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Dynamics of the equilibrium electrons in a helical-wiggler free-electron
laser with reversed guide field
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The dynamical behavior of a relativistic electron governed by the combination of a helical-wiggler
magnetic field with a reversed guide magnetic field is investigated by generating Poincare surface-of-
section maps. The Hamiltonian description is derived in detail. It is found that the helical orbits are al-

ways stable. Computer simulation shows that the separatrix of the closed and open curves in phase por-
trait in this case is quite different from the one in the case of a positive guide field. An interesting effect
numerically predicated is that increasing the self-field narrows the spread of longitudinal momentum.
No chaos appears for the experimental parameters of Conde and Bekefi [Phys. Rev. Lett. 67, 3082
(1991i],although the self-fields destroy the integrability of the motion.

PACS number(s): 41.60.Cr, 52.75.Ms, 42.52.+x, 05.45.+b

I. INTRODUCTION

The free-electron laser (FEL) has been an active area of
research due to its attractive properties, such as high
efficiency, tunable frequency from microwave to x ray,
and powerful output. High gain in free-electron-laser
operation often requires intense beam current and an axi-
al guide magnetic field. The dynamical behavior of the
equilibrium electrons in a FEL is of importance because
it not only is the basis of theoretical analysis but also
practically determines whether the electron beam can be
transported and efhciently interact with the electromag-
netic wave. The helical orbits, as a special case, were first
investigated by Frieland [1] in terms of the one-
dimensional wiggler model. Then the calculation was ex-
tended to the three-dimensional wiggler by Freund,
Johnston, and Sprangle [2], and recently the electrostatic
and magnetostatic self-fields were taken into account by
Zhang and Zhang [3,4]. In practice, however, not all
equilibrium electrons have helical orbits. We have shown
that the off-axis electrons cannot have helical orbits [5].
Considering that the self-fields destroy the integrability of
the motion, several authors analyzed the chaotic behavior
of the equilibrium electrons by generating Pioncare
surface-of-section maps [6—10]. Upon improving the ac-
curacy of numerical iterations, however, we found that
the self-field-induced chaotic behavior seems not to be as
serious as it was indicated before, and that, on the con-
trary, some open curves in the phase portrait become
closed with increasing self-fields [11].

A recent experiment was reported by Conde and Bekefi
[12], where the efficiency was dramatically raised from
2% up to 27% by using a reversed guide magnetic field.
Several authors [13,14] attempted to give a theoretical ex-
planation. In our opinion, the efIiciency enhancement
may result from two parts: one is that the quality of the

electron beam may be improved by a reversed guide field;
the other is that there may be a new interaction mecha-
nism between the beam and rf fields. We had a guess-
work that the self-fields of the e beam may be a substan-
tial factor in this kind of device [15]. As is well known,
the self-fields of the e beam contain a dc part and a rf
part. The latter is referred to as a space-charge wave.
Recently, Freund and Ganguly [14] gave a numerical
simulation by taking the lowest-order Gould-Trivelpiece
mode into account. In the present paper we consider the
effect of dc self-fields of the e beam by generating Poin-
care maps. Our results will confirm the improvement of
the beam quality. We concentrate the emphasis on the
comparison with a positive guide field [6], and so a
simplified model is employed when we give our Hamil-
tonian description.

We organize this paper as follows. In Sec. II a detailed
Hamiltonian description is given for the equilibrium elec-
trons in a free-electron laser with a reversed guide field,
where the electrostatic and magnetostatic self-fields are
taken into account. In Sec. III the phase portrait and
helical orbits in the case of an integrable limit are ana-
lyzed. The effect of self-fields on the nonhelical orbits is
numerically simulated by generating Poincare surface-
of-section maps in Sec. IV. Finally, brief conclusions are
drawn in Sec. V.

