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We study the class of generalized Korteweg —de Vries equations derivable from the Lagrangian
L(l~p) = I 2p~pt —(Ip~) /i(1 —1) + n(qr~) (y») dz, where the usual fields u(z, t) of the gener-
alized KdV equation are defined by u(z, t) = &p (z, t). This class contains compactons, which are
solitary waves with compact support, and when l = @+2, these solutions have the feature that their
width is independent of the amplitude. We consider the Hamiltonian structure and integrability
properties of this class of KdV equations. We show that many of the properties of the solitary waves
and compactons are easily obtained using a variational method based on the principle of least action.
Using a class of trial variational functions of the form u(z, t) = A(t) exp —P(t) lz —q(t) l

we find
solitonlike solutions for all n, moving with 6xed shape and constant velocity c. We show that the
velocity, mass, and energy of the variational traveling-wave solutions are related by c = 2rEM
where r = (p+ l + 2)/(p+ 6 —l), independent of n.

PACS number(s): 52.35.Sb, 52.35.Mw, 04.20.Fy

I. INTRODUCTION

Recently, Rosenau and Hyman [1] have shown that in a
particular generalization of the Korteweg —de Vries (KdV)
equation, defined by parameters (m, n), namely

u, + (u ).+ (u")...= O [K(n, rn)],

a new form of solitary wave with compact support and
width independent of amplitude exists. For their choice
of generalized KdV equations the compactons w'ith m =
n ( 3 had the form [cos(a()]2r l i), where ( = z —ct
and for m=2, 3 they obtained

s' cos2((/4) [K(2, 2)]
(-;.)'"- (~i3) [K(3,3)]

Unlike the ordinary KdV equation, the generalized
KdV equation considered by Rosenau and Hyman was
not derivable from a Grst-order Lagrangian, except for
n = 1, and did not possess the usual conservation laws
of energy and mass that the KdV equation possessed. It
is presumed that the generalized KdV equations found
by the above authors are not completely integrable, but
instead possess only a Gnite number of conservation laws.
Because of this, we were led to consider a difFerent gen-
eralization of the KdV equation based on a first-order
Lagrangian formulation. That is, we consider

L(l p) =
l

-V*Vt —
l l

* +~(V*)"(V**)'
I
dz.

This Lagrangian leads to a generalized sequence of
KdV equations of the form

u, = u~u' '+ n[2u»~u" + 4pu" 'u~u~~

+p(p —1)u" (u ) ] [K*(l,p)], (4)

where

u(*) =
V *(*).

These equations have the same terms as the equations
considered by Rosenau and Hyman, but the relative
weights of the terms are quite different leading to the pos-
sibility that the integrability properties might be differ-
ent. [For the purposes of comparison it may be helpful to
note that their set (m, n) corresponds to our (l —1,p+1).]
The rest of the paper is organized follows: In Sec. II we
discuss some exact traveling-wave solutions to (4). In
Sec. III we derive the conservation laws and discuss the
Hamiltonian structure of these equations. In Sec. IV we
apply the time-dependent variational approach to obtain-
ing approximate solitary-wave solutions and compare the
variational solutions to the exact ones.

II. EXACT' SOLITARY WAVE
AND COMPACTON SOLUTIONS

If we assume a solution to (4) in the form of a traveling
wave:

"(* t) = f(~) = f( + t)
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one obtains for f
f'= f'f' '+~[2f"'f" +4pf" 'f'f"

+»(» —1)f" 'f"].
Integrating twice we obtain

(7)

on the interval

~(~ & 3i/2c;

elsewhere it is zero. For this compacton one finds M =
144 i/2cs/2 E 72 ~pc'r/2 so5

C f
2

—~f"f"= &.f + C'2.
14 i /' 5M

(144~2 j
We seek solutions where the integration constants C~ and
C2 are zero. This puts lower bounds on l and p: l & 1
and f"fP -+ 0, f' f" i —i 0 at edges where f ~ 0. Then
we obtain

f/2 f2—p
2

fl —p

l(l —1)

For finite f' at the edges, we must have p & 2, l ) p.
Let us now look at some special examples. (Note that

we have chosen signs so that all traveling waves have
u ) 0 and move to the left. ) The usual KdV equation
has n = 1/2, l = 3, p = 0. For that case one has the well
known soliton

Thus, apart from constants we Gnd the same functional
form for the compactons for our generalized KdV equa-
tions as those found by Rosenau and Hyman in their
different generalization of the KdV equation.

