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Electric-field-induced change of the order parameter in a nematic liquid crystal
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We measure optically the increase of quadrupolar order AS, induced by a stabilizing electric field E, in
the nematic liquid crystal 4-n-pentyl-4-cyanobiphenyl with large positive dielectric anisotropy e, —10.
bS shows a linear and a quadratic dependence on E. Both effects are comparable for the largest field
E-3X 10' V/cm. The linear variation is interpreted as originating from the quenching of macroscopic
orientational Auctuations, while the quadratic contribution is a superposition of the microscopic Kerr
effect and of a saturation term due to the macroscopic effect.

PACS number(s): 61.30.Gd, 78.20.Fm, 78.20.Jq

phase. L =[L&+L2(1+3cos 8)/6] (Ref. [5]) with L&,L2
constants and cos8=(VS n)/~VS~.

In the homogeneous nematic phase, in the absence of
an external field, f is minimum for a nonzero order So
which minimizes (1). Applying a stabilizing electric field
E, S is expected to increase weakly from So. f(S) can be
written as

Nematic liquid crystals (NLC's) present quadrupolar
ordering around the "director" n (n = 1). This ordering
is described by the usual traceless tensor [1]
Q &=S(3n n& 5&—)/2 where O~S ~ 1 is the order
modulus. Macroscopically, a nematic phase presents a
dielectric or magnetic susceptibility anisotropy propor-
tional to Q, so that electric or magnetic fields couple at
even powers with the nematic order. By applying a field
E along n on a nematic phase, one can change its order-
ing. When this coupling is destabilizing (for example,
negative dielectric or diamagnetic anisotropy) the nemat-
ic direction n rotates at constant S, producing, for in-
stance, the well-known Freederickz transition [1]. For a
stabilizing situation (positive dielectric or diamagnetic an-
isotropy) n remains fixed but S should increase. This
effect has two origins: the well-known Kerr effect, first
considered by Hanus [2] for optical fields and later by
Fan and Stephen [3] for low-frequency fields, describes
the lowest-order microscopic coupling, E Q &E13-SE,
of S with E, quadratic in field. The second one, predicted
by de Gennes [1],originates from the quenching of mac
roscopic nematic fluctuations and it is linear in field. Up
to now the Kerr effect of nematic materials has only been
observed in their isotropic (I ) phase [4,5] where S=0. In
the nematic (X) phase, a weak fiuctuation quenching
effect was long ago observed with large magnetic fields
[6,7]. Experiments with a large electric field [8] did not
lead to conclusive effects. In this paper we experimental-
ly demonstrate for the first time the simultaneous ex-
istence of both linear and quadratic changes of S induced
by a stabilizing electric field in a strongly anisotropic
nematic single crystal.

According to the Landau —de Gennes phenomenologi-
cal model, the free-energy density f of a NLC can be ex-
panded in powers of S as [5]

&aOf(S)= '(f")g (S—S-o)' —— (2)

where f"=d f /dS and e,0=@,/S is the dielectric an-
isotropy for S= 1. The field-induced order variation
AS+ =S—So is then

b,Sx =e,oE /(12mf") . (3)

It is convenient to write f"=L /g, where g is the corre-
lation length of the 1V —I transition. 'We now introduce
the reduced field ~E /Eo

~

where Eo, defined by
e,oEo =4'/go, is a molecular electric field and g~ is a
molecular length. For a NLC with e,0-10, L —10 cgs
units, and go-20 A, Eo is —1.7X10 V/cm. Equation
(3) then becomes

2
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where /@=go(3SO)' ~Eo/E ~

=g', ~Eo/E ~
is the usual

electric coherence length [1]. As L appears in the
definition of Eo, the reduced Kerr constant c& also de-
pends on L, while the absolute Kerr coefiicient in (3) de-
pends only on f". For a second-order nematic-isotropic
transition, cz is -So . The Kerr effect is microscopic be-
cause f describes the microscopic interactions.

