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Explicitly integrable polynomial Hamiltonians and evaluation of Lie transformations
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We have found that any homogeneous polynomial can be written as a sum of integrable polynomials
of the same degree, with which each associated polynomial Hamiltonian is integrable, and the associated
Lie transformation can be evaluated exactly. An integrable polynomial factorization has thus been
developed to convert a sympletic map in the form of a Dragt-Finn factorization into a product of exactly
evaluable Lie transformations associated with integrable polynomials. Having a small number of factori-
zation bases of integrable polynomials enables one to consider a factorization with the use of high-order
symplectic integrators so that a symplectic map can always be evaluated with the desired accuracy. The
results are significant for studying the long-term stability of beams in accelerators.

PACS number(s): 41.85.—p, 29.20.—c, 29.27.Bd, 03.20.+ i

I. INTRODUCTION

In large storage rings, charged-particle beams are re-
quired to circulate for many hours in the presence of non-
linear perturbations of multipole errors in magnets. Ex-
tensive computer simulations are thus necessary to inves-
tigate the long-term stabilities. The conventional ap-
proach in which trajectories of particles are followed ele-
ment by element through accelerator structures is, how-
ever, slow for these studies. A substantial computational
as well as conceptual simplification is to study the stabili-
ty of particles using one-turn maps [1].

While finding a closed analytical form of a one-turn
map is impossible for a large storage ring with thousands
of elements, a truncated Taylor expansion of a one-turn

map can be easily obtained through concatenating ac-
tions of individual elements by means of Lie and
differential algebras [2,3]. Even though some successes
have been reported by directly using the Taylor maps for
tracking [4,5], the truncation inevitably violates the sym-
plectic nature of systems and consequently leads to spuri-
ous effects if the maps are used to study the long-term
stability [1,6,7]. Increasing the order of the Taylor map
can make the nonsymplecticity arbitrarily small, but as
its size grows exponentially, the map tracking will lose its
advantage in speed to the element-by-element tracking.
A reliable long-term tracking study with the Taylor map
is therefore possible only if its nonsymplecticity effect can
be eliminated without greatly reducing the tracking
speed.

The Taylor map extracted from a symplectic system
can always be converted into Lie transformations with a
Dragt-Finn factorization [8]. A map in the form of Lie
transformations is guaranteed to be symplectic, but it
generally cannot be used for tracking directly because
evaluating a nonlinear map in such a form is equivalent
to solving nonlinear Hamiltonian systems, which cannot
be done in general. Several methods, such as jolt (kick)
factorization [9,10] and monomial factorization [11,12],

have been proposed to deal with this difhculty by con-
verting the Lie transformation from its general form into
special forms that can be evaluated directly. While these
methods seem promising, their applications lead to con-
siderable theoretical and computational complexities,
chief of which is the unpredictability of high-order spuri-
ous terms that may lead to less than accurate evaluation
of the map.

Since a general Lie transformation corresponds to a
nonintegrable Hamiltonian system that cannot be evalu-
ated exactly, the challenge here is how to evaluate a Lie
transformation approximately without violating the sym-
plecticity and with a controllable accuracy. One way is
to divide the nonintegrable system into subsystems that
are integrable individually. The set of subsystems of
minimum number is the most promising one to serve as
the zeroth-order approximation because it would be the
closest to the original system and the best starting point
for higher-order treatments. For Lie transformations as-
sociated with homogeneous polynomials, we shall show
in this paper that any polynomial can be written as a sum
of integrable polynomials with which each associated Lie
transformation can be evaluated exactly. Since the num-
ber of integrable polynomials can be much smaller than
the number of monomials, a factorization consisting of
Lie transformations associated with integrable polynomi-
als will have many fewer terms so that a higher-order fac-
torization becomes practical. In order to achieve an op-
timization between a desired accuracy and a fast tracking
speed, we propose an integrable polynomial factorization,
which can also be made symmetric to enhance accuracy
with the use of symplectic integrators [13—16].

The paper is organized as follows. In Sec. II, we intro-
duce the Taylor map and its corresponding Lie transfor-
mations. A definition of integrable polynomial and
guidelines for constructing an optimal set of integrable
polynomials are given in Sec. III. In Secs. IV —VII, we
construct integrable polynomials for a homogeneous po-
lynomial of degree 3 —6. Factorizations with integrable
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polynomials are discussed in Sec. VIII. Section IX con-
tains a summary and discussion.

