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Spinodal of liquid water
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An open question in the study of water concerns the shape of the liquid spinodal line in the
phase diagram of water, a boundary which represents the limit of mechanical stability of the liquid
state. It has been conjectured that the pressure of the liquid spinodal P(T) does not decrease
monotonically with decreasing temperature T', but passes through a minimum and is “reentrant”
from negative to positive pressure P in a region of T' in which the liquid is deeply supercooled. The
conjectured minimum in P,(T) has not been directly observed due to the difficulties encountered
in experiments which attempt to study liquid water under tension. Here we exploit the ability
of molecular-dynamics computer simulations to model the behavior of liquid water deep into its
metastable region. We thereby attempt to observe a minimum in Ps(T'). We first argue that the ST2
potential of Stillinger and Rahman [J. Chem. Phys. 60, 1545 (1974)] is the best of several commonly
used water interaction potentials for this purpose. Then, we conduct simulations of a system of ST2
particles over a wide range of stable and metastable liquid-state points, and demonstrate that P,(T)
for ST2 is not reentrant. In a second set of simulations we test if the behavior we find is limited
to the ST2 potential by exploring the relevant thermodynamic region of the liquid as simulated by
the TIP4P interaction potential of Jorgensen et al. [J. Chem. Phys. 79, 926 (1983)]. We find that
the TIP4P potential confirms the absence of a reentrant spinodal. We also show how the structural
and energetic properties of both the ST2 and TIP4P liquids are consistent with the absence of a
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reentrant spinodal.

PACS number(s): 64.70.Fx, 64.30.+t, 61.20.Ja, 61.25.Em

I. INTRODUCTION

The liquid spinodal line is the limit of stability of the
(metastable) liquid state with respect to fluctuations to-
ward a thermodynamically stable phase, such as the gas.
In normal liquids, the liquid spinodal line begins at the
liquid-gas critical point and, in the plane of pressure P
and temperature T, decreases monotonically with de-
creasing T along a path lying below the liquid-gas co-
existence curve, as shown in Fig. 1(a).

It has been conjectured that such behavior is not ob-
served in the case of liquid water. As first suggested by
Speedy and Angell [1], and later developed by Speedy
[2-4] into the “stability-limit conjecture” (SLC), the lig-
uid spinodal line for water is “reentrant”: it has a min-
imum at negative P and passes back to positive P as T
decreases further, as shown in Fig. 1(b). The increas-
ingly anomalous thermodynamic behavior of liquid wa-
ter as it is cooled at positive P [5-7] can be interpreted
in terms of the approach to such a reentrant spinodal
[1-4,8,9]. For example, the maximum in the density p of
water at 4°C and the minimum in the isothermal com-
pressibility K7 at 46 °C are possibly manifestations of
spinodal-induced thermodynamic singularities occurring
in the supercooled region. Thus the SLC suggests that
the thermodynamic anomalies of liquid water arise from
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a single reentrant spinodal line that determines both the
limit of liquid superheating at high T and of supercooling
at low T'.

The SLC is strongly related to the existence of a line
in the P-T plane along which the density of liquid wa-
ter is a maximum: the temperature of maximum density
(TMD) line [10,11]. Indeed, for any liquid with a density
maximum, it has been shown on the basis of thermody-
namic arguments by Debenedetti and co-workers [12-16]
that the most physically plausible way for the TMD line
to terminate is at an intersection with a spinodal line.
Furthermore, it is shown in Speedy’s original statement
of the SLC that an intersection in the P-T plane of a neg-
atively sloped TMD line with a positively sloped liquid
spinodal line requires that the liquid spinodal has a min-
imum at the intersection point [2]. Therefore, at T less
than that of the intersection point, the spinodal is nega-
tively sloped and will occur at higher P as T decreases.
Since the intersection of the TMD and spinodal lines is in
general expected to occur in the negative P region of the
P-T plane, the possibility arises that the spinodal passes
from negative to positive P as T decreases, as predicted
by the SLC, and illustrated in Fig. 1(b).

