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Fokker-Planck solution for the spherical symmetry of the electron distribution function
of a fully ionized plasma
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The linearized electron-electron collision operator for the velocity-dependent coefficient of index n =0
in the Legendre expansion in the pitch angle of the electron distribution function of a fully ionized plas-
ma is restated through a redefinition of the dependent variable as an exact differential. Two specific
Coulomb loss terms for particles and energy are brought to evidence in the process of transformation to
the differential form which are associated with the conserving properties of the collision operator. The
inversion of the differential operator can be achieved by simple quadratures. The method is applied to
determine the isotropic component of the electron distribution function in velocity space for a number of
problems of interest in fusion research.

PACS number(s): 52.20.Fs, 52.25.Dg, 52.40.Mj, 52.25.Sw

I. INTRODUCTION

Among the methods that are available to solve the
steady-state Fokker-Planck equation for the distribution
function of the particles in a plasma the one of expansion
in Legendre polynomials appears to have some definite
advantages. For most of the problems of physical in-
terest the plasma is immersed in a magnetic field about
which it is azimuthally symmetric, it being enough to
consider the local dependence of the distribution function
on two coordinates in velocity space, namely, the speed of
the particles and the angle between the velocity vector
and the direction of the magnetic field, usually called the
pitch angle. If the forces driving the plasma out of ther-
modynamical equilibrium are weak, two approximations
can also be made with considerable simplification to the
original problem. First, the ion distribution can be as-
sumed to be known, and described by a function of the
impulsive type as the limit of an infinitely narrow
Maxwellian. Second, the electron distribution function
f, can be taken to be a Maxwellian FM, plus a small devi-
ation f„which can be treated as a perturbation. The
consequence of this latter assumption is twofold. On the
one hand, it permits us to linearize the electron collision
integral C„(f„f,), in the sense that the self-interaction
of the perturbation C„(f„f,) is neglected and only the
reciprocal effects of the perturbation and the electron
background distribution function, C„(f„FM, ) and
C„(FM„f,), are taken into account. On the other hand,
the driving term for collisions, which is in general itself
dependent on the form of the distribution function, can
be approximated by its zeroth-order approximation, and
becomes a known function $(v) in velocity space. These
are schematically the terms of statement of the problem
which we shall take as a reference frame in this paper.

The expansion of the electron distribution function in a
series of Legendre polynomials of the pitch angle,

f, (v)=FM, (U)+ g f, (U)P„(cos8),
n=0

reduces the problem to one of only one variable, the
speed. The advantage of the use of the Legendre polyno-
mials as base functions lies in that they are eigenfunctions
of the linearized collision operator and thus that the ex-
pansion brings the original equation to unfolding into an
infinite set of uncoupled equations for the speed-
dependent coefficients f, (v). In other words, this is pre-

n

cisely the method by which the order of the problem,
which is unusually high in physics problems, can be
brought to appear in its strict minimum. Furthermore,
and as a consequence, boundary conditions which con-
cern the conservation properties of the collision operator
and the related macroscopic physical contents of the
solution are to be applied to only the two first coefficients
f, (v) and f, (v); the remaining coefficients of the expan-

0 1

sion are devoid of globally determined meaning and for
them the boundary conditions take the more usual form
of analytical restrictions.

The equations that govern the coefficients f, (U) are of
n

the integro-differential type. By the simple device of tak-
ing as the dependent variable one of the integrals over
f, (U) already present in the equation rather than the un-

n

known function itself [I], they can all be restated as pure-
ly differential equations. In regard to their mathematical
structure, they can be classed into three groups.

(1) The equation for the coefficient f, (U). From a
0

practical point of view, a third-order differential equation
has to be solved, but the general solution for f, (U) is

0
constructed from four independent solutions, one of them
being a constant corresponding to the trivial solution of
the differential equation. Qf the four arbitrary multiply-
ing constants, two are fixed by boundary conditions
which are to be applied along with the process of deriva-
tion of the solution and which represent constraints that
must by necessity be obeyed if a solution to the perturba-
tion problem is to be found at all; the other two, however,
remain mathematically undetermined as the equation (ei-
ther in the differential or in the original integro-
differentia form, but anyway containing the specific driv-
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ing term for collisions) together with its boundary condi-
tions keeps on being satisfied for any values they may
take. Physically, values can be assigned to these free con-
stants by imposing global boundary conditions on the
solution (not the equation) which are specifications of the
number of particles and the energy associated with

f, (u).
The Coulomb collision integral conserves particles and

energy, that is, it is annihilated by the operations of tak-
ing the zeroth- and second-order moments in velocity
space, whatever be the function f to which the collision
operator is apphed:

JC„(f,f)dv=O,

fC„(f,f) ,'m, u dv=—O .

(1.2)

(1.3)

This means that a precondition for the existence of a
solution is that these same two moments of the non-
Coulomb terms present in the kinetic equation must also
vanish. It turns out, however, that very often there is in-
terest in finding the response of the plasma to a driving
force which plays the role of an energy source; in the
greatest generality we should consider the possibility that
it would also be a particle source. The remedy, in these
cases, is to add one or more ad hoc terms to balance the
particle and energy input from the given external source
in order to guarantee the existence of a solution.

The differential formulation which we shall develop in
this paper sheds light on the question of the conserving
properties of the collision operator. Two specific loss
terms for particles and energy, which do not depend on
the shape of the solution, appear naturally as belonging
to the structure of the Coulomb collision operator and
come multiplied by two arbitrary constants which can be
adjusted in the course of the derivation of the solution to
meet the proper balance with the source. Given their ori-
gin, we shall refer to them as the Coulomb loss terms.
One of the two plays the role of a drain for both particles
and energy, but the other is just an energy sink, which
shows itself to be the very same steady-state time rate of
change of a Maxwellian with a variable temperature of
frequent use [2]. The problem of conservation and bal-
ance should then be better looked at as one of boundary
conditions, and two new arbitrary constants must be add-
ed to the original set which, so enlarged, comprises now a
total of six.

If the compensating terms for particles and energy are

II. EXPRESSION OF THE COLLISION TERM
IN TERMS OF EXACT DIFFERENTIALS

It is convenient to write f, (u) as the product of a func-
0

tion a (u), which we shall refer to as the factorized distri-
bution function, and a Maxwellian: f, (u)=a(u)FM, (u).

0
The linearized electron-electron collision operator can
then be written

C(0)(f f )
—C(0)(F f )+C(0)(f F ) (2.1)

where

taken differently from the Coulomb ones, the arbitrary
constants with which these come associated must be
chosen to be zero. There is, however, a practical advan-
tage in the use of terms of the Coulomb form in that they
do not demand a particular solution of their own, and
thus do not obscure the effects of an external source
which one intends to study; their only role is to specify
the time rate at which particles and energy must be re-
moved from the system and make sure that a steady-state
solution does exist.