II. HAMILTONIAN DESCRIPTION AND
NUMERICAL CALCULATION METHOD

A. Equations of motion

We consider a relativistic electron beam drifting in the
field configuration consisting of a helical-wiggler magnet-
ic field
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B = —B (e cosk z+e sink z),
and a reversed guide magnetic field

B=—Be00z~ (2)

where Q, =eBO/mc represents the nonrelativistic cyclo-
tron frequency. The Hamiltonian can be rewritten as

8(y, g, P,P~, P, .)= [1+a +2Q,P

where B and B0 are constant amplitudes, k is the
wiggler wave number, and e, e, and e, are the unit vec-
tors in x, y, and z directions, respectively. Assume that
the solid electron beam is cylindrical with radius rb, axial
velocity Ube„and uniform density nb. Within the beam
the electrostatic and magnetostatic self-fields can be ex-
pressed as [16]

where

—2a +2Q, P~siny

+(P, +P P~+—pbbs, ) ]'i —4,

and

E, = (m—~~b/2e)(xex+ye )

B, =(mco»bPb/2e)(ye„— xe ),

(3)

(4)

4, (y, p, P,P~)=2eQ, [ P +P~ 2)/ P—Pepsin(y+P)]

(16)

and

where —e and m are the electron charge and rest mass,
respectively, co~b =(4me nI, /m)'~ is the nonrelativistic
plasma frequency, and pb =Ub/c is the normalized beam
velocity divided by the light speed in vacuum c. The
Hamiltonian of a test electron within the beam is

@=co /4Q

The dimensionless parameter e characterizes the strength
of self-fields compared to the guide field. All the quanti-
ties are normalized by

H=[(cP+e A) +m c ]' —e4,
—:ymc —eN, ,

Q,
7

CO b
COpb-

c w

e@,
mc

where

A= Boxe»—+A (e„cosk z+e»sink z)+Pb@,e,

is the vector potential,

(6)

eA
a

mc

k P@P
mc

P,' k P
mc

' f' mc

H z'=k z' .
mc

2P

mQ,

' 1/2

cos(y —k„z')

C&, =(mco b/4e)(x +y )

is the scalar potential,

y=[1+(p/mc) ]'~

is the relativistic energy factor, p=P+e A/c is the
mechanical momentum, and P stands for the canonical
momentum. Assuming Bo&0, we perform the canonical
transformation (x,y, z, P,P,P, )~(y, g, z', P+, P&,P, ) as
follows:

P,.=P,.0=const,

8(y, f,P~, P&,P, )=Do=const . (20)

Consequently, the equations of motion become

It should be pointed out that although the above model is
similar to the one in the case of a positive guide field [6],
the Hamiltonian and the canonical transformation are
different from each other.

Since the Hamiltonian 8(y, g, P~, P&, P, ) does not ex-
plicitly contain z and time t, we immediately obtain the
constants of motion

Z Z

1/2
2P~

mQ,
1/2

sin(g+k z'),

cos(1(+k z')

2P

mQ,

1/2

sin(y —k z'), (10)

. 1/2P]—2eQ, 1—
P

=f, (y, g,P,P~, P,.),

sin(y+ 1(j)

dP a
"t/2Q, P cosy

p, Q, a+ 1 — sing
d7 P P +2Q P

1 —
pb'y.

(21)

P„=—+2 Qm, P sin(y —k z'),
P» = —+2mQ, Pepsin(@+k z'),
P, =P, +k P —k P~,

(12)

(13)

(14) =fz(y, Q, P~, P~, P, .), (22)

4eQ, +P Pecos(y—+P) 1 Pb-
y
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—2eQ, 1—
dv y

. 1j2P
sin(p+ P)

P~

~ is negative in the iteration, one should use the following
forms instead of Eqs. (26)—(29):

X 1 —
Pb'y.

—:f3 (q), p, P,P~,P, ),
dPy Pz

4eA—,"(/ P Pecos(p+P) 1 Pb-
d7 'y.

f4( p, g—,P,P~, P,.),
where ~=ck„t is the normalized time.

(23)

(24)

dip

f~
'

dP,
f3

'

dP'

dP] f4
f3

'

B. Numerical calculation method

dq fi
f3

'

dP

dg

(26)

(27)

It is worthwhile to note that the normalized mechani-
cal momentum defined by

p, =P, +P~ P~+pb—C&, ,

the relativistic energy factor y, and the normalized scalar
potential 4, are functions of the canonical variables y, it,
P, P&, and P, Substituting Eq. (19) into (20), we can
easily find that among the four variables q&, g, P, and