II. THE TAYLOR MAP
AND LIE TRANSFORMATION

JRz=A + exp(:f, :)z,
l =3

(2)

where % denotes a linear symplectic transformation, f; is
a homogeneous polynomial in z of degree i, and:f;: is the
Lie operator associated with f;, which is defined by the
Poisson bracket operation [2]

af; a af; a

aq, ap, ap, aq,

and the Lie transformation is defined by the exponential
series

(4)

At any "checkpoint" of an accelerator, motions of par-
ticles can be described mathematically by a six-
dimensional symplectic one-turn map

z'=A, z,
where z=(q „p„qz,p2, q3,p3 ) is a phase-space vector and

p; is the conjugate momenta of q;. A, is, in general, a
nonlinear functional operator. Because we are usually
not interested in transformations that simply translate
the origin in phase space, only maps that map the origin
to itself (z=0 is the closed orbit) are considered. Within
its analytic domain, AL can be written as a product of Lie
transformations with Dragt-Finn factorization [8],

where A is again the linear symplectic transformation
and f, ah. omogeneous polynomial in z of degree i .f; can
be obtained from U; in an iterative manner [1,2]. The
symplectic map

N

Jk,z=Ape 'z
1 =3

(9)

is thus a symplectic approximation to A, , which is con-
sidered an acceptable approximation for the study of the
long-tern stability of the original system in the phase-
space region of interest. Tracking with Jk, z, however,
requires the evaluation of Lie transformations in Eq. (9).
Because of the isornorphism property of Lie transforma-
tion [2,8], for any function F(z),

exp(:f;:)F(z)=E(exp(:f;:)z}. (10)

III. INTEGRABLK POLYNOMIALS
IN LIE TRANSFORMATION

A product of Lie transformation of the form
exp(:f;:)exp(:fJ:)z thus requires only evaluations of
exp(:f;:)z and exp(:f:)z. On the other hand, for any au-
tonomous Hamiltonian H, the solution of the Hamiltoni-
an equation can be formally written as

z(t)=exp( t:H:)z(—0) .

A comparison of exp(:f;:)z with Eq. (11) indicates that
the problem of evaluating exp(:f;:)z is equivalent to the
problem of solving a Hamiltonian with H= —f; from
t=0 to 1, which cannot be done in general. The chal-
lenge, therefore, is how to evaluate exp(:f;:)z approxi-
mately without violating the symplecticity and with a
controllable accuracy.

Within its analytic domain, A,z can also be expanded
in a power series of z

Afz= g U, (z)= QU, (z)+e(N+I),

where U;(z) is a vectorial homogeneous polynomial of
degree i,

U;(z)= g u;(o. )q, 'p, 'qz'pz'q3'p3
l~l =i

and e(N+ 1) represents a remainder series consisting of
terms higher than degree N. In Eq. (6), cr denotes a col-
lection of exponents (o.„.. . , o 6) and ~cr

~

=g~, o . .
Truncating the expansion in Eq. (5) at the Nth order re-
sults in an 1Vth-order Taylor map

N
U—= g U;.

Due to the truncation, U is no longer exactly symplectic.
However, the symplecticity can be recovered by convert-
ing U into a product of Lie transformations with an accu-
racy up to the truncation order N [2,8]

U(z)=% g exp(:f, :)z+e(N+1),
I 3

Definition. The associated Hamiltonian of a polynomi-
al f;(z) is defined by H= f, —

Definition Apol. ynomial in z is called an integrable
polynomial if its associated Harniltonian is integrable and
its associated Lie transformation can be evaluated exact-
ly.

Let [g "'~k =1,2, . . . , Ng ] denotes a set of integrable
polynomials of degree i. Then any polynomial in z can be
expressed as a sum of integrable polynomials of the same
degree, i.e.,

f;(z)= X a(~)q 'I 'q 'I 'q 'S '= g g "',
lal=i k=1

(12)

where f; is any homogeneous polynomial of degree i and
a(o ) are constant coefficients. After factorizing it as a
product of Lie transformations associated with integrable
polynomials, exp(:f,. :)z can be evaluated directly. Since
the minimum number of integrable polynomials is much
smaller than the number of monomials, the accuracy of
factorization with Lie transformations associated with
[g "'I can be carried out to a suitable order while main-
taining a reasonable computational speed in symplectic
map tracking.

In order to construct integrable polynomials, we list
possible integrable systems with polynomial Hamiltoni-
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(i +d —1)!A'(i, d)=C +d (13)

IV. INTEGRABLE POLYNOMIALS
IN z OF DEGREE 3

Homogeneous polynomials of degree 3 in six variables
consist of 56 monomials, which can be grouped under
eight integrable polynomials of degree 3
Ig3"'le =1,2, , S]:

ans: (a) All Hamiltonians with one degree of freedom. In
this case, the Hamiltonian is any polynomial in a pair of
canonical variables. In order to have closed forms for
solutions of Hamiltonian equations, the Hamiltonians
have to be limited to certain special forms. (b) All Hamil-
tonians with linear equations of motion. In this case, the
Hamiltonians are homogeneous polynomials in z of de-
gree 1 or 2. The former corresponds to a translation in
phase space and the latter is a coupled harmonic oscilla-
tor. (c) All other systems that can be transformed into
their "action-angle" variables, that is, their Hamiltonians
depend on "actions" (or "angles" ) only, e.g. , kick Hamil-
tonians. (d) All nonlinear systems which can be separat-
ed into (uncoupled) (a), (b), and (c). For example, a poly-
nomial Hamiltonian is integrable if it consists only of a
product of any monomial in one degree of freedom and a
homogeneous polynomial of degree 1 or 2 in the other
two degrees of freedom. By following these guidelines,
one can construct an optimal set of integrable polynomi-
als for a homogeneous polynomial of any degree.