(2) The equation for the coefficient f, (u). This is essen-
tially the Spitzer-Harm problem. It is a fourth-order
differential equation, one which admits two simple in-
tegrals and that can thus be reduced to a second-order
differential equation [1]. The global physical condition to
be preserved is the momentum conservation of the elec-
irons upon mutual collisions in the steady state. A loss
mechanism is provided by the collisions of the electrons
with the ions, which can be made to occur at the same
rate as the momentum input from the external source by
adjusting a normalization constant appearing in the
differential equation. The total momentum and the ener-

gy current carried by the electrons then stem from the
solution.

(3) The equations for f, (u), n =2,3,4, . . . . These
n

can be shown to be differential equations of the sixth or-
der. They all have in common the structure of their
singularities and thus represent from a mathematical
viewpoint one and the same problem. No global con-
straint comes about from physical considerations and the
boundary conditions appear as local restrictions on con-
tinuity and finiteness.

The main purpose of this paper is to solve the equation
of the first group, namely, the equation for f, (u).

0

1 "FM (x) A'(x) 4 2 4
C,', )(F~„f, )=

3
.

2 a(x)+ J4(x) ——Jz(x)+ —x —2 [J,( a& ) —J,(x)] ~,
ee V ye X 3x

(2.2)

1 "eFMe(x) A(x) „1C' '(f,F )= a "(x)+ A'(x) — 2x +—A(x) a'(x) . .1
ee eo ™ 3 2 3 2 3

ee Vve X X X
(2.3)
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In these expressions, the free variable is x =u/UT„
where U is the electron speed and UT, is the electron
thermal velocity, defined by UT, =(2T, /m, )'~, T, being
the electron temperature and m, the electron mass;
FM, (x) is the Maxwellian distribution:

ne
FMe(x) =

UTe

(2.4)

n, being the electron density; the functions J, (x), J2(x),
and J~(x) are defined by

J„(x)= —J a (y)y "e dy (n = 1,2, 4),v'~ o

A(x) is the function

(2.5)

A(x)= —f y e ~ dy, (2.6)

and, writing e for the electron charge, I „is the quantity
defined by 1 „=4m(ink, )e /m, , which we shall treat, in
accordance with the common practice, as a constant, ig-
noring the (weak) dependence of the Coulomb logarithm
ink, on the velocity [3].

The function A(x), which connects to the error func-
tion P(x) = (2/&m )f oexp( —y )dy through

A(x) =P(x) —x P'(x), (2.6')

where the prime represents the derivative with respect to
the argument, plays an important role in the theory of
Coulomb collisions in a plasma. It is an instance of the
functions defined by the integrals:

(2.5') '

electrons with normalized velocities in the range
~
b,x

~

~ a
would suffer the effect of the details of the structure of
the ion distribution. These few are the only electrons
that could exchange energy with the ions and may be ig-
nored without introducing appreciable error into the re-
sults: the ion distribution function can thus be represent-
ed as an infinitely thin, isotropic Maxwellian, like a Dirac
5 function in velocity space. While giving a term of
electron-ion collisions of the same order of magnitude as
the term of electron-electron collisions in the equations
n = 1,2, 3, . . . , this approximation suppresses the ions al-
together from the kinetic equation for the electron distri-
bution function of index n =0. From the point of view of
energy balance no real damage results from this, since the
processes between electrons and ions, in any case, would
not be able to drain out the energy from the electron pop-
ulation at the rate which is introduced by external
sources.

We shall assume that the unknown function a(x)
remains finite at the origin and that it grows less rapidly

Xthan e as x goes to infinity, so that moments of all or-
ders can be obtained from the distribution function.
Since the Maxwellian distribution must annihilate the
electron-electron collision term, and thus a (x)=1 must
be a solution, in seeking to lower the order of the equa-
tion we reexpress all the integrals J„(x) in terms of a'(x).
This can be achieved by recourse to partial integration,
most simply by first noting that the integrals can be writ-
ten as

J„(x)=f a(y)A'„(y)ay,
p

A„(x)= f y "e ~ dy,v'~ o
(2.7)

and then using the expressions for the A„(x)'s given in
Appendix B. We obtain

which will appear frequently in the subsequent analysis.
Properties of the function A(x) and of the functions
A„(x) are given in Appendixes A and B, respectively.

We shall take Eq. (2.1) as representing the full electron
collision term, thus neglecting the contribution coming
from the interaction of the electrons with the ions. This
can be justified as follows. If the plasma is not far from
thermodynamical equilibrium, the width of the ion distri-
bution is typically of the order a = (m, /m; )'~, m; being
the ion mass, times smaller than the spread of the elec-
tron distribution, and just a very small fraction of the

J, (x)= —a (0)— —a (x)e " + f e ~ a'(y)dy,= 2 2 2 2 x 2

77 7r

+ —,
' f yA'(y)a'(y)dy . (2.10)

By substituting these expressions into Eq. (2.2), the
terms in a (0) and a (x) cancel out, and we are left with

(2.8)

J2(x) =a (x)A(x) —f A(y)a'(y)dy, (2.9)

J~(x)= —,'a (x)A(x) —
—,'a (x)xA'(x) —

—,
' f A(y)a'(y)dy

3/2 3 t'x C' '(F f )= —x —1 A'(x) f e a'(y)dy —f e ~ a'(y)dy +— J y e a'(y)dy,
flpVp

(2.11)

where we have introduced the electron collision frequency

Vp-
UTe

(2.12)

Upon multiplication by x, Eq. (2.3) can be brought to the form of an exact differential:
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3/20 3
T8 QC(0)(f, F )

d A(x )

71e +0

ne +0

A'
+— f y e i' a'(y)dy .

3 X 0

We thus obtain for the total collision term an integro-differential expression in which only a (x) appears:

3/20 3' x ~C(0)(f„f, ) = e a'(x) + —x —1 A'(x) f e ~ a'(y)dy —f e " a'(y)dy
dX 2X 3 0 0

(2.13)

(2.14)

We proceed by introducing the quantity

K(x)= —f e ~ a'(y)dy+C, ,v'~ o
(2.15)

where C, is an arbitrary constant, the derivative of which
is the function

XT(o)'~ 1 dU+ 16 e

n, vo
" " ' x'dx v'~ x

+ K(~) —x —1 e
8 2 2

v'7r 3

K'(x) = —e a'(x) .4

With the replacement

(2.16)
where

A'
U(x)= K'(x)+2 F(x) .

