of p(x) in the rest
intervals to —po. Then we obtain a function p~(x) =

2 po
for x C [0, L/3] U [2L/3, L] and p'(x) = 0 otherwise. In
the second step we repeat the same process with each of
the intervals [O, L/3] and [2L/3, L]. Then pg(x) is the
limit of the infinite number of these steps. The pictures
of both e~(x) and p~(x) related to the model under dis-
cussion can be found, for instance, in the book by Feder

I

[6]. Here we point out that e~(x) = 0 for x & 0 and
e~(x) = e~ = poL for x ) L, i.e. , L plays a role of a layer
width.

We only consider the case e~(x) & 1 (i.e. , with no
turning points), which requires the condition

ppL ( 1.

First we study the Eq. (1) numerically. In order to get
an accurate value of the reflection coefficient we use the
following representation:

[C'(L)/kg]2+ C2(L) + k2S(L) 2+ (k/k~) 2[S'(L)]2 —2k/kg
[C'(L)/kz]2+ C (L) + k2S(L) + (k/kL, ) [S'(L)] + 2k/kg' (4)

where kg = k+1 —eg, C(x) and S(x) being solutions of
the equation (1) with "initial" condition C(0) = S'(0) =
1 and C'(O) = S(O) = O.

Because we are interested in the small wavelength limit
(k -+ oo, ) we must keep the smallest scale of a fractal
much less than the wavelength (otherwise, the conven-
tional resonant scattering will play the main role which
has no relation with the scattering by a fractal). This
means that l~ = L/3 «k ~, N being the number of
stages of the fractal generation [note that l~ is the width
of an interval in which p~(x) g 0]. In the numerical sim-
ulations we take k from 1 to 100 with a step size bk = 0.1,
and we actually take L = 10 and % = 12 which satis-

fies the condition l~2 ——10/3 1.88 x 10 && 0.01.
We observe that the reflection coefficient will not change
(within the acceptable accuracy) if a larger number of
stages is used.

The numerical results are presented in Figs. 1, 2, and 3
for p = 0.05, 0.07, 0.09, respectively. It is observed that
the reflection coefficient does not decay in accordance
with an exponential law; instead we find that the decay
of the upper bound value of the reflection coefficient may
be characterized by a power law. This fact does not de-
pend on the value pp as the slopes of the dashed lines
are the same for all figures. The small-scale structures
of the curves look rather irregular, but they appear quite
similar to each other, especially in the neighborhood of
the abscissa origin. The change of the value pp only leads
qualitatively to changes in the absolute value of the re-
flection coefficient and in the location of the transparency
windows (i.e. , regions where r is vanishingly small). "Fre-
quency" of the last ones grows with k.

III. ANALYTICAL ESTIMATES
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FIG. 3. The same as in Fig. 1, but po = 0.09.

Now we will try to explain the phenomena observed
in the numerical calculation of the preceding section. To
accomplish this we use the idea of the two-scale method
[11,13].

Let us introduce an average permittivity,
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(«(*)) = dz b„(x —z) «(z), (5) A«(x) = +v'2'
—e"*~(q)
g

(12)

where the function b„(x) is given by

1 sin rx
7r x (6)

where (see, e.g. , [14])

dx e'i*p(x)

It is clear that lim„~ 8„(x) + b(x), where b(x) is the
Dirac b. The physical meaning of such averaging is also
evident. It is easy to verify that («(x)) has the same
spectrum as «(x) but with cutofF in the points +K In.
other words, the averaging (5) corresponds to the aver-
aging over all spatial scales less than K . Let us also
assume that v = k~A~ and And possible values of a
constant exponent P such that the requirement

d(«(x)) « k(1 —«)
GX

(7)

is satisfied when k —+ oo and A is a parameter of unity
order. The sense of the requirement (7) is also clear. In
fact, in the absence of the small-scale part,

&~I, (x) = er, (x) —(el, (x))

of the permittivity, the contribution of («(x)) to the
scattering data can be described within the framework
of the WKB expansion.

We define no through the relation K I, = L/3 ',
then b„(x) is localized in the region [

—v i, K i] which is
much smaller than L, so we get the estimation

L
dz pl. (z)8„(z —x)

dz p. (z) = 0 ( ) . (9)

Since 2 ' (vL/2) with n = i's 0.63 (note that a
is just the fractal dimension of the middle third Cantor
set [5]), we finally obtain the relation,

= O(, (kL)~l l '), (10)

where yi ——«2 (&)0 ill il does not depend on k.
Since we are interested in the limit k —+ oo, we can

conclude that the requirement (7) is satisfied if

1+P(n —1) ) 0.

Thus we have determined a small parameter of the
problem under consideration: it is related to the large
scales and can be defined as vi @ ~

~'dl l~
~. This pa-

rameter will be modified later in order to achieve the de-
sired accuracy in our estimation.

On the other hand, the approach based on two-scale
method has sense only if the second small parameter ex-
ists. It must be defined through a small-scale part of
the permittivity. Now we rewrite A«(x) through the
spectrum of the inhomogeneities,

iqL /2

$2vr n=1

&qLI

) (13)

Taking into account that the oscillating terms in the in-
tegrand of Eq. (12) do not have stationary phase points,
the integral in the right-hand side of Eq. (12) can be
estimated for K m oo by integration by parts. Straight-
forward algebra yields

Ae(x) = O(y2(kL) ~) = y2v2, (14)

where y2 «(L/A)~ is considered as a constant.
Thus the second small parameter exists if P ) 0 and
is given by Eq. (14).