For later use, we give the formula for the number of
monomials of degree i in d variables,

q; = C3 2-q. (20)

where (i,j,k) goes over all cyclic permutations of (1,2,3)
and h3"zs are homogeneous polynomials of degree 2 in
four variables

h 3 2(q, P, qkPk ) =c»q, +c 3 2q,P, + ,c 3 —3q,qk
(n) (n) 2 (n) 1 (n)

(n) (n) 2
3,4qqpk +
(n) ) (n)
3 6pj'qk +TC3 lp~pk

+ 3 8qk+ 3 9qkPk+ 3 1OPk
(n) 2 (n) (n) 2

c3"' is the coefficient of the corresponding monomial in
f3. For n ) 3 and m =3, 4, 6, or 7, the same monomial
appears three times so that c3"' in these three terms are
chosen to be identical, for example, c3 3 c3 3 c3 3.
Such an arrangement is necessary for symmetric forms of
il 3 2. It should be noted that the decomposition of f,. into
integrable polynomials is not unique. g3" and g3

' can be
further combined into a single integrable polynomial
since the Hamiltonian H= —(g3" +g3 ') is integrable.
We chose two separate integrable polynomials instead of
the combined one because the solution for the latter can-
not be written in a closed form and directly used in track-
ing.

Since
3

exp(:g3":)z= + exp(:c3'2;,q; +c3'2;q;p;:)z, (19)
i=1

in order to evaluate exp(:g(3".)z, we consider a Hamil-
tonian H = —c 3 2; 1q;

—c 3 2;q; p;. The Hamiltonian(1) 3 (1)

equations are

g3 =C3 1q1+C3 q 1p +C3 3q2
(1) 2 (1)p; =3C3 2; 1q; +C3 2;q;p; . (21)

+ 3 4q2P2+ 3 5q3 + 3 6q3P3
(1) 2 (1) 3 (1) 2 (14) These two equations with the initial condition [q;(0),

p,.(0)] have the solution

g(2) =c(2i) 3+c(29) 2q1+c(2~) 3

+c ( 2~) 2q +c ( 2@)
3 +c ( 2~) 2q

g'3"'=q;i '3'2+'(q p, q. p. »
g""'=p h""(q p q p )

(15)

(16)

q;(0)
q;(t)=

1 +c3 2'q;(0)t

1
P;(t) = („[H—C3'2';, q; (t)] .

c'";q; (t)

Let t= 1 and [q;(0),p;(0)]=(q;,p;), then

(22)

(23)

q;
exp(:g', ":)q,=

1+c3'2;q;
(24)

(1) (C 3, 2i —lqi +C 3,2ip )( 1 +C 3,2'q ) 3', 2i —lq
(1) (1) (1) 3 (1)

(1) (1)
C3 2'( 1 +c3 2'q; )

(25)

where i =1, 2, and 3. A similar calculation with H= —c3 2; 1p;
—c3 2, q,-p, yields

( )
(c3,2' —)Pi+ 3, 2 qi )( —

3, 2 r') c3,2 —1P
exp(:g3 ")q;—

( ) ( )c3 2;(1—c3 2;pi )
(26)

p)
exp(:g3":)p;= c()p (27)
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where &
= 1, 2, and 3.

For n =3, . . . , 8, exp(:g3"'. )z can also be converted
into explicit symplectic maps given in Eqs. (A12), (A13),
and (A22) (see the Appendix).

exp[:69(n, l, j):]p,
2l)C( j) n —I —1 !—1](n —I)/(n —2l)

prL n cn i qi l

for n%2l, (42)

V. INTEGRABLE POLYNOMIALS IN z OF DKGRKK 4

For convenience, we define eight kick functions for po-
lynomials in z of degree n:

exp[:G9(n, l, j):]q;=q,.exp[ —lc(jI(q;p;)' '],
exp[:G9(n, l, j):]p;=p;exp[le(jI(q;p; )' '] for n =21 .