In the absence of an electric field, thermally induced
macroscopic angular Auctuations of n, i.e., on wave-
lengths larger than g, also decrease S (Ref. [1]). By
quenching these macroscopic fluctuations with a stabiliz-
ing field one can expect an increase of order, linear in
field, as

where the coefficients a, b, c, d, and e are supposed con-
stants, T is the absolute temperature, and T* is the
minimum temperature for the stability of the isotropic

f=fo+ —,'a(T T*)S ,'bS + ,'—cS ,'d—S-———
+—'eS + . + 'L(VS) +—
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where K; (i =1,2, 3) are the curvature elastic constants.
The order of magnitude of c& is -(4m. ) 'So ~ . Linear
and quadratic effects compare when ~E'~ —Eo/10
=1.7X10 V/cm, or gz —10/0. E' is experimentally ac-
cessible. On the other hand, for the same NLC with

y, —10, the corresponding magnetic field
H'-1. 7 X 10 G is more difficult to achieve.

The quenching of macroscopic fluctuations with a sta-
bilizing electric field contributes to AS not only as a
linear term but also at higher orders in field. This comes
from the dependence of e, and E; on S, implicit in (5),
which becomes, at second order,

FIG. 1. Experimental setup for birefringence measurements
in a high electric 5eld. P: polarizer; 3: analyzer; PM: pho-
tomultiplier; 0: oscilloscope with the burst ac electric field

pulse Vand the light signal hi.

The negative cI is a saturation effect. One can estimate a
saturation field ~E, ~

=2SO ~EO ~
/Sc&. The total induced or-

der hS from a stabilizing field is

SS-c,/E/E, /+c, fE/E, /', (7)

where cq =cIq+cz. Because of the saturation, the total
quadratic effect is expected to be smaller than the simple
Kerr effect.

To observe AS we measure the change 6/ in the optical
path difference of a uniform nematic cell, with n perpen-
dicular to the surface electrodes ("homeotropic" align-
ment). The electric field E is parallel to the director n.
Calling e~~,e~ the optical dielectric anisotropies parallel
and perpendicular to n, the eigenvalues of the dielectric
constants are, at first order in S

(8a)

(8b)

where n0, n, are the ordinary and extraordinary refrac-
tive indices, @Iso=(eI~+2ei)/3, and e,'o is the optical
dielectric anisotropy in the perfectly aligned nematic
phase. A measurement of the field-induced birefringence
variation should then give AS.

The optical thickness difference Al of the cell is related
to its geometry as [9]

bl=dno[[1 n, sin a;—]'~ —cos[sin '(no ' sina;)]j,
(9)

where a; is the angle of incidence (Fig. 1). Shining linear-
ly polarized light at 45' of the incidence plane one can
produce ordinary and extraordinary waves, which will in-
terfere when changing a, The intensity of the emerging
light behind an analyzer is I=Io sin (fi/2), where
5=2~hi/A, is the phase difference, I0 is the incoming

beam intensity, and A, is the wavelength of light. We ob-
tain EI from 5 by measuring I at the cell output. AS is
finally calculated from Eqs. (8) and (9).

The NLC cell is made with two indium tin oxide trans-
parent glass electrodes. They are silane coated to induce
homeotropic orientation. The thickness of the cell is
fixed around d-7 pm by Mylar spacers. The experi-
ments are performed on nematic 5CB (4'-n-pentyl-4-
cyanobiphenyl) chosen for its large dielectric anisotropy.
The cell is filled at room temperature and is enclosed in
an oven whose temperature stability is —10 mK. The en-
sernble is placed on a rotating stage, below a polarizing
microscope. n is oriented at 45' with respect to the
crossed polarizer and analyzer. The cell is tilted corn-
pared to the measuring light beam for maximum
birefringence sensitivity (Fig. 1). A, is 546 nm, fixed by an
interference filter. E has a maximum intensity of 3 X 10
V/cm. Such high electric fields could give sample heat-
ing. A typical 1-K heating was measured [8] with a dc
electric field —10 V/cm. To prevent heating we use a
burst pulsed ac electric field, with a few positive and neg-
ative half-period square waves (Fig. 1) of high enough fre-
quency ( —100 kHz) to avoid ionic effects. The pulse
lasts ~- 10—100 ps with a time interval T- 10 sec. With
such ~/T &10, heating is expected to be negligible.
The pulses are produced by a wideband amplifier of 1-ps
response time, of maximum output voltage +200 V. I is
measured by the photocurrent i of a photomultiplier.
The transient variation hi (t ) during the pulse is recorded
on a digital oscilloscope.