The thermodynamic arguments used to arrive at the
above conclusions can predict the behavior of the spin-
odal line close to specific points, such as its intersection
with the TMD line. However, they do not give a good
indication of the specific shape of the spinodal in the en-
tire P-T plane. To overcome this problem, and also to
understand the global thermodynamic features in terms
of microscopic behavior, several simple models of liquids
with a density maximum have been proposed and stud-
ied analytically in the last few years [16,17]. Part of
this work has focused on the relation between the den-
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sity maximum line and the liquid spinodal. Such mod-
els have confirmed the general validity of the analysis
of Speedy and of Debenedetti and co-workers concerning
the behavior of the spinodal near its intersection with
the TMD line, but have also made clear that possibili-
ties comsistent with the reentrance of the spinodal, but
different from the SLC, are possible.

To study the scenario proposed by the SLC we have
performed a comprehensive series of molecular-dynamics
(MD) simulations, with an intermolecular potential com-
monly used to model liquid water. In contrast to exper-
iments [11,18-20], where the challenges encountered in
studies of liquid water under tension restrict the types
of measurements that are possible, the MD technique al-
lows a clear determination of both TMD and spinodal
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lines, in the positive as well as negative P regions of the
phase diagram.

The MD study presented here, which extends and com-
pletes the data presented in a recent paper [21], suggests
that the spinodal line in water is not reentrant. We show
that the intersection of the TMD line and the spinodal
is avoided by a change of slope of the TMD line itself.
Such a change of slope, observed under tension, reflects
the change in the liquid structure toward a random tetra-

_hedral network configuration.

The paper is organized as follows: In the remainder
of Sec. I we recall the definitions of metastability and of
a spinodal, and then review the motivations and predic-
tions of the SLC. We also review previous attempts to
study the spinodal line in computer simulations of liquid
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FIG. 1. (a) Phase diagram of the van der Waals fluid in the P-T plane. The liquid-gas coexistence line is shown as a solid
line ending in the critical point (e). The gas and liquid spinodals are shown as dotted lines. (b) Phase diagram predicted by
the SLC. The liquid-gas coexistence line (heavy line) ends in the critical point (e). The liquid spinodal (dotted line) bounds
the entire superheating, stretching, and supercooling regimes, and becomes reentrant where it meets the TMD line (dot-dashed
line) at negative P. (c) Pr(V) isotherms of the van der Waals equation, above and below the critical temperature. Solid
lines identify thermodynamically stable states, thick dotted lines metastable states, and thin dotted lines unstable states. The

critical values of P, T, and V are denoted with the subscript c.
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water. In Sec. IT we show that, of several water interac-
tion potentials, the ST2 potential of Stillinger and Rah-
man [22] is best suited to an exploration of the thermo-
dynamic features whose properties are predicted in the
SLC. In Sec. III we report a detailed study of the means
by which the liquid spinodal and TMD line can be lo-
cated from the ST2 simulation results, and further, that
simulations using the TIP4P [23] potential of Jorgensen
et al. confirm the ST2 behavior. In Sec. IV, the observed
behavior of the TMD line is shown to be consistent with
that of the spinodal, and is confirmed in simulations of
larger ST2 systems. Again, the behavior of the TMD line
as found in the ST2 simulations is confirmed in studies
using the TIP4P potential. In Secs. V and VI, the ener-
getic and structural properties of the liquid close to the
spinodal are examined.

A. Metastability and spinodals

In the space of variables identifying the thermo-
dynamic state of a system, the boundary between
metastable and unstable states is the spinodal, the limit
of metastability of the system [24]. The properties of the
spinodal in a mean-field approach are simply illustrated
by the classical van der Waals description of a liquid-gas
system [25]. Figure 1(c) shows Pr(V) isotherms of the
pressure of the van der Waals equation as a function of
the specific volume V for a number of T both above and
below the critical temperature T.. The negative inverse
of K, defined through the relation

—-Kp'= V(gg)r’

is proportional to the slope of isotherms in Fig. 1(c). Un-
stable states are located on the portions of the isotherms
where the slope is positive. States for which K7 > 0
are either thermodynamically stable or metastable, while
states for which K < 0 are unstable. The points
along each Pr(V') isotherm at which the slope, and thus
K, changes sign are the extrema of the van der Waals
isotherms. Since metastable states occur between unsta-
ble and thermodynamically stable states, the isotherm
extrema identify the limit of the region of metastable
states, which is the spinodal.