(43)

(44)

k2

63(n)= g
1=1

(3) 1
~ l~ 13

C4, 1q i p2 q3

k

G, (n)= g c4",q, 'q2 q3
1=1
k)

(2) 1] 12 1362(n) = g c4', IP 1'P2'P3'
1=1

1,%0, l2&0

(28)

(29)

(30)

g4() =6„(4), .= 1, . . . , 8

g' +'=6 (4,i, 8+i),
(45)

(46)

Homogeneous polynomials of degree 4 in six variables
consist of 126 monomials, which can be grouped under
20 integrable polynomials of degree 4
[g'"'

I

k2

64(n)= g
1=1

(4) 11 12 13
C4, 1q & P2P3 l, %0, 13%0 (31)

g ( 1 1 + !)
q 2p lI ( 1 I + I )

( q p q p )

=q p "41 .(q Pqk .pk)

(47)

(48)

k2

6,(n)= y
1=1

k2

G7(n)= g
1=1
k2

(6) I l 12 13
c4 lp& q2 p3

l~ l~ 13
c4 lpga q2 q3

k

Gz(n)= g c'4 lql'q2 p3'
1=1

12%0, l3&0

l, AO, l3%0

l, AO, l3&0

(32)

(33)

(34)

(49)

where (i,j,k) goes over all cyclic permutations of (1,2,3)
and h4",' and h4"z are homogeneous polynomials in four
variables of degree 1 and 2, respectively,

1('q' Pj,qk Pk ) c lqj +c 2Pj +cm 3qk m 4Pk

(50)

h 4, 2(qj Pj,qkpk ) 4, 1'qj + c4,2qjPj + 4, 3qj qk
(n) (n) 2 ) (n) (n)

G()(n)= g
1=1

C4 1P1 P2 q3 l2&O, l3&0, (35)

where I
&
+ I2+ I3 =n and I goes over all permutations of

(l), l2, l3). The numbers of terms in sums can be calculat-
ed from Eq. (13) as

+C4 4q Pk +C4 5P +C4 + qk

+ 4 7PjPk+ 4 8qk
(n) (n) 2

+ c4, 9qkPk + 4, 1QPk
(n) (n) 2 (51)

k, =C„"+2= ,'(n +2—)(n+ 1),
k, =C„"+,—2C„"+,+1=—,'n(n —1) .

(36)

(37)

(36;(n)
exp[:6;(n):]q;=q;—

Bp;

BG, (n)
exp[:6, (n):]p, =p, +

Bq;
1

&
~ ~ ~ ) 8

(39)

(40)

and exp[:69(n, l, j):]z can be evaluated by Lie transfor-
mations associated with monomials (see the Appendix,
Sec. 1):

We also define a monomial function for polynomials in z
of degree n:

6 (n, l j)=c I q" p +c„jq" p +c„j3q" p3

where 1~l &n and j is an index.
The Lie transformations exp[:6;(n):]z for i =1, . . . , 8

can simply be written as kicks on either coordinates or
momenta:

c4"' is the coeKcient of the corresponding monomial in

f . c" ' =c" ' c" ' =c' ' and c' ' =c" ' are again for4 4, 2 4, 9~ 4, 2 49~ 4, 2 4, 9
a symmetric form of h4"2. It should be noted that g4
can be further combined with g4'

' or g4"', but the solu-
tion of the combined system is more complicated than
that of an individual one. Because a considerable high-
order factorization for polynomials of degree 4 can be
easily achieved (see Sec. VIII), the separation of g4 ',
g4' ', and g4"' is preferred.

All Lie transformations associated with g4n' can be
written as explicit symplectic maps, which are given in
Eqs. (39)—(44) for n = 1, . . . , 11 and in Eqs. (A12)—(A15),
(A20), and (A22) for n = 12, . . . , 20.

VI. INTEGRABLK POLYNOMIALS IN z OF DKGRKK 5

A homogeneous polynomial of degree 5 in six variables
consists of 252 monomials, which can be grouped under
42 integrable polynomials of degree 5
Ig5"'

~
n = 1,2, . . . , 42]:

exp[:G9(n, l, j):]q;
[1+( 2l) (j) n —I —1 I —1]l/(2I —n) (41)

g5"'=G„(5), n =1, . . . , 8

g5 +"'=G9(5,n, 8+n), n =1,2, 3,4

(52)

(53)
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g(9+3n+i) —
(4

—
np nh (9+3n +i)( 79 integrable polynomials

Ig("'~ =1,2, . . . , 79I:
of degree 6

g(21+i) =q,p, q~p~h(, 21+1)(q.. ),
(21+3n+i) 3—n nh(21+3n+i)(

5, 2 qj~pj~qk~pk ~

(54)

(56)

g'"'=G„(6), n=1, . . . , 8

g' +"'=G9(6,n, 8+n), n =1, . . . , 5

(68)

(69)

g(10+3n+i) q5
—

np nh (10+3n+i) (q p q p ) n —
1 2 3 4

7

g(30+i)
q p h (30+i)

(

g(33+i)
q p h(33+()( )

g(36+i) —
q p h(36+i)(q p )

g(39+i) —
q p h(39+i)(

(57)