To calibrate d, we measure b, l(a,. ) with a compensator
for 0' & a, (45' by tilting the stage in the absence of field.
From b, l(a;) and the knowledge [10] of no, n„we calcu-
late d, fitting the data to within 3%. The same measure-
ment is made for two other points of the ceil to check
parallelism. We measure the maximum i0 at the top of
the interference fringes. We fix a,. at the i =i0/2 position
to obtain maximum sensitivity. We apply E = V/d
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across the cell, and record hi(t ) during the E pulse. We
observe a weak transient signal b,i(t) which increases
within a few ps and becomes constant during the pulse.
After the pulse, bi(t) relaxes down to zero within a few
ps. b,i(t) does not change when E(t) changes its sign.
The short observed relaxation time is the signature of an
S variation at constant n. We interpret b,i (t ) as the opti-
cal eff'ect of b,S(E). We check that after each measure-
ment the photocurrent in the absence of field relaxes
down to its initial value. This ensures that there is no
visible temperature change nor degradation of the NLC.
We measure now only the stabilized b,i(t) value after its
growth during one pulse, i.e., the stabilized transient
value b,i (E ). Superimposed to it, we do observe fiuctua-
tions giving an "order" noise 5(b S ) -+0.03. For each E
we accumulate the signals of 2 pulses to decrease 5(b.S)
down to +0.002.

Figure 2 shows the measured variations of hS(E ) for
two dift'erent temperatures. In both cases, b S(E )

presents a linear and a quadratic part. For 6T
=T~I —T=3.8 K, where T~l is the X-I transition tem-
perature, curve P shows a dominant linear part even at
high-field values. For AT=0. 1 K, n shows a larger
quadratic part, which is dominant for the high field.
Qualitatively, both linear and quadratic parts of b,S be-
come stronger approaching T~I. We fit the experimental
data on the form (7). To define Eo, we take typical values
[11] go=18 A, I.=10 dyn, and e,o=20, i.e.,
Eo=1.32X10 V/cm. The solid lines in Fig. 2 show the
best fit of b,S(E ). The fit gives cI =0.42+0.02 for
AT=0. 1 K and cI=0.15+0.01 for AT=3. 8 K. To cal-
culate the corresponding theoretical values from (5) we
interpolate X, (T ) and e, (T) for b, T=3.8 K from the ex-
perimental data [12,13] while we extrapolate them for
AT=0. 1 K (Table I). The absolute accuracy on E, is
[12] —5%, and on e, it is [13] —3&o. The resulting error
on c& is —8%, while near T&l this error becomes -15/o
due to extrapolation. We calculate, finally, c&

=0.37
+0.06 and c&=0.14+0.01, respectively, in good agree-
ment with the experiments.

We can now compare the electric-field linear order in-
crease with the previously measured values obtained on
7CB with a magnetic field [6,7]. H=1.2X10 G used in
Ref. [6] corresponds for SCB to E —1.2X10 V/cm«3

TABLE I. Elastic constants K; (i =1,2, 3) in units of 10
dyn and dielectric anisotropy e, of 5CB from Refs. [12,13].

Tm —T (K)

0.1

3.8
2.0+0.2
3.8+0.2

1.0+0. 1

2.1+0.1

2.1+0.2
4.6+0.2

7.2+0.3
9.7+0.3

10 V/cm used in our experiment. They measured a
linear AS —10 for their maximum H for ET-3.8 K,
while we obtain —1.3X10 for the corresponding E.
The agreement of 5CB measurements for small E with
the magnetic-field measurements on 7CB is reasonably
good.