(2.22)

(2.23)

f y e )' a'(y)dy = x K(x)— f y K(y)dy
0 4 4 0

(2.17)

for the last integral term in Eq. (2.14), the expression for
the collision operator takes the form

4m. UTe"x'C(o)(y„y, )= " K(x) +A(x)K(x)

1 dWU(x) =—
X dX

where

(2.24)

With the help of the properties of the function A(x)
given in Appendix A and from the connection between
K(x) and F(x) stated in Eq. (2.20) we may show that
U(x) can be written as

A'—2 f y K(y)dy W(x)=A(x)K(x) — F(x) .
A'(x)

X
(2.25)

+K( oo ) —x —1 A'(x) .
3

(2.18)

Similarly we find that W(x) in its turn can also be ex-
pressed in terms of an exact differential:

( )
A (x) d F(x)

(2.26)
dx A(x)

We next define the new dependent variable

F(x)=f y'K(y)dy+C, (2.19)

F'(x)
X2

(2.20)

The second and third terms on the right-hand side of Eq.
(2.18) can be combined into a single differential term:

A'(x)F'(x) A'(x)F(x)
X

A'
F (x), (2.21)

dx

and we rewrite Eq. (2.18) as

where C is another arbitrary constant, the derivative of
which is related to K (x ) through

This brings the expression for the collision term to the
following final compact form:

(0)(f f)
n V0 X dX X dX

A (x) d F(x)
dx A(x)

X16 e
V'~ x

+ K(oo ) —x —1 e . (2.27)
'rr 3

We note first that, in addition to a differential operator,
Eq. (2.27) contains two algebraic terms, not depending on
the unknown function, which come associated with two
constants K(~) and C=F(0). The constant C, —:K(0)
introduced at the step of defining K(x) does not contrib-
ute with any term to the transformed operator and is
indeed superfiuous, the boundary condition on K(x) be-
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"re 5(x —g)
3/2 3

S(v)= e
Xnb vp

—x —1 e " (x&()2 2 2

3

X 2

2 —g —1
3 X

(x)g),
(2.28)

where nb is the space particle density in the beam and
g=vb/vz;. Except for the Dirac 5 function, the effect of
which is to guarantee that particles are not created by
collisions, this source reproduces the form of the
Coulombic loss terms we have just identified in the
differential collision operator. In particular, in the limit
of zero speed electron beam we have

3/2 3
5(x)
xnb vp

and in the limit vb ))vT,

(0&x & (2.28a)

ing already implied by I(. ( ~ ). These two terms should be
considered as spontaneous balancing terms for particles
and energy which are built into the structure of the origi-
nal collisional integral and brought to evidence by the
process of reduction to the differential form. Because of
their origin we shall refer to them as the Coulomb loss
terms. If the overall external driving term (which may or
may not include loss mechanisms) does not introduce
particles and energy into the system, they do not have
any role to play, and the constants K ( ~ ) and C must be
chosen to be zero; if, however, the driving term acts as a
source or sink of any or both particles and energy, by
properly choosing the multiplying constants they can be
made to balance the input and save the conserving prop-
erties of the collision operator.

It is useful to give a physical meaning to these spon-
taneous sources. The collisional effects of an isotropic,
monoenergetic electron beam of speed vb interacting with
the plasma electrons can be shown to be described by a
source S (v ) of the form

zeroth-order electron distribution function caused by a
steady-state removal of its energy:

BF~, BF~, dT,
Bt BT, dt

3 1 2—x —1 FMe

87TV Te C(o)(f f )— (2.22')

8' V Te C(o)(f f )
ne +0

1 d 1

dX X dX

A (x) d F(x)
dx A(x)

(2.27')

Successive integrations of this "telescope" third-order
differential operator will uncover F (x) for any given driv-
ing term and introduce three arbitrary constants; a chain
of operations to follow will lead first to K (x) through Eq.
(2.20) and then to a'(x) through Eq. (2.16); finally a last-
step integration will yield the factorized distribution
function a (x) and introduces a fourth arbitrary constant.

It remains to discuss the boundary conditions to be ap-
plied to the collision operator. Conservation of the total
number of particles implies that

fC,', '(f„f,)dv=4rrvr, f C,', '(f„f, )x dx
0

(2.30)

which, by Eq. (2.22'), is the same as

(2.29)

where rE = T, (dT, /dt) is the characteristic energy loss
time.

Since the form of the Coulomb loss terms does not de-
pend on the unknown distribution function, they may be
treated on the same footing as the external sources, and
we write for the true collision operator, instead of Eqs.
(2.22) and (2.27), the purely differential expressions

VTe 2 2 2 —x~
3/2 3

S(v)= ——x —1 e (0&x & ~ ) .
n(vo g 3

U(x) (2.31)

(2.28b)

XThe term of the form e " /x in the collision operator
thus describes how electrons of zero speed are created by
collisions in the plasma; and since energy is continually
redistributed among the remaining, fewer particles, it is
accompanied by some net enhancement in the energy
density. That is, it represents a source for both particles
and energy. On the other hand, the term

X—( —', x —1)e " corresponds just to a removal of energy
by the suprathermal particles, the number of which is
vanishingly small.

This latter term is frequently used to counterbalance
the energy input from a source which does not introduce
particles into the system ([2,4,5] among others). It can
also be interpreted as the time rate of change of the

=0, (2.32)

which, using again Eq. (2.22 ), gives by partial integration

f x dx =x U(x) 2f xU—(x)dx =0 .
o «0 o

(2.33)

By substituting U(x) as given by Eq. (2.24) into the in-
tegral on the right-hand side, we get

Similarly, the condition that the total energy is con-
served upon mutual collisions of the electrons translates
as

fC,', '(f„f, )—,'m, v dv=2~m, vz; f C,', '(f„f, )x dx
0
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x U(x) —2W(x) =0 .
0

(2.34)
F, (x}=0,

F2(x)= —A(x),

L (x)+S(x)=C,', '(f„f, ), (2.35)

These conditions must be compatible with the balance
of particles and energy in the kinetic equation. Writing
this symbolically as 4 ~ y dy 4 x y dy

0 A (y) &~ g A (y)

(3.3)

where S(x) represents the given external source and
L(x) the term of losses, and taking moments of the
zeroth and second order, we have

f L(x)x dx+ f S(x)x dx= f C,', '(f„f,)x dx

(2.36)=0,
f L(x)x dx+ f S(x)x dx= f C,', '(f„f,)x dx

(2.37)

These constraints fix the rates of removal of particles
and energy by L (x), for example by specifying two pa-
rameters ~& and vE with the meaning of characteristic
loss times; if the Coulombic loss terms are employed, the
characteristic times can be simply related to the con-
stants C and K ( ~ ) by which they come multiplied in Eq.
(2.27). Since Eqs. (2.36) and (2.37) do not require a
knowledge of the solution, they are easier to apply than
Eqs. (2.31) and (2.34). These latter ones, however, retain
their usefulness, helping to simplify the derivation of the
solution as will be shown subsequently (Sec. IV). We also
postpone to the applications the discussion on the global
boundary conditions to be applied solely to the solution.