(58)

(59)

(60)

where (i,j,k) goes over all cyclic permutations of (1,2,3).
G„(5) and G9(5, n, m) are defined in Eqs. (28) —(35) and
(38). h'5",'(qj, pj, q)„pk) is a homogeneous polynomial in
four variables of degree 1 defined in Eq. (50).
h 5"z(qj. ,pi, qk, p), ), h 5"1(q,p), and h 5"3(q,p) are homogene-
ous polynomials in four variables of degree 2 and in two
variables of degree 1 and 3, respectively,

(70)

g(22+3n+i) q4 —npnh(22+3n+i)(q p q p ) n 1 2 3
7

(71)

g(34+i) —
q p p h(34+i)(q p ) (72)

(34+3n+i) — 3—n n h (34+3n +i)
(g6 pi qj 6 2 qj~qk~pk ~

(73)

g(40+3n+i) —q3
—

npnp h(40+3n+i)(p q p )86 qi pipj 62 j~ k~ k

(74)

(46+3n+i) 3—n n h(46+3n+i)( ~ )Pi qk 62

(n) (n) 2 (n) (n)p q) pk) c, iq +C,2q p +C,sq qk.

(n) (n) 2 (n)+Cm 4qjPk +Cm +j +Cm 6Pj

+Cm 7pjpk +Cm 8qk

+c 9qkPk+c 10Pk ~

(n) (n) 2 (61)

(52+3n+i) — 3 —n n h(52+3n+i)(
Pi Pk pk & qj op~

g ( 6 1 + I )
q p h ( 6 1 + l )

( q q )

(75)

(76)

(77)

s"i (q,P) =c(sniq, +c(s

h', ",'(q, p) =-'c',",'q'+c,'",'q'p+c', ",'qp'+ —,'c("~) 3 .

(62)

(63)

C5"' is the coefficient of the corresponding monomial in
(30+ ') (36+ ) (30+ ) (39+ ') (33+ ') (39+ )

c 5
4+' =c 5

4+' result from symmetric forms of h (5"3) (q,P).
All Lie transformations associated with g5"' can be

written as explicit symplectic maps, which are given in
Eqs. (39)—(44) for n =1, . . . , 12, in Eqs. (A12)—(A15) and
(A20) for n =13, . . . , 21, and in Eqs. (A12)—(A15) and
(A22) for n =25, . . . , 30. For n =31, . . . , 42, all mono-
mials in gs"' commute so that exp(:gs"':)z can be evalu-
ated by Lie transformations associated with monomials
(see the Appendix, Sec. 1). By using Eqs. (A7), (A8), and
(A20), exp(:gs"':)z for n =22, 23, and 24 can be written
as

(64+i)

(67+i )

(70+i )

(74)

p h(64+i)( )

—
q p h (67+i)(

)

g(76)(76q2qp2+(76)q2p3

g6 ' =c61'q1p1q2p2+c6 2 q1p1q

g C q p

g6 =C6 1 q2P2q3P3

g6 ' =c61 q1p1q2p2+c6&'q 1p1q3p3+C6 3 q2p2q p

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(64)

(I, I') =(i,j ) or (j,i) (65)

(67)

VII. INTEGRABLE POLYNOMIALS
IN z OF DKGRKK 6

Homogeneous polynomials of degree 6 in six variables
consist of 462 monomials, which can be grouped under

(21+i) . (n)e p(:q Pq P hs, i:)qk =qk . Cs, H PqP. .

(21+i) . (n)e P(:q P qjp&h s i:)Pk =Pk+cs iq P qqpq .

h(n)( p) —C(n)q2+ 1 (n) + (n) 2

h62(x»x2, x3) C6 1X1+TC6 2X)X2+ 2C6 3X)X3
(n) (n) 2 i (n) (n)

+ 2C6 4X 2 +C6 5+2X3+ 2C6 6+ 3
(n) 2 (n) (n) 2

(87)

(88)

h6"4(x„x2) is a homogeneous polynomial of degree 4 in

where (i,j,k) goes over all cyclic permutations of (1,2,3).
G„(6) and G9 (6, n, m ) are defined in Eqs. (28)—(35) and
(38). h(6"1)(q, ,p, qk, pk) and h6",'(q;,p, , qk, pk) are ho mo-
geneous polynomials in four variables of degree 1 and 2
defined in Eqs. (50) and (61), respectively. h6"2(q, p) and
h 6 2 (x 1 x 2 x 3 ) are homogeneous polynomials of degree 2
in two and three variables, respectively,
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two variables

h6 4(X1,X2)—TC6 1X1+C62X1X2+C6 3 1
(n) [ (n) 4 (n) 3 (n) 2 2

C6 4X1X2+ C6 5X2
(n) 3 I (n) 4 (89)

metric property actually afTects the accuracy of the map
by generating larger, high-order spurious terms.