The P-T phase diagram of the van der Waals fluid,
shown in Fig. 1(a), is the projection into the plane of P
and T of the line of coexistence between liquid and gas,
which terminates in the critical point C. Also shown are
the projections onto the P-T plane of the spinodals. One,
the “gas spinodal,” lies above the liquid-gas coexistence
line. Between this upper spinodal and the coexistence
line, the gas phase may be observed as a metastable state
since the liquid phase is the thermodynamically stable
phase everywhere above the coexistence line. This gas
spinodal thus indicates the maximum extent to which
a gaseous state may penetrate the stable liquid region
of the phase diagram before condensing into the liquid
state.

Below the coexistence line lies another spinodal, the

(1.1)
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“liquid spinodal.” Between the liquid spinodal and the
coexistence line, the liquid phase may be observed as a
metastable state. Note that the liquid spinodal extends
into the region of negative P. This expresses the fact that
the liquid spinodal, at low T, indicates the maximum
tensile stress to which the homogeneous liquid may be
subjected before cavitating. Although the liquid spinodal
and the gas spinodal are related through their common
end point C, we only consider here the properties of the
liquid spinodal. Hence, in what follows, “spinodal” is
meant to refer specifically to the liquid spinodal.

The mean-field behavior displayed by the
van der Waals equation in Fig. 1(c) shows that the spin-
odal represents a thermodynamic singularity. For exam-
ple, from Eq. (1.1), it can be seen that Kg diverges to
infinity at the spinodal, in a manner qualitatively similar
to the K7 divergence predicted at the critical point C.
Thus the mean-field spinodal may be regarded as a line
of “pseudocritical” points [26].

B. The stability limit conjecture

Many static and dynamic properties of liquid water
exhibit strong and anomalous deviations from those ex-
pected of a simple liquid. For example, response func-
tions like K [1] and the isobaric specific heat Cp [27]
are observed to increase rapidly as the temperature of the
liquid decreases, especially in the T range in which the
liquid is supercooled. The SLC was motivated by the ob-
servation that the rapid changes observed in many such
properties X of water as it is cooled appear to display
the diverging power-law form

X = Axe x| (1.2)

where € = (T — T,)/T,, with T, being the temperature
of singularity, and Ax and Ax are respectively the am-
plitude and exponent associated with the divergence of
the quantity X. At atmospheric P, experimental data
have been fit to the form in Eq. (1.2) for X = Kr, p,
the isobaric expansivity ap, the shear viscosity, the di-
electric relaxation time [1], the diffusion constant [1,8,9],
and various nuclear spin relaxation times [1,6]. For all
these quantities, T, appears to be close to 228 K= —45C
[28].

Fits of isobars of K1 to Eq. (1.2) at different P up
to 190 MPa indicate that T, shifts to lower T at higher
P [29]. Furthermore, T, is found deep in the region of
the phase diagram where the liquid is metastable with
respect to the formation of crystalline ice, and seems to
remain a constant 5 to 15 K below the lowest T to which
liquid water has been successfully supercooled, the homo-
geneous nucleation limit T [30]. This suggests that the
line formed by the values of T, at different P represents
a boundary in the phase diagram of the liquid beyond
which the liquid cannot exist, not even as a metastable
state. The increasing magnitudes of response functions
observed on approach to this 7}, line indicate increasingly
large density fluctuations which ultimately prompt nucle-
ation of the ice phase before the T, line is reached. Given
that the T line therefore both delimits the end of the re-
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gion of metastable liquid states, and also locates a line
of thermodynamic divergences, the T, line was identified
in the SLC with a spinodal line.