4 ~ dyF4(x) =A(x) —f
p A(y)

E,(x)=0,

K2(x) =—4—8
7T

(3.4)

We have explicitly included the trivial solution in the
set since there will be associated with it a nontrivial solu-
tion for the distribution function. The solution labeled
F3(x) is a combination of the two solutions that come
multiplied by A, and A2 in Eq. (3.2). The reason we
prefer to deal with F3(x} rather than with the single-
integral function (4/&m. )f y dy/A (y) is that the fac-
torized distribution function generated by this latter solu-
tion is singular both at the origin and at infinity, while
the one generated by F3(x) exhibits just the singularity at
infinity, the other being suppressed by a similar singular
behavior at the origin coming from the added F4(x).

The functions K(x) can be evaluated according to Eq.
(2.20) and are

III. THE SOLUTIONS
FOR THE COLLISION OPERATOR

A. The general solution

We solve first the homogeneous equation

4
K3(x) = —e

7r

+ 4 x —1

V'~ A(x)

4 ~ y dy 4 y dy

4 A (y) +m ( A2(y)

8VTU Tq C~(~)(f f )
e 0

1 d 1 d
dx x dx

A'(x) d F(x)
x 2 dx A(x)

(3.1)

J (x)= e " +
0 A (y) v'm- A(x)

By use of Eq. (2.16) the a'(x)'s are obtained as

a', (x)=0,
a2(x) =2x,

By repeated integrations we obtain

F(x)= A, A(x) f 2
+ A&A(x) f0 A (y) 0 A'(y)

+ A3A(x), (3.2)

where g is some reference value of the variable and
A

$
3 2 A 3 are arbitrary constants. From this we may

construct the following four basic independent solutions
for F(x):

4 ~ y4dy 4 .y~dy
a3 x = 2x

~ A'(y) e~ I A2(y)

(3.5)

a4(x) =—

2x8
A(x)

8 xydy
0 A(y)

from which the four independent solutions for the factor-
ized distribution function follow by integration:
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a, (x)=1,
az(x)=x

a, (x)=
k A(y)

4 4d
a,(x)=

k A(y)

(1+ 2) 4 xy dy 4 y dy

0 A (y) &m. ( A (y)
2 2X

A(x) A(g)

4 2 xy
k A'(y)

(3.6)

4 ~ 3 1
f2 kx =&—f, y

9m 1

16 y6
27m 1 —1 dy,

y

(3.11)

The function represented by a3(x) is thus finite at the
origin but for large values of the variable grows faster
than allowed by the physical requirements on the solu-
tion, while a4(x), in contradistinction, remains exponen-
tially bounded at infinity but diverges at the origin.

It is convenient to handle expressions for the solutions
in which the singularities, both at the origin and at
infinity, appear neatly isolated from the integrals. This
can be accomplished with the help of the functions

In the limit x —+0, we find that

a3(x)= x+O(x ),3&7r
(3.7)

4 xf4/x= —f y
9m 1

16 6
—1 dy, (3.12)

a~(x) = — —+0 (x),
2 x

except for constants, and in the limit x ~ ~, that

Xa, (x)-e" +O(x ),
Xa4(x)- — —x'+O(e ) .

15&Fr

(3.8)

(3.9)

(3.10)

f6(k'x)= —f y', —1 dy,
A (y)

(3.13)

which remain finite in the whole domain of the variables
g and x, and in terms of which the singular solutions for
the factorized distribution function can be written as

3&m.

4

X 2

a3(g;x)= f6(g;x)+(1+x )[f2(g;x)—f4(g;x)]+ — + —(x —g' )

+(1+x )
— —(x —g )+ —(x —g )—4 3 3 4 3 3 9&m 1 1

5&~ 3&+ 20 x X

1

f3
(3.6')

a (g;x) = f,(g;x) x'f, (g; )+ —( —g')+
5

9+m 3 3 1 1 1+ X
2 5 2 x

1

g3
—(x —g')

3

ff, (v)dv= —f a(x)x e " dx,
n, n,

' v'~ o
(3.14)

hE
"eTe n, T, 2f m, u f,(v)dv—

Expansions and tables for f2(0;x), f4(0;x), and f6(0;x)
are provided in Appendix C.

We calculate now the number of particles and the ener-

gy carried by the solutions we have just found. The frac-
tional number of particles and the fractional energy in
the electron distribution function are defined, respective-
ly by

An ) hE)=1 =3
2 '

3 ~E2 15
2 n, T, 4

«3 S 2, g3=——e~ + —(g —1)
2 v'm A(g)ne

—k' —g6(0'4»
7 rr

(3.16)

variable x in which they will contribute to the solution of
a physical problem. The results for the four independent
solutions then are

— 2—f a(x)x e "dx.
&rr

(3.15) 21 3 ~2+ 5
(~2 1) g 6

n, T, 4 2 v'm A(g) 7&m.

In carrying out the integrations over the solutions
a3(g;x) and a4(g;x) we respectively replace the upper
and the lower limit by g, anticipating the domains of the

——g6(0;g),
3
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2 1

A( g')

hn 4 3 9v'rr 1= f4(k; ) —
2 fz(k'» —g4(0'»

ne

The solution is

4&U Te
3

W(x) = P(x),
ne +0

where

(3.23)

45''~ 1

16
27&~ 1 5

4 g v'~
1

A(g)

where

g4(gx) = — y —1 dy,
4 «

Ay

~E4 3 15 3f~—(k ~ ) — f2(4 ~ ) ——g4(k; ~ )
ne Te

(3.17)

P(x)=x N(x) —2M(x), (3.24)

P'(x) =2xN (x ) . (3.26)

and M(x), defined by

M(x)= —,
' f y S(y)dy, (3.25)

represents the power absorbed from the source by parti-
cles with normalized speeds less than or equal to x. Note
that

g6(t;x)= '- f y' A'
Ay

(3.18)

The partial integrations that are needed to arrive at these
expressions are facilitated by use of the properties of the
functions A„(x) listed in Appendix B. The small —x ex-
pansion and a numerical table for the newly defined func-
tion g4(0;x) can be found in Appendix C.