III. CONSERVATION LAWS
AND CANONICAL STRUCTURE

Equation (4) can be written in canonical form display-
ing the same Poisson bracket structure as found for the
KdV equation:

u = (3c)sech' +3c/2( (1o)

bH
u, =0 =(u, II),

bu
(2o)

We define the "mass" M via
where H is the Hamiltonian obtained &om the La-
grangian (3),

dx[u(x, t)) . [(~j) —I]dx

c = EM = (—M/24) / .
3

(12)

For this solution we find that we can express M and E
in terms of c as follows: M = 24c /, E =

5 c / so that

l
—o.(y )"((p ) dx

l(l —1)
~l —nuP(u ) dx.

l (l —1)
(22)

ui ——3ccos ((/~12), (13)

where ~(~ & i/3vr. One finds M =
4 7ri/3c2, E = —v 3vrcs

so that

(27~~3/
(14)

There is another compacton solution with p = 2, o. = 3,

The case l = p+ 2 is the case relevant for compactons
whose width is independent of the velocity c. For p = 1,
n = 1/2 one obtains the compacton solution

By the usual arguments [2] this is consistent with a
Poisson bracket structure

(u(x), u(y)) = 8 8(2: —y).

Let us now show that we have a system of equations
which have exactly the same erst three conservation laws
as the ordinary KdV equation, namely the area, mass,
and energy. This is unlike the equations studied by Rose-
nau and Hyman that did not conserve the mass and en-

ergy, but instead had different conserved quantities.
We have

u2 = i/6c cos((/6)

with ~(~ & 37r. For this compacton, one finds M = 18vrc,
2E = 2' so that

so that the "area" under u(x, t) is conserved:

ux, t dx—= Hp.

c=4EM M
18' (16) Multiplying by u(x, t) we find

For the values, l = 3, p = 2 there is a compacton whose
width depends on the velocity. Choosing n = 1/4 we find 0,

/

—
/

=0 —+a.((p —l)u"u +2u" u
(u2 ) u'

2 +1

u = 3c —(( )/6 (17) (26)
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which leads to the conservation of mass

(I/2) f u*(z, t)dx = (&/2)M—:Hi . (27)

bH2 bHi
(H, [u], H, [u]) = dxdy

' (u(*),u(y) jp
hu x hu y

(34)

For the KdV equation Hi was a second Hamiltonian un-
der a second Poisson bracket structure. From Lagrange's
equations we immediately get a third conservation law,
the energy

—nu" (u ) dx = Hg.
l / —1

(28)

The energy provided the first Poisson bracket structure:
Considering the mass as a second Hamiltonian, the KdV
equation has a second Poisson bracket structure using
Hi. Assuming

bHi
~~ = (~,&i) = f du(~(*)~(u))i,

bu(y)
' (29)

one finds for the KdV equation that

(u(*) u(y))~ =
l

D'+ -(Du+uD) lb(x —y) (3o)
rl

where D = t9 . With this assumed Poisson bracket struc-
ture one again recovers the KdV equation. This Poisson
bracket structure is identical to the Virasoro algebra with
a specific central charge. This fact enables one to show
that there is an infinite number of conservation laws in
the KdV equation and it is an exactly integrable system
[2].