As mentioned in Sec. I, Speedy showed [2] that the ap-
pearance of an unexpected spinodal in the phase diagram
of water is perhaps not surprising given the presence and
shape of the TMD line in the phase diagram. The tem-
perature 4 C is the point on the TMD line corresponding
to atmospheric P. For P greater than atmospheric P,
the TMD occurs at T < 4C, and so the TMD line is
negatively sloped in the P-T plane for P > 0 [10]. On
the TMD line, V is an extremum with respect to T since
ap, defined by

ap=(1/V) (Z—‘{,)P

is zero. Note that since ap = 0 on the TMD line, then
the thermal pressure coefficient vy, defined by

(1.3)

P
= = 1.
w=(5F) - (14)
is also zero, because of the thermodynamic identity,
w =ap/Kr. (1.5)

As a consequence, a point on the TMD line can also be
located as a minimum in P,(T), an isochore of P as a
function of T'.

As summarized in Appendix A, the behavior of the
TMD line may be associated with a change of direction
in the spinodal line. Thereby follows an important pre-
diction of the SLC: The TMD line intersects the liquid
spinodal originating at the liquid-gas critical point. This
intersection, in the metastable liquid under tension (i.e.,
at P < 0) requires a spinodal minimum to occur, fol-
lowed at lower T by the reappearance of the spinodal
at positive P in the region of the phase diagram where
the liquid is supercooled. This is the reentrant spinodal
having the form shown in Fig. 1(b).

C. Computer simulations

The intersection of the spinodal and the TMD line is
predicted by the SLC to occur in a region of negative
P which is experimentally difficult to probe because of
nucleation of the gas phase within the metastable lig-
uid under tension. In general, nucleation of the stable
phase always prevents the experimental study of states
arbitrarily close to a spinodal line [20,24]. In the present
work, we exploit the ability of computer simulations to
study metastable liquid states. Computer simulations of
systems containing one species of particle and which use
periodic boundary conditions necessarily do not incorpo-
rate the impurities or surfaces which trigger the hetero-
geneous nucleation of the stable phase observed in ex-
periments. Also, the metastable liquid can usually be
simulated for a time which is long enough for the evalu-
ation of thermodynamic properties, but which is shorter
than the characteristic time for homogeneous nucleation
of the stable phase.
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Previous attempts have been made to confirm or refute
the SLC using computer simulations. Okasaki, Kataoka,
and co-workers [31-35] studied the properties of several
water models for the purpose of assessing their ability to
reproduce the thermodynamic anomalies of water. In all
cases, their strategy was to simulate hundreds of ther-
modynamic states. Their resulting data were fit to a
multinomial equation of state (EOS), from which ther-
modynamic properties were calculated. Although the di-
rect determination of the shape of the spinodal line was
not the principal focus of these works, an eztrapolation
of their EOS predicted that the liquid spinodal was re-
entrant from negative to positive pressure at supercooled
temperatures.

Recently, Striemann [36] studied a system of particles
interacting through the ST2 water interaction potential
for the purpose of attempting to directly observe the ef-
fects produced by the reentrant liquid spinodal at low
temperature. In this study, the simulated liquid was ex-
amined for evidence that an instability would be encoun-
tered if the liquid was cooled isobarically at a number of
different P. No sign of a low temperature instability was
found in this study, suggesting that the spinodal is not
reentrant.

Given the conflicting conclusions of these earlier works,
and the lack of a clear determination of the relation be-
tween the TMD line and the liquid spinodal, we attempt
here a direct and comprehensive study of the liquid be-
havior at negative P. Our principal aim is to determine
the position and shape of the spinodal and the TMD lines
of simulated liquid water, in order to gauge the extent to
which the predictions of the SLC are borne out.