A (x) d F(x)
dx A(x) n, vo

and yields

4+UT, «y2P(y)E(x)= A(x) f dy .
n vo g A(y)

To find E(x) we solve Eq. (2.26), which is

4&U Te
2

P(x) (3.27)

(3.28)

B. The particular solution

1 d U 8~Use
S(x) .

dx ne +0

The solution is

87TU Te
3

U(x) = N(x),

(3.19)

(3.20)

where

It may be of interest to have a closed form representa-
tion of the solution of the Fokker-Planck equation for a
general driving term:

C,', '(f f)=S(x) .

We shall assume that S(x) vanishes for 0 & x & g, that
it is no more singular than a Dirac 5 function at the point
x =g, and that it vanishes exponentially for large x:

XS(x)-e for x~~. These conditions correspond to
those which we are bound to encounter in all situations of
physical interest. The point x =g may coincide with the
origin.

Using the representation of Eq. (2.22') for the collision
term, the equation to be solved then reads

By following the steps of Eqs. (2.20) and (2.16), the as-
sociated factorized distribution function can easily be
found to be

a(x)=0 (x &g),
n, vo v'm e" P(x)a(x)=

4mv3, 4

(3.29)
V7r «ye» P (y )

d
2 g A(y)

+(1— ') f y, 'y'd
A'(y)

+f dy (x)g') .
A'(y)

From this formal representation of the solution we see
that the source function P(x) is to be interpreted as an
effective driving force for disturbances to equilibrium; the
definition [Eq. (3.24)] gives it as a measure of the (time
rate of) excess of energy of the particles introduced into
the system by the source within a sphere of normalized
radius x in velocity space if they all had the energy of the
particles lying on the surface with respect to the true en-
ergy content deposited by the source into the internal
volume. The fractional number of particles and the frac-
tional energy can be evaluated as before and are given by

1 d8' 8~UTe
N(x) .

x dx ne vo
(3.22)

N(x)= f y S(y)dy (3.21)

is a function which gives a measure of the rate at which
electrons with normalized speeds less than and equal to x
are introduced by the source into the plasma.

We next find W(x), which, from Eq. (2.24), is deter-
mined by

"e~O An

47TU7, ne3

v'rr - 1 —1 xe" P xdx
2 g Ax

+ (. 1
1

x P(x)d
A(x) A(x)

1 ~x P(x) ~ x N(x)
2

dX dx
2 g A2(x) g A(x)

(3.30)
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ng+0 5E 3 net hn

4~v~, n, T, 2 4~v&., n,

3 ~x P(x)
dX

A'(x)
rZbKovonb2

C,'b'(Fbr„fb)= 3r~ 3 S(x),
v z-q

(3 31) where

(4.3)

C. The solutions
for the "Coulombic balancing terms"

For sources of the form
X4(2e

3 x
(g&x & ~},

—x —1 e " (0&x &g)
2 2 2

3
(4 4)

16 eS~(x)= (3.32)

XSE(x)= — —x —1 e
7r

(3.33)

which appears in Eqs. (2.22) and (2.27), we obtain, respec-
tively,

Fbr(x) = —1, Kbr(x) =0,
Fz(x) = —

—,'x, Kz(x) = —1,
(3.34)

(3.35)

and, since in both cases K'(x) =0, the particular solutions
for the factorized distribution function coincide with the
constant solution a, (x) of Sec. III A. It should be noted,
however, that neither of the pairs of functions F(x) and
K(x) above appears in the set belonging to the homo-
geneous differential equation, and in particular that
F~(0)WO and Kz( ~ )%0. This indicates that their only
effect is to give room for boundary conditions on the
equation that ensure that the conserving properties of the
collision operator can be preserved in any case.

g= ub /ur;, Zb is the ionic charge in the beam, K0 is the
space average of K(8), r is the ratio of Coulomb loga-
rithms: r =ink, ,b/ink, „,and a term of the order of the
ratio of the electron mass to the fast ion mass has been
neglected.

Coulomb collisions only being considered, we may ab-
stain from including a source term for the particle density
in the Fokker-Planck equation; energy, however, is
effectively transferred from the injected ions to the elec-
trons in the bulk plasma by collisional interaction, and
balance requires an energy loss term to be included in the
equation, which we shall take to be of the form of Eq.
(3.33). The steady-state Fokker-Planck equation then
reads

C'Sb (x ) =C,', '(f„f, ) +C,'b '( FM„fb ), (4.5)

1 dU
dX

nb
S(x)8

rZbK0
7r n,

where C' is some constant, or, using the representation of
Eq. (2.22') for the collision operator:

IV. EXAMPLES OF APPLICATION

A. The ion-beam problem

+ —C —X —1 e
8 2

v'g 3
(4.6)

Besides its practical importance, this problem has a di-
dactic interest in that, because of the form of the source
term, the solution can be expressed just as a combination
of the solutions of the homogeneous Fokker-Planck
differential equation. The perturbative treatment of the
equation requires that the fast ion density nb is much
lower than the electron density in the bulk plasma; con-
sistent with this, we shall assume that, to first order in
nb In„ the collisional interaction between the electrons in
the plasma and the injected ions can be approximated [6]
by

C,b(f„fb)=C,b(FM„fb) . (4.1)

Here fb is the distribution function of the fast ions,
which, for a monoenergetic beam, takes the form

nb 5(u —
ub )

fb(v)= K(8),2' (4.2)

where ub is the speed and K (8) is an arbitrary function
which describes the angular distribution of the ions in the
beam. This leads to the following form for the isotropic
term in the expansion of the collision integral in zonal
harmonics of the pitch angle:

The new constant C =(8vrur, /n, v0)C' may be deter-
mined from the requirement that energy is balanced and
1S

r

C =2rZ Kb 0
g

(4 7)

Now, the driving terms for collisions in Eq. (4.6) are
exactly of the form of the Coulombic sources discussed in
Sec. III, and therefore the solution for the factorized dis-
tribution function can be written down immediately as a
combination of the solutions of the homogeneous equa-
tion. Dividing the domain of the independent variable
into two regions I and II separated by x =f, we have

a, (x)= A, +A2x +A3a3(gx) (0&x &g),
(4.8)

a„(x)=A', + A2x +A4a4(g;x) (g&x & 00),

where the A's are constants and we have omitted in each
region the solution which would introduce a physically
unacceptable singularity. The associated solution for
F (x), from Eqs. (3.3), (3.34), and (3.35), is

82
F&(x)=B&+ x —A~A(x)+ A3F3(x),

(4.9)
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F, t( x)=8', + x —A3A(x)+ A4F4(x),
B2

where the B's are constants. The auxiliary function
W(x), evaluated from Eq. (2.26), is then

a, (x)=A, +A2x (0&x &g),
v'Tr

a„(x)= A, + A2x + rZbKO
2 n,

(4.15)
A(g) a4(gx)

W, (x)= — —B,e " +82A(x) ——82x e
4 —x' 4

17 3 17

+ —A3(x —1),
(4.10)

X—8', e " +82A(x) — —83x e
17 3 17

Wtt(x) =—

4+ —A4,

U&(x)= —B,e + —82x e + —A3
3 17 17

(4.11)
U„(x)= —8', e + —B~x e

17 3 17

from which follows, by Eq. (2.24), the expression for
U(x):

ne

hn)
+A)= A)

ne ne

(g'&x & ~) .