Suppose that @(x) represents either C(x) or S(x) de-
fined in Eq. (4). As far as we have two efFective small
parameters that are difFerent in general, we can search
for a solution of the Helmholtz equation using the expan-
sion of g(x) with respect to the two parameters. Since
the main order of the permittivity is given by («(x)) it
is natural to provide the expansion of the solution near
go(x) that solves the equation

d2
+ k [1 —(«(x))]@0—0. (15)

Co (x) = q
' (x)cos[kS(0, x)],

So (x) = k 'q (x)sin[kS(0, x)],

with

(16)

S(0, x) = dz gl —(el, (z) ).

For the estimation of the next order we have to use the
relation

In other words we use the expansion g(x) = @o(x) +
gi(x), where @i(x) is caused by A«(x).

Though («(x)) is a slowly varying function in com-
parison with the wavelength [see Eq. (7)], rigorous math-
ematical results valid for the conventional WKB approx-
imation [1, 2] are not valid here due to dependence of
(«(x)) on the wave number. The parameter vi cannot
be used as a "uniform" parameter of the formal WKB se-
ries [1]. In particular, the derivative of the averaged per-
mittivity grows with k (but more slowly than the first
power of k). To show this, let us consider formal ex-

pansion of go(x) [go(x) = go + Qoi
l + .

] using k
as a small parameter and estimate the relation between
leading WKB term and the next one. The well-known
formulas give [1, 2]
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(i) 1 * &1 q"(z) 5 [q'(z)]'& d,
k o (8q ~ (z) 32iqs~ (z))

Let us require the integral in the right-hand side of
Eq. (19) to be much smaller than unity. For the esti-
mate of the second term in the integrand, we can use
the relation (10). The first term in the integrand can be
shown to be much smaller than the second one (this fact
is evident since q" (x) = d(pL, (x))/dx contains rapidly
oscillating terms due to b„(x) and, hence, integration by
parts gives additional smallness). Finally, the first order
contribution is estimated as follows:

(20)

(22)

because the insertion of (16) into Eq. (4) gives a value of
order vi((( v2). For arbitrary P, the small parameters v2
and vz may have arbitrary relations, so we must hold the
lowest term in the right-hand side of Eq. (22). Generally
speaking we have to evaluate exactly the order of the
corresponding term and the next one due to the lack of a
uniformly small parameter. Nevertheless, when both the
parameters are of the same order, i.e.,

= 0.575, (23)

the estimate can be obtained in a general form [see
Eqs. (14) and (20)]. From the relation (22) we can get
the estimate for the reHection coeKcient,

I
I' = o((A:L)" " ) = o((kL) ).

The associated slope is presented in Figs. 1, 2, and 3
where we can observe good agreement between the nu-
merical results and the analytical predictions. The upper
bound of all graphs can be approximated by a line with
the slope, —P = —0.575, that is independent of ye.

IV. CONCLUSION

We have found that the upper bound of the reflec-
tion coef6cient of a fractal layer decays with the wave
number in accordance with a power law. The small-
scale structure of the reflection coeKcient has oscilla-
tions which manifest some resonant eKects. It is unlike

where a small parameter vq is introduced. Thus the
smallness of ~gz~

)
~

is available only if

1+2P(~ —1) & 0.

The inequality (21) is stronger than (ll), and hence it is
vi (instead of vi) that should be considered as a (true)
small parameter. In this sense, the requirement (7) is
just a preliminary and necessary condition to make the
relation between the conventional WKB approximation
and two-scale expansion evident. Therefore it is suKcient
to use only two small parameters, vq and v2, in order to
apply the two-scale method.

Returning to the reHection coefficient (4), after simple
expansion one can write

the scattering data of either a layer described by a well-
diff'erentiable function (the conventional WKB approxi-
mation) or a slab described by a function having points
of discontinuity (the resonant scattering). The smooth
component of the permittivity results in intricate varia-
tions of a Held phase [see Eqs. (16)—(18)]. The physical
nature of the phenomena seems to lie in the spectrum of
the inhomogeneities which has a nonexponential decay
with wave number [Eq.(13)].

The behavior observed can be explained within the
framework of a two-scale method. By means of this
approach the reHection coefBcient can be expressed in
quadratures in a simple form. In fact, by straightfor-
ward algebra one can evaluate both the addendum gi(x)
caused by the small-scale part of the dielectric permit-
tivity and the term gz~ of the WKB approximation.
However, from the viewpoint of computations the cor-
responding expression seems not easier than the original
Helmholtz equation. In this sense, the two-scale expan-
sion needs to be modified in order to simplify the final
expressions and to get more information about the small-
scale structure of the scattering data.

Mathematical justification of the two parameter ex-
pansion is still an open question. Such an expansion is
a hybrid of the formal asymptotic WKB series (charac-
terized by a small parameter vi) and direct perturbation
expansion (with respect to v2). In principle, these two
expansions have di8'erent behavior. On the other hand,
even WKB aproximation itself is not well defined in the
sense of complex dependence of the averaged permittivity
on the wave number (see the above discussion about the
relation between v2 and vi). Nevertheless, good agree-
ment between predictions of the two-scale method and
direct numerical calculations allows us to believe that the
proposed expansion reflects the main physical properties
of scattering by a fractal layer.

Finally, we would like to point out that the present
treatment is quite general and it is also valid for a devil' s
staircase on any other fractal supports, which may not
necessarily have self-similarity property. As it follows
from our analytical estimations, the power decay of the
reflection coefficient has to be observed for a layer de-
scribed by any staircase on a fractal support. The slope
of the decay must be related to the dimension of the frac-
tal support rather than to its particular structure. Here
we would like to mention that power decay of the contri-
bution of a small-scale structure to the reflection coefB-
cient of a fractal layer described by a Weierstrass func-
tion has been reported in Ref. [11]. Thus it is believed
to be a general property of one-dimensional scattering by
fractals.
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