P&, only three are independent and one of them must be
dependent, say, P&=P&(p, g, P ). In principle therefore
the problem can be solved by integrating these three
differential equations, i.e., Eqs. (21)—(23), plus two alge-
braic equations (19) and (20). In this way, however, no
invariant can be used to monitor the accuracy of itera-
tions when we numerically integrate Eqs. (21)—(23). So
we prefer to lay Eq. (19) aside and use the four differential
equations, i.e., Eqs. (21)—(24), plus algebraic equation
(20). That is, we iterate y, P, P, and P& by numerically
integrating Eqs. (21)—(24); then we derive P, . by substitut-
ing p, g, P, and P& into Eq. (20). For each step of the
iterations we compare P,. with its initial value P p in
terms of Eq. (19). The smaller is the value of (P, , —P,.o),
the more accurate are the numerical iterations. Poincare
surface-of-section maps can be generated for /=0,
mod(2m. ). Furthermore, in order to ensure that the plots
of the Poincare maps exactly correspond to the sections
of /=0, mod(2ir), we rewrite Eqs. (21)—(24) as
dependent forms:

where 1t'= —g.
In this paper numerical integrating is programmed in

FORTRAN77 computer language with double precision by
using the Runge-Kutta method of order four. Calcula-
tions are carried out on a microcomputer (AST 386/33)
with a mathematical co-processor. Similar to the situa-
tion of a positive guide field [6], Poincare surface-of-
section maps are perforined by plane (P„q&) instead of
(P,y) with the aid of Eq. (25).

In practice, there is an adiabatic range before the en-
trance of the wiggler in the free-electron laser. The initial
states of the equilibrium electrons at the entrance of the
wiggler are determined by the distribution of the adiabat-
ic magnetic field. To coincide with the experiment, in
this paper we have simulated the motion of the electrons
in the adiabatic range by making use of the three-
dimensional adiabatic distribution of Fig. 4 in Ref. [17].
The results are shown in Fig. Il, which are used as the pa-
rameters of the test electrons in the interaction range.

Using the numerical method mentioned above, we have
successfully generated Poincare maps in the case of a pos-
itive guide field [11]. We found that chaos appeared for
group-II orbits when the iteration step of P was 2ir/650.
But we immediately recognized from the information
monitored by P, that the result was doubtful because the
relative error (P,. P, o) /P, o wa—s not good enough.
Upon changing the iteration step of 1t from 2~/650 to
2ir/6500, the computation-artifact chaos disappeared
[11]. This shows that the self-fields are not serious
enough to cause the chaos, although the integrability of
motion is destroyed by these self-fields. %'e further found
that in the case of the reversed guide field the iteration
step should be shorter. In the present paper we choose
the iteration step of g to be 2ir/65000, which keeps the
relative error (P, P, ,o)/P, o on the—order of 10

d~ 1

f3
(28)

III. ANALYSIS OF THE INTEGRABLE LIMIT

A. Helical orbits and orbital stability

dP~ f4
dg f3

(29)

and then let the iteration step of 1t be 2vrl&, where N is a
sufficiently great integer. Thus the plots for g =0,
mod(2m) can be exactly collected on the (qX)th step
(q =0, 1,2, 3, ). Here one should bear it in mind that if

The equations of motion (21)—(24) are nonintegrable
when the self-fields are taken into account (i.e., @&0). In
this section we analyze the dynamical behavior in the
@=0 limit. Under this circumstance the Hamiltonian 8
does not explicitly contain g. Thus there are three con-
stants of motion: P, , H, and P&. The dynamical system
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becomes integrable. The equations of motion are reduced
to two differential equations:

To examine the stability of helical orbits, we let

dc@ pz +c aw+ 1 — singdr y & "t/20 P
(30) (34)

dP a
"t/2Q, P~cosy .

dv r
(31)

Inserting Eq. (34) into (32) and making use of (33), we ap-
proximately obtain

A helical orbit corresponds to the fixed point of Eqs.
(30) and (31). The parameters, denoted by subscript f,
can be derived from dy/d~=O and dP /d~=O, which
satisfy the following relationship:

d 6y
d7 ~

"i/2QDP f +1
&f 2P~f')/ 2A, P f

cos+f =0,
(32)

(35)

'1/2Q, P f =+
p,f+n

Substituting Eq. (32) into (15), we rewrite the parameters
of helical orbits as

Here we see that the helical orbits are always stable re-
gardless of 0, )p, or Qo &p„since the perturbed quanti-
ties are sine and cosine functions of ~. This is quite
different from the case of a positive guide field [1].