There remain undetermined the constants A
&

and A2,
which are fixed neither by analytical requirements on the
solution nor by physical constraints on the equation: the
same as for the equilibrium Maxwellian distribution,
which also depends on two free constants, here they
specify arbitrarily the contents of particle and energy to
be carried by the nonequilibrium distribution function.
To ascribe definite values to A, and A2 we follow the
usual prescription of perturbation theory [7] by which
only the leading term is to contain the macroscopic infor-
mation of the solution represented by the whole perturba-
tion series. The number of particles and the energy asso-
ciated with a (x) are given by

We may now determine the arbitrary constants. Tak-
ing the derivative of U(x) and then substituting it into
Eq. (4.6), we find

r

3/17 2 nb A(g) ~n4
rKoZb (4.16)

Bi =0,

82 =2rZbKO ——[1—A(g) ],2 "b 1

ne

t (4.12)

E hE, AE2= A) +A2

A(g) ~E4
(4.17)

2B'=—rZ K1 3 b 0
ne

nb
B2 = —2rZbKo

ne

g2

A(g)
Making use of Eqs. (3.16) and imposing b,n/n, =O,

bE/n, T, =0, we obtain a system of two algebraic equa-
tions which is solved by

We next apply the conditions of conservation of parti-
cles and energy by the collision operator, namely, Eqs.
(2.31) and (2.34). We obtain

nb
f4(g; oo )+g4—(g; oo )

A3=0,
r

A(g)
(4.13)

nb

ne

93/17 1 A(g)
4 g g

(4.18)

Ai =Ai,
A2=A2 .

(4.14)

With this, the solution for the factorized distribution
function can be written as

Since S (x) exhibits a jump discontinuity at x =g, U(x)
must be continuous: U»(g) —U&(g) =0, a condition au-
tomatically fulfilled for the values found for the con-
stants. Similarly, it can be verified that the requirement
of continuity upon W(x) is already satisfied. Also a'(x)
and a (x) must be continuous across x =g, and we get

3v Tr 1 27&17 1

4 3 10

4 , 1
1

A(g)
3v'Tr A(g)

A graphical representation of the solution for a few
particular values of g is given in Fig. 1. We observe that
for /=0 the beam ions become indistinguishable from the
background ions in the bulk plasma, and we expect ac-
cordingly a (x) to vanish identically. This is indeed what
our solution shows, but that would not be the case had
we taken 6 n /n, %0, b,E/n, T,AO.
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+C(0)(f f ) (4.21)
W

and rD
——U

5 —2(~D

The wave int d
'e c is the characteristic d'ff
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gy into the system but not par-

d b pensating term lik h
okk -Pl k

1

equation then re de eas

2 3
(0)

x FM, (x)=
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-4.00

-5.000.00 1 .00 2.00
I

3.00 4.00
X &D 8 g2

3&m.
(4.22)
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1 dU
V()7 D dX

X2 3
e

2
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h e ph~~~ ve
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~U) 5 v
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BFM

Bvg
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(g&x& ~) .
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3/2 3

Vz; &DW
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ty space
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'

1

' (0)

8t

V01 D UI (x ) = x A (
7D

x ' x)+HI,
(4.24)

+D

&
—(x —g)e "+AA'( )+VQ D UII(x)

VQrD WI(x) =—+D 3 xA(x) + +—A(x) —— ' x 8
2

(4.25)

2
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the collision operator: x U(x) —2W(x)~0 =0 furnishes
no information besides the relation already found be-
tween the difFusion time and the energy loss time.

We proceed by solving Eq. (2.26) for F(x) and find

vp'rD a I (x ) 2Cx

1 x
vp'rDQ II(x ) 2 C + x 2

(4.29)

1 &u, &m
vp~DFI(x) = —— x + AF3(x)

+ +B F~(x) —Ci A(x),
2

~2 xy dy x ydy—e x +4x
0 A'(y) g A(y)

Note that a'(x) is continuous. So must be the factorized
distribution function, which we find to be

(4.26)
1 &D

vp~DF„(x) = —— x + AF3(x)

+ +B +e ~ F4(x)+ 1 —
g

V07. Dai(x)=D +Cx (O~x ~g),
vo'rDaII(x)=D+CX +a (x) (4~x

where

(4.30)

a (x)= [(x —1)g, (g;x) —g3(g;x)]+e ~ a4(g;x)

+x —2A(x) f —CzA(x),
g Ay

where C& and C2 are arbitrary constants. Since the func-
tions F~(x) and F3(x) give rise to physically unacceptable
singularities for the distribution function at the origin
and at infinity, respectively, we must have ( A /2)+B =0
from the expression for F,(x) and A =0 from the expres-
sion for F„(x). Imposing in addition the requirement of
continuity of F(x) across x =g we have finally

+(x —g ) —(x —
g ) —1+2 2 1 2 2 1

2 A(g)

3&m. x 1 1x +———
2 g g x

(4.31)

is the particular solution normalized to vp~D, and g, (g;x)
and g3(g;x), defined by

vp~DFI(x) = —— x —CA(x),1 +D

7E

4 x—fy Ay
1

y
(4.32)

(4.27) g, (g;x)= f y —1 dy,Ay
(4.33)

vpgDF„(x)= —— x +1—g +x

C+ A(x)+e ~ F~(x)
A

—2A(x) f"y"y,
g A(y)

'

where C is a constant.
The solution for the function K(x) follows from Eq.

(2.20) and is

are regular functions in the whole domain of variation of
g and x. Expansions and numerical tables for gi(0;x)
and g3(0;x) are provided in Appendix C.

It remains to specify values for the constants C and D,
which again we shall do by demanding that the perturba-
tion to the distribution function be void of particles and
energy. The result is

[gi(g; ~ )+g3(g; ~ )]—h(g; oo )

+e & f4(g; oo )+g4(g oo )——

3 +D
vpr~KI(x) = ——

+E

4—Ce

3&a 4 e &'

vprDIC„(x ) = —— +2rE ~AX

(4.28)

+ 3&~ 1+&2
2 g A(g)

2 gi(g; oo )

(4.34)

4 1

A(g)
(~ )

3 m' 1 27 m' 1 4
4 g' 10 g 3v'~

7r g A~(y )

8 2 x ydy

g A(y)
'

from which, using Eq. (2.16), we obtain a'(x) as

where

1

A(g)

2AI
h(g';x)= f dy

A(y)
(4.35)
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x30
1 .00

g Q a(x)

-0.60
0.00 5.00

X

and is tabulated in Appendix C. Graphs of the factorized
distribution function are given in Fig. 2.