B. Symmetric integrable-polynomial factorization

c6"' is the coefticient of the corresponding monomial in

f6. Some monomials appear more than once in g6"'. In
Order tO haVe SymmetriC fOrmS Of g6n', C6n' Of thOSe mO-

nomials are divided by their number of appearances.
Similarly, by using Eqs. (39)—(44), (A5) —(A8),

(A12) —(A15), (A20), and (A22), all Lie transformations
associated with g6n' can be expressed as explicit symplec-
tic maps that can be used for tracking directly.

VIII. INTEGRABLK-POLYNOMIAL FACTORIZATION

A. Nonsymmetric integrable-polynomial factorization

In construction of symplectic integrators for numerical
integration, techniques have been developed to formulate
a Lie transformation for a sum of Lie operators by Lie
transformations for individual Lie operators with a con-
trollable truncation error [13—16]. A small number of
factorization bases with integrable polynomials enables us
to utilize these symplectic integrators.

Letting 3 and B be any Lie operators, the problem is
finding a set of coefficients (d „d2, . . . , d2k ) such that

k

exp[r( A +8) ]= g exp(d2; ) r A )

With integrable polynomials, a symplectic map in Eq.
(9) can be rewritten as

X exp(d ,28') +0( r"+'), (93)

N (i,6)

Jkt, z=% Q exp g:g,'"': z, (90)
I =3 n=1

where Ng (i, 6) is the number of integrable polynomials of
degree i in six variables, which is 8, 20, 42, and 79 for
i =3, 4, 5, and 6, respectively. By means of the Baker-
Campbell-Hausdorff (BCH) formula [2], one can, in prin-
ciple, convert the Lie transformation associated with a
sum of integrable polynomials into a product of Lie
transformations associated with integrable polynomials.
We can first separate:g3n'. by changing:g "': of i «4 ac-
cordingly [1]:

N (i, 6)

~ exp y:g("):
l =3 n=1

N (i, 6)

~ exp y:g,("):
8

+ exp(:g3"':) (91)
n=1 n=1

where g n's are integrable polynomials with all
coeKcients recalculated. Repeating this process order by
order will yield, after a truncation at a certain order, a
product of Lie transformations associated with integrable
polynomials:

i =4

N (I,6)

U, (z) =W + Q exp(:g,'"':) z,
i =3 n=1

(92)

where for simplicity we have used g
"' to notate integra-

ble polynomials of degree i which coefFicients are recalcu-
lated by means of the BCH formula. This factorization
scheme is e6'ective in the sense that there are fewer terms
in the final form of the map. For example, a six-order
symplectic map is a product of 149 Lie transformations
associated with integrable polynomials. The separation
of low-order exp(:g "'.) as shown in Eq. (91), however,
generates high-order spurious terms that may cascade so
large that the truncation becomes invalid. Moreover, it is
unclear from Eq. (92) which integrable polynomial of the
same degree should be arranged in precedence of the oth-
ers in the series of Lie transformations. Such a nonsym-

where integer n is the order of the integrator and ~ is a
small real number used only for tracking the truncation
order. It was shown [16] that for any even order of r, Eq.
(93) can be systematically constructed in a symmetric
form with exact coefBcients. The symmetric feature also
greatly suppresses the high-order truncation error. For
the second order of ~, the symmetric integrator can be
written as

e r( A +B)—e (1/2)rAe rBe (1/2)r
A+ O(r3 ) (94)

and the fourth-order symmetric integrator is

g A +B) dlrA d&rB d3rA d4rB d&rA d6rB d7rA
e =e e e e e e e +Or

where [7,9,10]

1 d2=d6= 1

2(2 —2'") ' ' '
2 —2'" '

&
—2'"

2(2 21/3) ' 4
2 21/3

(95)

(96)

(nl ) (n2)For i ~ 5, since (:g;:g; ) is a homogeneous polyno-
mial with degree higher than 7, a factorization with up to
the seventh order is easily obtained by directly using the
first-order integrator,

exp g:g "'. = g exp(:g,'"':)+6'(2i —2), (97)
n=1 n=1

where i ~ 5 and 6(2i —2) represents the truncated terms,
which are homogeneous polynomials with degree higher
than 2i —3. For i =5 and 6, the lowest-order truncated
term is a homogeneous polynomial of degree 8 and 10, re-
spectively.