B. Phase portrait

2
aw

p,f 1+ - +1—yf
(P f+0, )

(33)

~ ra~'1

ai ~

-0.2 0.2

(a)

(b)

FIG. 1. Three-dimensional simulation of the test electron in
the adiabatic range of the wiggler: (a) cross-sectional project of
trajectory, and (b) normalized transverse velocity, where
yo=2. 4677, a =0.4368, II, =3.2365, (2P&/II, )'~~=0.25, and
@=0.

In the e=O limit the phase portrait is performed on the
(P„y) plane by solving Eqs. (30) and (31). The numerical
simulation is carried out for the reversed-guide-field FEL
experiment [12], where Bo= —10900 G, B =1470 G,
k =2m/3. 18 cm ', y=2. 4677, and rI, =0.254 cm. We
choose the radial position of the test electron at the en-
trance r to be 0.127 cm. The corresponding normalized
quantities are 0, =3.2365, a =0.4368, rb =0.5, and
rs =—(2P&/II, )'~ =0.25. After simulating the motion of
the test electron in the adiabatic range, we find that its
gyroradius at the entrance of the wiggler, (2P&/0, , )'~,
is 0.074, and the axial normalized velocity Pb =0.91 (see
Fig. 1).

Figure 2 shows the phase portraits for the four test
electrons with r, =0.074, 0.10, 0.16, and 0.18, respective-
ly, where r, =—(2P~/II, )'~ . They respectively denote
four kinds of curves: fixed point, closed curve, separa-
trix, and unbounded curve. From Fig. 2 we can find that
the experimental parameter of Ref. [12],9, =0.074, cor-
responds to the fixed point. Therefore most of the equi-
librium electrons in the experiment of Ref. [12] had heli-
cal orbits, and the other equilibrium electrons had
periodical orbits within the neighborhood of the helical
orbits due to the small beam spread. Our calculations in-
dicate that the phase curves for 0.074&r, &0.16 are
closed and do not cross each other, and that the phase
curves for r, & 0. 16 are unbounded and also do not cross
each other. As shown in the figure, however, both closed
curves and unbounded curves lie on the same side of the
separatrix; consequently, an unbounded curve can cross a
closed curve. This is very different from the cir-
cumstance of a positive guide field, where the unbounded
curves lie on one side of the separatrix, and closed curves
on the other side, and they do not cross each other. The
reason that the phase curves cross in Fig. 2 is related to
the mathematical property of Eqs. (30) and (31). In this
paper we leave it alone because r, &0.16 was always
satisfied in the experiment [12].
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2. 3IV. INFLUENCE OF THE SELF-FIELDS
ON POINCARK MAPS

i.=0- 10
In the preceding section we found that most of the

equilibrium electrons in the experiment [12] had fixed-
point phase portraits and that their orbits were therefore
hehcal. On the other hand, some of the equilibrium e1ec-
trons must have had non-fixed-point phase portraits due

i —0 ]4

r.=0- 16

2. 3
2- 2—

0i,=0. 074

0. 10

2. 3—
r.=0. 14

r, =0. 1'0

i,=0. 14

r, =0. 16
2. 2

2. 2
0

(b)

j,=0. 10
r, =0. 16 «.=0. 14

r, =0. 16
'~ ~

2-2
0

2~ 2
0

(c)

2-3 2. 28

r, =0. 10

i,=0. 17
r.=0. 14

i.=0. 16
r, =0. 18

~ ~ ~as ~ Q ~0 0

P
~P+0% ~ I\ ~ ll i%1Sit

g%lV
~ g

2. 2 2. 26
0 2Tt0

(d)

FIG. 3. Poincare surface-of-section maps with /=0,
mod(2m), where (a) a=0.00727 (Ib =300 A), (b) @=0.03635
(Ib =1500 A), (c) @=0.05453 (Ib =2250 A), and (d) @=0.07270
(Ib =3000 A), and other parameters are the same as those in
Fig. 1.

FIG. 2. Phase portrait of equilibrium electrons in a helical-
wiggler free-electron laser with reversed guide magnetic field:
(a) fixed-point and closed phase curves, (b) separatrix, and (c)
open phase curves, where y0=2. 4677, a =0.4368, 0, =3.2365,
(,2P~!0,)' =0.25, @=0,and r, is the initial gyroradius.
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to the beam spread so that their orbits were not helical.
So it is necessary to analyze the inAuence of self-fields on
Poincare surface-of-section maps. Our numerical in-
tegration indicates that the fixed point is slightly
influenced by the self-fields, but both the closed and open
curves change with the increase of the self-fields.