For the generalized KdV equations we find that we can
write

For the usual bracket structure (23) we can rewrite
(34) as

rbHg 5
(H~[u] H~lul) = dxu~(x)

I

hlbux y

1= —(9g dxu (x, t) = O.
2

(35)

For the second bracket structure (32) we have instead

rhHgl
(Hg [u], Hg [u])g

—— dxut (x) lhux )
bHg r bHp )

bu(x)
*

lbu(x) i
CK3 2

2
* lbu(x))

(36)

". (37)
bu(x)

Starting with Ho defined by (25) we get the candidate
Hamiltonian:

Encouraged by this result we have attempted to repeat
the induction proof of the existence of an infinite number
of conservation laws, assuming as in the KdV equation
that one has the conservation laws obey the recursion
relations:

~

~(D'u~D+ Du~D') + (Du' '+ -u'-'D-)
~

r 1

l l ) bu(x)

so that there is a chance for a second Harniltonian if the
Jacobi identity is satisfied. One can postulate that the
second Poisson bracket structure is given by

l —1(x t)
(I, —1)

instead of (27). If we now ask if this is conserved by
considering the equation

(u(x), u(y))g —— a(D u"D+ Du"D~)
= (Hg, Hg) (39)

+ (Du' + u' D—) ~h(x —y). (32)

using the first Poisson bracket structure, we find that the
right hand side of (39) is not a total divergence unless
l = 3. For / = 3 one has

So we need to show for what I,, p this bracket structure
obeys the Jacobi identity, where the bracket is defined by

bE bGP'[ ] G[1) = d*d „((*) ( )) „„(33)
One can show immediately that the Hamiltonians Hz and
H~ commute using either Poisson Bracket structure (23)
or (32).

We have that

~

n(D u~D+ Du"D ) + —(Du+ uD)
i

r 2 1 SHE

l 3 ) hu(x)

=D '. (4O)
hu(x)

However, if we iterate one more time (with l = 3) we
obtain

~

o/(D u"D+ Du"D ) + —(Du+ uD)
~

= D&s(x)
r 2 1 bHg

3 y hu(x)
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and we find by explicit construction that Es(x) is not
the variational derivative of a local Hamiltonian unless
p = 0. Thus this bi-Hamiltonian method of finding an
infinite number of conservation laws only works for the
original Kdv equation. We surmise that (32) is not a
valid bracket structure and that

CII[u] O'Iu] G[u]))+ (G[u] %[u] +[ul))

I' = Ldt, (43)

where L is given by (3).
Just as we did in our study of the KdV equation we

choose a trial wave function of the form

The starting point for the variational calculation is the
action

+(+[ ] 4&[ ] ~[ ]))= 0 (42)
u„(x, t) = A(t) exp [

—P(t) [x —q(t) i
"], (44)

is not satisfied for the postulated second bracket. Thus
we have not succeeded in showing that these alternative
equations are exactly integrable, and we are in the same
situation, in spite of having a erst-order Lagrangian, as
for the generalized KdV equations of Rosenau and Hy-
man [1].

We have not as yet performed numerical simulations
of the scattering of our alternative compacton solutions.
For Rosenau and Hyman such numerical experiments
produced behavior very similar to, but not exactly the
same as, that observed in completely integrable systems,
namely stability and preservation of shape. They find
that elastic collisions are accompanied by the production
of low amplitude compacton-anticompacton pairs [1].

IV. VARIATIONAL APPROACH

Our time-dependent variational approach for studying
solitary waves is related to Dirac's variational approach
to the Schrodinger equation [5,6]. In our previous work
[3,4], we introduced a post-Gaussian variational approxi-
mation, a continuous family of trial variational functions
more general than Gaussians, which can still be treated
analytically. Assuming a variational ansatz of the form

u(x, t) = A(t) exp P(t) ~x —q—(t)~, we vill extrem-

ize the e8'ective action for the trial wave functional and
determine the classical dynamics for the variational pa-
rameters. We will find that for all (I,p) the dynamics
of the variational parameters lead to solitary waves mov-
ing with constant velocity and constant amplitude. For
the special case of / = p+ 2 we And immediately that
the width of the soliton is independent of the amplitude,
and velocity. Correct functional relations between en-
ergy, mass, amplitude, and velocity are obtained very
quickly from the variational method, although one does
not find that the l = p+ 2 variational solitons have com-
pact support. We will And that most of the properties
of the single "soliton" solutions to these equations can
be obtained by using this very simple trial wave function
ansatz and extremizing the action.