We take this as a case study for the question of the glo-
bal boundary conditions on the equation and the conserv-
ing properties of the operator. We note, from Eq. (4.27),
that F,(0)=0, and from Eqs. (4.28) and (4.22), that
E»( ~ ) =0, indicating that the solution indeed meets the
conditions of overall balance of particles and energy.
Had we omitted the energy loss term in Eq. (4.21), under
the same requirements of continuity of U(x) and W(x)
of necessity, we would have found, instead of Eq. (2.34),
that

8 ex U(x) —2W(x)Io" =—
Vir vorD

FIG. 2. Solution for the factorized electron distribution func-
tion for the electron cyclotron wave problem. The parameter g
is the ratio of the wave phase speed to the electron thermal
speed.

C. Diffusion by electron Landau damping
of radio frequency waves

As a final example we consider a quasilinear diffusion
term of the form proposed by Fisch and Karney [9]:

= a CO

DL5
II

~FM

II

(4.36)

where DL is a constant and f, on the right-hand side has
again been replaced by F~, . Expansion in zonal harmon-
ics gives the source term

apparently confirming that C,I, '(f,f), as given by Eq.
(2.22'), acts as an energy source. The terms depending on
rD/rz would not have appeared during the derivation of
the solution and, in particular, they would be missing in
Eqs. (4.28) for E (x), which would pass to furnish
with the change a non-null result, namely,
vorDE»(oc )=4/v'rre ~ . But this means that the col-
lision term that has actually been used is not the one of
Eq. (2.22'), but rather the one of Eq. (2.27), that is, con-
taining an inhomogeneous term that shows itself to be the
precise reproduction of the energy loss term which had
been omitted: in one way or another, whether or not we
have written it explicitly, it creeps into our equations to
ensure that energy is conserved by the collision operator.
There is no solution that does not imply an energy bal-
ance between sources in the Fokker-Planck equation;
and, as can be seen from the present example, that solu-
tion is not modified in the least by the "suppression" of
the energy loss term, since the constant terms depending
on rD/rz in Eq. (4.28) would be eliminated anyway when
taking the derivative of E (x) in the operation of finding
a'(x).

S(x)=—
0 (0&x &g)

5( —g) 2$
x xTe L

Xe " (g&x & Oe),
(4.37)

where g = ro/kl uz; and rI =uT, /DL is the electron
diffusion time in velocity space. To counterbalance the
energy that is fed by this source into the system, we as-
sume a sink of the same Coulombic form that we have
been using throughout. The characteristic removal time
~E must be chosen in accordance with

being that, because of the Dirac 5 function, U(x) and
a (x) are no longer continuous, but exhibit a finite jump
at x=('. We merely quote the result for the factorized
distribution function:

vori, a, (x)= Ai+ A2x (x &g),

rL, 8
3v'm

(4.38)
2

,vraDii( )x= W i+ W2x'+ (x' —g')
A(g)

(4.39)

The source in this case is a combination of the
Coulombic balancing terms, and the solution may
proceed as in the ion-beam example, the only difference where

+g e ~ a~(g;x) (x )g),
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APPENDIX A: THE FUNCTION A(x)

The function A(x) is defined by

A(x)= —f y e ~ dy
V'7r o

and is related to the error function

(A 1)

-0.50
0.00 6.00

X

P(x)= —I e ~ dyv'~ o

FIG. 3. Solution for the factorized electron distribution func-
tion for the problem of electron Landau damping of radio fre-
quency waves. The parameter g is the ratio of the wave phase
speed to the electron thermal speed.

through

A(x) =P(x) —xP'(x) .

The first two derivatives of A(x) are

4A'(x) = —x e
~Fr

(A3)

2, = g'e ~ [gq(g ~ ) f4(g; ~ )]—

9&m
4

Aq = g' e ~ f2(g; ao ) —g —1
A(g)

(4.40)

A"(x)= ——2x A'(x) .
2
X

Particular values taken by A(x) are

A(0) =0,
A(~)=1 .

(A4)

(A5)

(A6)

3+ rr 1 27+1r
g

4
gs

4 g 10 3v'~
The following expansions for A(x) are convergent for

0&x&~
For $~0, the constants A, and A z and the complete

solution all vanish. A pictorial representation of the
solution for a few values of g is given in Fig. 3.

V. SUMMARY

4 oo 2n +3
A(x) = g (

—1)"
V ~ „o (2n +3)n!

4 „2 2" 2~+3

(A7)

(A8)

The main result of this paper is substantiated in Eq.
(2.27'), which expresses the collision term for an isotropic
distribution function in velocity space as an exact third-
order difFerential operator. The general solution for the
factorized distribution function can be constructed from
a combination of the four independent functions de-
scribed by Eqs. (3.6). The particular solution for any
given driving term in the kinetic equation finds its repre-
sentation in Eq. (3.29). The conditions of particle and en-
ergy conservation upon mutual collisions of the electrons
translate as Eqs. (2.31) and (2.34), respectively. The
Maxwellian distribution function is a solution in the equi-
librium of the isolated system and in the presence of
sources of the form of Eqs. (3.32) and (3.33), correspond-
ing to the rate at which electrons are generated with zero
and with infInite speed, respectively, by collisions in the
bulk Maxwellian. These Coulombic sources can be used
to balance particles and energy introduced by arbitrary
sources and guarantee the existence of a steady-state solu-
tion to the kinetic equation.
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For large x, the asymptotic expansion of A(x) is

(A9)

A(x)-1— 2 -2—xe
m'

2n —1 !!X 1+ +g ( —1)"
n=1

(A10)

For small values of x the following power series expan-
sions can be used:

A(x)= —x — —x + —x — —x4 3 4 5 2 7 2 9

S&~ 7v'~ 27&~
Part of the analytical calculations were checked by A.

Goya, who also performed the numerical computations.
+ 1 11 1—X 13+ e ~ ~

66&m 390Vm
(All)
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Ap(x) =2/(x) =2A(x)+ A'(x)
(B3)

h(x)
A, (x)== 2 A'(x)

2x
(B4)

The explicit forms of the ones of use in this paper are

0.00
0.00

FIG. 4. The function A(x).