To reduce the expense of calculations, we concentrate
our attention on the three phase portraits with r, =0.10,
0.14, and 0.16. The situation for @=0has been shown in
Fig. 2, where the curve for r, =0.16 approximately is the
separatrix, and the curves for r, =0.10 and 0.14 are
closed. In Fig. 3(a), the self-field parameter @=0.00727
corresponds to the beam current Ib =300 A. The separa-
trix begins to become an open curve and to cross the
curve of r, =0.14. In Fig. 3(b) we let @=0.036 35
(Ib=1500 A). The curve of r, =0.14 tends to be open
and crosses the closed curve of r, =0. 10. When
a=0.054 53 (Ib =2250 A), we can see from Fig. 3(c) that
the curve of 9, =0.14 is entirely open, while the curve of
r, =0.16 does not cross the curve of r, =0.10 again. In
Fig. 3(d) the self-fields increase up to e =0.072 70
(Ib =3000 A). We find that the curve of r, =0. 10
remains closed and is no longer crossed by the curves of
r, =0.14 and 0.16. Compared with the situation of @=0,
the closed curve of r, =0.10 rises upon the curves of
r, =0.14 and 0.16, and the original hump becomes a val-

ley. Figure 3 shows an interesting phenomenon: the
variation range of the axial momentum of the equilibrium
electrons has been compressed with the increase of beam
current. This results in a reduction of the axial momen-
tum spread. We guess that the beam quality may not de-
generate even if the current increases up to 3000 A in ex-
periment [12] with the limit of r, & 0. 10.

2. 3

~ 0

.r»~ W

~ J4

o 'W+~ ~

2- 2

o. ro

«ocr~ ~~rvgi s o4+

0 05

(b)

FIR. 4. The surface-of-section diagrams for /=0, mod(2~)
(a) in the p, -y plane, and (b) in the P -y plane, where 9, =0.074,
0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.22, and 0.24, and other pa-
rameters are the same as those in Fig. 2.

V. CONCLUSIONS

In this paper we have presented a comprehensive dy-
namics of the equilibrium electrons in a helical-wiggler
free-electron laser with reversed guide magnetic field.
Several conclusions can be drawn.

(1) The helical orbits are always stable and no longer
divided into two groups as indicated in Ref. [14].

(2) There are four classes of phase curves without the
self-fields taken into account: fixed point (corresponding
to the helical orbits), closed phase curves (periodic or-
bits), open phase curves (nonperiodic orbits), and separa-
trix. The phase portrait is quite different from the one of
the positive guide magnetic field: both closed and open
phase curves lie on the same side of the separatrix.

(3) Some closed phase curves with relatively great
gyroradius become open with the increase of the beam
current, but the variation range of axial momentum is
narrowed (which means reduction of the axial momen-
tum spread).

(4) The quality of the electron beam in equilibrium may
be improved by using a reversed guide magnetic field.
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APPENDIX

Strictly speaking, the phase plane for /=0, mod(2ir)
should be formed by the variables P and y, i.e., the P -y
plane. Indeed, this surface-of-section map can be re-
placed by the P, -y plane with the aid of Eq. (25). Unlike
the positive guide field, however, the reversed guide field
results in an extraordinary view that the unboundary
curves cross the closed curves in the p, -y plane. In order
to show this character, we summarize Figs. 2(a), 2(b), and
2(c) as Fig. 4(a). Here one should be cautious not to
make the misunderstanding that the phase trajectories in
the P -g plane cross each other. In fact, the crosspoint
in the p, -y plane does not correspond to the same values
of P and y for a fixed P& due to the different values of
P, [see Eq. (25)]. That is to say, no crosspoint in the P
y plane corresponds to the crosspoint in the p, -y plane.
As shown in Fig. 4(b), this explanation is verified by
transforming the p, -y diagram to the P -y diagram. It is
due to the practical meaning that p, represents the
mechanical momentum in the axial direction that we
prefer the p, -y diagram to the P -y diagram, as Chen
and Davidson did in Ref. [6].
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