where n is an arbitrary continuous, real parameter.
The variational parameters have a simple interpreta-

tion in terms of expectation values with respect to the
"probability"

~( t)
[u-(* t)]'

M(t)
(45)

where the mass M is defined as above

[u„(x,t)] dx. (46)

M 1/2 (2P) 1/4n

) - i/2 '

21.
~

—+11(2n

The inverse width P is related to

1
G - —= (Ix —q(t) I'") =

4n (4S)

Following our approach in [4], we find that the action
for the trial wave function (44) is given by

I'(q, P, M, n) =
~

—-Mq —C, (n)Pl'-')/'"M'/'
2

+~ ( )Ml+P/2P(P+4)/4n

Li (q, q, M, P)dt, (49)

where

(Here we allow M to be a function of t, even though M
is conserved. )

Since (x —q(t)) = 0, q(t) = (x). From (46) and (44)
we have

TABLE I. Comparison of variational and exact solutions.

0
2
1
2

1/2
1/4
1/2

0.877
1.423
1.154
1.283

Evar
0.035999
0.0803831
0.054888
0.00436284

@exact
0.0360562
0.0810735
0.055002
0.00442097

&var

0.119995
0.225073
0.164666
0.017451

~exact
0.120187
0.227006
0.165006
0.0176839
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1 /'2l )
(

~
- (2—l)/2

2rl
(2n )

(50)

C.(n) = 4~n(2)(P+')/'"(2+ &)
—:--' r (2 ——,')

) - 1+p/2
2r

I

—+1l
$2n )

3 t w

5-

We eliminate the variable of constraint P (using Sr/bP =
0) and find

2-

5-
p [d( )]4~ M2n(p+2 —l)/(l —p—6) (51)

where
5-

From (51) we see that when

/=p+2,

(52)
—7 5 —5 —2. 5

I

2.5 x

the width of the soliton P does not depend on M and
thus is independent of the amplitude or velocity. This
special case is precisely the case when the exact solution
is a compacton.

We now eliminate P in favor of M, and symmetrizing
the Lagrangian (3) we obtain [7]

—7 x

1
qM —jM —H M,

4
(54) -0 005"

where

H(M) = (C di' i —C~d~~+ i) M", (55)

—0 01-

M=0
M=0

:- M = const,
;- P = const, (56)

where r = (@+1+2)/(p+ 6 —I). Extremizing the action
yields

FIG. 1. (a) u, with n = 1.283 and u,„,q for M = 1 given
by Eq. (15), and (b) Au = u, —u,„,&, as a function of x
for the case / = 4, p = 2, n = 3.

be related to the conserved energy via

and
q = —c = —2rEM (59)

27, Cy d(l —2) +2d~~+4) Mr —1 (57)

as well as a conserved energy

E= C,d'-'~ —C2d~+' (58)

Thus the velocity of the solitary wave is constant and can
I

This is precisely the form we obtained for the exact so-
lutions.

We have not yet extremized the action with respect
to the variational parameter n, which is equivalent to
extremizing the energy with respect to n. We perform
this extremization graphically for each value of l, , p. The
explicit form of the trial wave function is

) - —i/2

„(,t) = d[, p, l]M'«"+' "2' " 2r
l

1-+-
2n)

+'-'
l

+« —* l'" (60)

where d is given by (52).
Now let us see how these trial wave functions and the

energy and velocity compare with the exact answers for
special cases. Since we explicitly know the M dependence
of the answer, we can set M=—1 as our normalization for

I

both the variational and exact solitons.
In the Table I we suinmarize results for the four (I,, p)

cases described in Sec. II. For each case we list /, p, o, ,
the n value that extremizes the energy (or action), and
compare the variational and exact values of the energy
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and velocity (with M = 1).
In Figs. 1(a) and 1(b) we illustrate the global accuracy

of our variational solution by displaying the exact and
variational solutions for the l = 4, p = 2 case. (Other
cases look very similar. ) We note that the global accuracy
is a few percent, except near the place where the true
compacton goes to zero.
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