We discuss now the quadratic effect. We measure from
the experimental fitting c =1.1+0.1 for AT=0. 1 K and
t." =0.28+0.07 for AT=3. 8 K. We calculate now c
and cd from (4) and (6). For f" we first take from the
literature [4] the Landau —de Gennes coefficients up to
4th order in the isotropic phase (Table II). We find
c =c& +c&=—1.3+2.6=1.3+0.2 for ET=0. 1 K and
c = —0. 11+1.11=1.0+0.2 for AT=3. 8 K. The agree-
ment between experimental and calculated values is good
enough near T~l. Far from T&l, the calculated cq is —3
times larger than the measured one. Such a deviation is
due to the insufhcient fourth-order approximation in the
free-energy expansion. We fit now the So( T ) data
[12,14] to 6th order. As the data of Ref. [12] were nor-
malized using the absolute values of Ref. [14], we use
both sets of data in the fitting procedure. The coefficients
obtained from this fitting are given in Table II. Using
these data, we recalculate c =c& +c&= —1.3+2.5
=1.2+0.2 for ET=0. 1 K and c = —0. 11+0.32=0.21
+0.03 for ET=3.8 K. These values are now in good
agreement with the experimental values. The reduced
Kerr coefficient cx is thus strictly calculable from (4) in
the nematic phase of a NLC. For 5CB the reduced Kerr
coefficient is cz =2.5+0.2 for hT =0. 1 K and
cz =0.32+0.03 for AT=3. 8 K. We compare our data in
the nematic phase with the Kerr constant cz; from the
literature [4] in the isotropic phase, i.e., cx; =3.8 for
AT=0. 1 K and cz;=1.4 for AT=3. 8 K. Near T~l the
effect is of the same order of magnitude
(b,Sx.—3~E/Eo~ ) in both phases. Below T&l in the
nematic phase the Kerr effect is much smaller than in the
isotropic phase because the nematic phase is more "rig-
id.

The model assumes that the decrease of S due to mac-

20
E (104 V/cm)

FICx. 2. Order increase AS induced by a stabilizing electric
field E~~n in the nematic liquid crystal 5CB, for T= T~z —0. 1 K
(a) and T=T~I —3.8 K (P).

TABLE II. CoeKcients of the free-energy expansion in
powers of S for 5CB from Ref. 4 and recalculated from Refs.
[12] and [14], in 10 ergs/cm . Note that, because the expansion
of f in powers of S is not orthogonal, one cannot compare the
coefFicients of the first set with the truncated three first terms of
the second set.

Source

Ref. [4] 0.13+0.01 1.6+0.2 3.9+0.3 0 0
Refs. [12,14] 0.14+0.01 1.6+0. 1 6.0+0.3 18.9+0.9 32.8+1.6
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roscopic fluctuations is small enough to be considered as
a perturbation. Our experimental results show a good
agreement with the model. In fact, for our maximum re-
duced field -0.23 we measure 4S& =0.04, which remains
an acceptable perturbation of So =0.34 close to T&I.

In principle, our experiment, made on a homogeneous
sample, can only give information on the uniform free-
energy expansion coefficients through f". In the isotro-
pic phase there exist data [11,15] which also imply f",
namely the coherence length g ( T ) =L /f ". Taking L
from the IC, data [12], with the approximated relation
[16] IC; -2LS, we can estimate g(T) from our f" data.
We find /=47+5 A for b, T=O. 1 K and (=17+2 A for
AT=3. 8 K. The correlation length just below T&1 is
smaller than the isotropic one just above, g& =88—105 A,
as qualitatively expected. There are no available data for
g in the nematic phase in the literature to be compared
with our results.

In conclusion, we have observed the increase of order
induced by a stabilizing electric field in a nematic liquid
crystal. We find a linear order variation for small fields,
and a quadratic dependence for larger fields. The linear
part of bS(E) is described by the de Gennes model of
macroscopic Auctuations quenching, while the quadratic
part is described by the microscopic Landau —de Gennes
model, as opposed to a saturation from the macroscopic
e6'ect. We have then been able to separate the macroscop-
ic from the microscopic contribution to the order-
parameter increase. As discussed in Ref. [7], this
behavior should be very general for systems undergoing
an order-disorder transition, but the nematic-isotropic
transition is the only system up to now where a change of
order from the microscopic coupling with an external
field and from the quenching of macroscopic fluctuations
of the phase of the order parameter, has been simultane-
ously demonstrated.
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