A3(x) = ———A'(x)—2 1, A'(x)
&7r 2 2x'

A4(x) =
—,'A(x) —

—,'xA'(x),

A5(x) = ———x A'(x) —A'(x)—4 1, A'(x)
2

A6(x) = —", A(x) —
—,'x A'(x) ——', xA'(x),

A7(x) = ———x A'(x) ——x A'(x) —3A'(x)12 1 4, 3
v'~ 2 2

(B5)

(B6)

(B7)

(B8)

16 6 32 s+ 736 ]p 1856
9m 15m 525m 2835m

A'(x)
X

(B9)

1

A(x)

17 504 i4 1984
72 765m 27 027~

3+Fr 1 9&@ 1 153&Fr 227&rr
4 ~3 20 x 1400 21 000

4909&m ~ 132 751&m.
10 780 000 700 700 000

(A12)

(A13)

A„"(x)=(n —2x )A'„,(x)= ——2x A'„(x) .
n

X
(B1 1)

A (x)=—'"A(x) ——'x A'(x) ——'x A'(x) ——"xA'(x)

(B10)

Useful relations among the derivatives are
r

1 9m 1 27m 1 513m 1 401m

A (x) 16 x 40 x4 1400 x 3500

11 313m 2 146 151m 4

539 000 87 587 500
(A14)

APPENDIX C: EXPANSIONS AND TABLES
FOR FUNCTIONS DEFINED BY INTKGRALS

For the functions introduced in the main text the fol-
lowing expansions are valid for small values of x:

A'(x) 3 6 24 3 16 5 1504
A(x) x 5 175 2625 1010625

11456
65 690 625

(A15)

Xe
A(x)

3V'~ 1 + 6e~ 1+ 327M'~

4 3 5 K 350

1234&~
2625

(A16)

A graphical representation of A(x) is given in Fig. 4.

APPENDIX B: THK FUNCTIONS A„(x)

The functions A„(x) are defined by

A„(x)= —f y "e ~ dy (n =0, 1,2, . . . ) .
rr

(B1)

Writing A(x) for A2(x), they can be evaluated recur-
sively by means of the expression

9~ 1

16 y6
f2(0;x)= f y

vr p A (y)

f4(0;x)= —f y
A2(y)

9~ 1 —1 dy

27+rr 171Vn 3 401V'm
10 350 4375

11 313&m 7 4
943 250 5&+

(C2)

f6(0 x)= f y6 —1 dy+rr p A (y)

—1 dy
27~ 1

40 y4

513&rr 401&sr 3 11 313v'~
350 2625 673 750

146 151&m. 7 4
153 278 125 3V'rr

A (x)= ——x" A'(x)+ A (x)1
pg 3 r n 1

ll 2 n 2
9&sr 9&m 3+ 513&m 5 401&mx+ x+ X + X

4 10 1750 6125

knowing that

(n =2, 3,4, 5, . . . ),
+ ~ ~ ~

4
7&rr

(C3)
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TABLE I. Values of the functions f6(0;x), g3(0;x), g4(0;x), and h (0;x).

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6

f6(0;x)

0.000 00
0.810 53
1.702 29
2.772 17
4.13645
5.91396
8.187 71

10.95499
14.088 85
17.339 62
20.393 21
22.969 65
24.912 42
26.218 78
27.002 27
27.422 17
27.623 80
27.71080
27.744 64
27.756 52
27.760 30
27.761 39
27.761 68
27.761 75
27.761 76

g3(0;x)

0.000 00
0.603 93
1.224 86
1.863 45
2.506 02
3.129 15
3.705 04
4.207 51
4.617 74
4.928 46
5.145 08
5.283 17
5.363 29
5.405 47
5.425 62
5.434 34
5.437 78
5.439 00
5.439 41
5.439 52
5.439 56
5.439 56
5.439 57
5.439 57
5.439 57

g4(0;x)

0.000 00
0.060 58
0.247 20
0.566 71
1.01640
1.576 67
2.209 13
2.860 93
3.474 63
4.001 21
4.411 33
4.700 18
4.883 65
4.988 63
5.042 76
5.067 93
5.078 52
5.082 56
5.083 95
5.084 39
5.084 52
5.084 55
5.084 56
5.084 56
5.084 56

h (0;x)

0.00000
0.059 52
0.232 41
0.502 20
0.843 22
1.223 46
1.608 42
1.965 95
2.271 10
2.509 88
2.680 47
2.791 28
2.856 53
2.891 29
2.908 05
2.915 36
2.918 26
2.91930
2.91965
2.91975
2.91978
2.91978
2.91978
2.91979
2.91979

g, (0x)= —f y
4 x

o A(y

9 51 3 227 5 4909
5 350 26 250 18 865 000

quicker convergence:

fz(x) = f y —1 dy,
A (y)

(C8)

2 2—x
7T

(C4)
TABLE II. Values of the functions 1'2(x), f~(x), and g, (x).

g3(0;x)= f y —1 dy
o A(y

3 3 153 5 227 x=3x+—x + x + ~ 0

5 1750 36 750

(CS)

g4(ox)= f y —1 dy
o A(y

3 2 9 4 51 6 227 8——x + x + x + ~ ~ ~

2 20 700 42 000

(C6)

2AI
h(0;x)= f dy

o A(y)

2 3 4 4 6 2 g=—x — x+ x+ x
2 10 175 2625

(C7)

For large values of x, Tables I and II can be used. Be-
cause f2(0;x), f4(0;x), and g, (0;x) converge too slowly
to their limiting values as x~(x), numerical values are
instead tabulated for the closely related functions of

0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2

f2(x)

19.074 28
12.781 31
9.161 73
6.844 52
5.243 45
4.075 26
2.500 58
1.520 67
0.894 73
0.500 83
0.263 39
0.128 95
0.058 40
0.024 37
0.009 35
0.003 29
0.001 07
0.000 32
0.00009
0.000 02
0.000 01
0.000 00
0.000 00

f4(x)

15.138 36
13.264 65
11.751 48
10.457 71
9.307 25
8.257 39
6.375 63
4.735 40
3.338 97
2.209 99
1.360 05
0.772 40
0.402 63
0.192 01
0.083 63
0.033 25
0.012 07
0.004 00
0.001 21
0.000 33
0.000 08
0.000 01
0.000 00

g)(x)

4.382 48
3.312 95
2.546 08
1.973 66
1.535 01
1.193 23
0.711 78
0.411 40
0.227 28
0.11872
0.058 12
0.026 49
0.011 18
0.004 36
0.001 57
0.000 52
0.000 15
0.000 04
0.000 01
0.000 00
0.000 00
0.000 00
0.000 00
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f4(x)= —f y', —1 dy,
x +(y)

—f y
4 ~ 1

x Ay

(C9)

(C10)

It is useful to know that

f2(0; 0c ) =0.108 16,

f4 (0; 00 ) =9.654 52,

g ) (0; 0c ) = —0.98 1 13 .

(Cl 1)
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