For homogeneous polynomials of degree 4,
(nl) (n2)

(:g4 ' .g4
'

) is a homogeneous polynomial of degree 6.
We thus use the second-order integrator in Eq. (94) and
obtain
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20

exp y:g',"':
n=1

(n)g exp(: —,'g„':)
i=1

(n2O )X exp(:g4 ":)
19

X g exp(: —,'g4 ':) +e(8), (98)
, i=1

n=1 i =1 j=1 k=1

(99)

D,.Jk is an integrable polynomial of degree 3 that can be
chosen according to the following pattern:

i =even

j=even

J =odd

(nl)
k =even, Dljk g3

(n2)
k =odd, Dijk g3

(n3)
k =even, D;Jk =g3 '

(n4)
k =odd, DiJk =g3 ',

l =odd

j=even

(n&)
k =even D

(n, )
k =odd, Dijk g3

where ( n „n2, . . . , n zo ) is any permutation of
(1,2, . . . , 20). The lowest-order truncated term in Eq.

(n&) (n2) (n3)
(98) consists of (:g4 . .g4 .g4 ), which is also a homo-
geneous polynomial of degree 8. Therefore, the eighth-
order factorization for homogeneous polynomials of de-
gree 4 yields a product of 39 Lie transformations associ-
ated with integrable polynomials.

The Lie transformation exp(:f3. ) is the most trouble-
some one. In order to obtain a sixth-order symplectic
map, one has to use the fourth-order integrator in Eq.
(95). Applying it once to a Lie transformation associated
with eight integrable polynomials of degree 3 will result
in a product of seven Lie transformations associated with
four integrable polynomials. By applying the fourth-
order integrator two more times, we end up with a prod-
uct of 7 =343 Lie transformations associated with inte-
grable polynomials:

8 7 7 7

exp g:g'3"'. = + + g exp(:d, d d„D;,„:)+&(7).

IX. SUMMARY AND DISCUSSION

We have shown that any polynomial can be written as
a sum of integrable polynomials of the same degree. The
number of optimized integrable polynomials is much
smaller than the number of monomials. For homogene-
ous polynomials of degree 3 or 6, we have been able to
group 56, 126, 252, and 462 rnonornials into 8, 20, 42, and
79 integrable polynomials, respectively. All Lie transfor-
rnations associated with these integrable polynomials
were translated into simple iterations that can be directly
used in tracking. By utilizing the syrnrnetric symplectic
integrators, we have developed a factorization scheme
based on the integrable polynomials in which Lie trans-
formations associated with homogeneous polynomials are
converted into a product of Lie transformations associat-
ed with integrable polynomials. A much smaller number
of integrable polynomials not only serves a more accurate
set of factorization bases but also enables us to use high-
order factorization schemes so that the truncation error
can be greatly suppressed. The map in the form of Lie
transformations associated with integrable polynomials
could, therefore, be a reliable model for studying the
long-term behavior of symplectic systems in the phase-
space region of interest.

It should be noted that integrable polynomials with
lower degrees can be completely combined with those of
higher degrees. For example, 8 integrable polynomials of
degree 3 can be mixed into 20 integrable polynomials of
degree 4 so that a sum of homogeneous polynomials of
degree 3 and 4 can be written as a sum of these 20 inte-
grable polynomials. The factorization with integrable po-
lynornials can, therefore, be directly applied to the
Deprit-type Lie transformation that takes the form
exp(:g;f, :). Since hi.gh-order factorizations are much
more difficult to achieve on lower-degree polynomials, a
separate treatment of homogeneous polynomials of de-
gree 3 and 4 is favorable, even though the combined one
has fewer integrable polynomials.

In Table I, we listed the number of monomials N(i, 6)
and the number of integrable polynomials N (i, 6) of de-
gree i in 6 variables. A slow decrease in N(i, 6)/Ng(i, 6)
with increase in i indicates that the advantage of the inte-
grable polynomials diminishes slowly with i. In practical
cases, however, it would not be a serious limitation since
accelerators are mainly dominated by low-order mul-
tipoles.

It should be pointed out that the "solvable maps, " for
which the Taylor-series expansion in Eq. (4) can be
summed explicitly, was proposed to approximate general

J =odd

(n7)
k =even, Dijk g

(n&
k =odd, D;Jk=g3 '),

TABLE I. The number of monomials N(i, 6), number of inte-
grable polynomials Ng(i, 6), and e6'ectiveness of grouping the
monomials into the integrable polynomials N(i, 6)/Ng(i, 6) for
degree i in six variables.

where (ni, n2, n3, n4, n5, n6, n7, ns) is any permutation of
the first eight digits (1, 2, 3, 4, 5, 6, 7', 8). For example,
when i, j, and k are even, odd, and even, respectively,

(n3)
D;~k =g3 ' . The lowest-order truncated term in Eq. (99)
consists of homogeneous polynomials of degree 7 such as

(nj) (n2) (n3) (n4) (n5) (n6) (n7
3 'g3 ' g3 ' g3 ' g3 ''g3 'g3

Degree i N(i, 6)

56
126
252
462

Ng(i, 6)

8
20
42
79

N(i, 6) /Ng(i, 6)

7
6.3
6
5.8
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Lie transformations [17]. This idea was not fully
developed, since directly finding the sum of the expansion
is dificult in general. On some simple examples, the solv-
able maps were obtained [17] as special cases of the Lie
transformations associated integrable polynomials. Good
agreement with exact numerical integration was found in
tracking studies for these examples.
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APPENDIX

ql exp

CT2 03 CT4 CT5

exp('aql P 1 q2 P2 q3 P3 ')Pl

qlPl

=plexp

CT l CT2 CT3 CT4 CT5 CT6

~21 —1 q1P1 q2P2 q3 P3

qlPl

2. Lie transformations associated ~ith
CT I 0'2

q I 'p; h~"I(qj-, pj-, qk, pk ) for 1=1 and 2

Consider a Hamiltonian

cT2 (n)
, I(q, p'J qk Pk) .

The equations of motion for (q;,p, ) are

and for O2l —1=O2l
CT l CT2 0 3 0'4 CT5 CT6"P(: qI PI q2 P2 q3 P3 ')ql

CT I CT2 CT3 CT4 CT5 0 62l —1 q1 P1 q2 P2 q3 P3
(A7)

(AS)

(A9)

In this appendix, we shall convert Lie transformations
associated with monomials and integrable polynomials

q; 'p; 'h'"I(qj, p~, qk, pk) for /=1 and 2 into symplectic
maps that can be directly used for tracking, where h '"l is
a homogeneous polynomial in four variables of degree I,
and (i,j,k) is any permutation of (1,2,3).

1. Lie transformations associated with monomials

q=- qp h I

cT2 (n)

(A 10)

(A 1 1)

which give q; 'p; '=const. Since H =const, h'"l =const,
and solving Eqs. (A10) and (All) is similar to solving
Eqs. (A2) and (A3). Using Eqs. (A5) —(A8) we obtain, for
Cr IWIT2,

Consider a Hamiltonian
CT l 0'2 CT3 0'4 0 5 CT6H= —aq1 p1 q2 p2 q3 p3 ~

The equations of motion are

H
Z CTI 21

Pl
H

Pl = O2l —1

which give

ql pl =const,

(Al)

(A2)

(A3)

(A4)

exp[:q; 'p; h '"l(q,p, qk, pk ):]q;

=q, [1+(o, cr2. )q;
' —p;

' h'"ll] '

exp[:q; 'p; 'h'", l(q, p, qk pk):lp;

=p, [1+(o,—o2)q, '
p;

' h'"Il] '

and for o.1=o.2,

exp[:q; 'p; 'h'", 'l(qi p, qk pk) )q;

CTl
—1

( )=q;exp[ —o,(q;p;) ' h'"I],

(A12)

(A13)

(A14)

where I = 1, 2, and 3. With Eq. (A4), we can solve Eqs.
(A2) and (A3) and obtain, for o.

2I IN!72!,
CTl 02 03 CT4 05 CT6

~"P: qI PI q2 P2 'q3 P3 )ql

a
1 cT2 (n)exp[:q; p, hm I(qj,p~, qk, pk):]p;

=p, exp[o&(q;p;) ' h'"I] . (A15)

ql (~2I —I ~2I )

l 2 3 4 5 6 21 21 21 —1aq1 P1 q2 P2 q3 P3

qlP'l

CT l CT2 0'3 CT4 CT5 CT6
~exp('oql PI q2 P2 q3 P3 ')PI

(A5)

Let us define

a a a a a
aq, 'ap 'aqk'apk

(A16)

(A17)

P! 1+(~2l —I ~21)
where superscript T denotes the transpose. The equa-
tions of motion for (qj. ,pl, qk, pk ) can then be written as

1 2 3 4 5 6 21 —1 21 —l 21
~q1 P1 q2 P2 q3 P3

qlPl
(A6)

r= —
q 'p 'I (A 18)

where I is a four-dimensional antisymmetric matrix,
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0 1 0 0
—1 0 0 0
0 0 0 1

0 0 —1 0

(A19)

as'"',
exp[:q; 'p; 'h'"I(qj, p, , qk, pk):]r=r q—; 'p; 'I

(A20)
For l =2, Eq. (A18) can be rewritten as

T
a ar= —q;p; I
Br Br

(A21)

For l =1, t)h'"I/t)r are constants, and solving Eq.
(A18) yields

By diag onalizing the constant matrix
[I (t)/t)r)(B/Br) h'")2], we solve Eq. (A21) and obtain

exp(:q; 'p, 'h'"z. )r= U

1 2g(n)

0

0

0

0
1 2 (n)

e
—

qt pt Am 27

0

0

0

0
1 o g(n)

1 l m~3

0

0

0

0
] 2g(n)

m, 4

U „r, (A22)

where

a a
m, n hm"q Um „=

0

0

0

0 0 0

0 0

(A23)
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