II. CHOICE OF INTERPARTICLE POTENTIAL

There are many interparticle potentials commonly
used to simulate liquid water. The SLC predicts that
the liquid spinodal is reentrant in the P-T phase dia-
gram at temperatures below those of the TMD line; see
Fig. 1(b). Our interparticle potential must give rise to a
simulated liquid that (1) exhibits a TMD line, and (2) al-
lows equilibrium simulations to be carried out at temper-
atures below those at which the TMD line is observed.
We therefore conduct a preliminary simulation study on
several water pair potentials to determine the extent to
which these two criteria are satisfied by each. Specifically,
the ST2 and TIP4 potentials as well as the SPC/E [37]
potentials of Berendsen et al., are chosen as candidates,
as each of these has been extensively used for simulation
studies of bulk water [38].

Each of these three potentials is simulated at p =
1.0 g/cm® at a number of temperatures. (A summary
of the simulation method used is given in Appendix B.)
The average P for each T is calculated and the resulting
isochore of P,(T) for each potential is plotted in Fig. 2.
At the lowest temperatures simulated, in the region near
T = 200 K, the molecular mobility is becoming increas-
ingly low. The simulated systems thus become increas-
ingly difficult to equilibrate, and so the given isochores
do not extend beyond this region. The success of each
potential in reproducing the experimental P, and its T



48 SPINODAL OF LIQUID WATER

250 T T T T ™ T T T ]

200 -

150 -

100

P (MPa)

100 \ . . ; . . . .
175 200 225 250 275 300 325 350 375 400

T (K)

FIG. 2. p = 1.0 g/cm® isochores of P,(T) for three water
pair potentials, ST2 (o), TIP4P (O), and SPC/E (4), com-
pared with the experimental P,(T') isochore (dotted line) as
reproduced by the Haar-Gallagher-Kell equation of state [39],
at the same density.

dependence, is assessed by comparing the simulated iso-
chores with the experimental P,(T') isochore of water at
p =1.0 g/cm? [39], also shown in Fig. 2.

As noted in Sec. I B, the temperature at which a min-
imum in P,(T) occurs identifies a TMD. Both TIP4P
and SPC/E give P,(T) minimum in the vicinity of 260
K, which is approximately 17 K below the experimental
TMD for the p = 1.0 g/cm? isochore. This lowering of
the TMD at p = 1.0 g/cm3 in TIP4P and SPC/E sug-
gests that the thermodynamic anomalies of these sim-
ulated liquids are somewhat weaker than in real water.
Nevertheless, both of these pair potentials provide the
opportunity to study the anomalous region of the liquid
up to 60 K below the TMD.

The ST2 potential exhibits a TMD approximately 35 K
above the experimental TMD, and so allows equilibrium
simulations of states up to 80 K below its TMD. Such be-
havior is consistent with what is known about how well
ST2 reproduces other properties of liquid water. For ex-
ample, there is evidence that the melting temperature of
ST2 may also be elevated over that of real water [40].
In principle, ST2 overemphasizes the tetrahedral charac-
ter of the H-bonding groups on the water molecule since
both donor protons and acceptor lone-pair electrons are
modeled as explicit force centers. As the tendency to
form tetrahedral molecular arrangements is closely asso-
ciated with the appearance of macroscopic anomalies in
water, the anomalies of the ST2 liquid are expected to be
correspondingly stronger than in real water, and will ap-
pear at higher temperature [38]. In the present context,
the deviations of the properties of the ST2 model from
those of real water are an advantage, since they facili-
tate the simulation of states at the lowest temperatures
relative to the TMD. Thus ST2 can be used to probe
most deeply the thermodynamic properties and struc-
ture of the system in the region both where the liquid
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is strongly anomalous, and where the reentrant spinodal
is predicted to be found. For this reason, most of the
simulations carried out for this study are devoted to the
study of a system of ST2 particles.

However, there exists the danger that the quantitative
differences between ST2 properties and those of real wa-
ter induce a qualitatively different phase behavior from
the point of view of locating the limits of stability of the
liquid. This concern suggests that the behavior seen in
ST2 should be confirmed, at least in its critical aspects, in
simulations using the TIP4P or SPC/E potentials, since
they too allow for a study of the anomalous region below
the TMD.

A summary of 62 states simulated with the ST2 poten-
tial, and 32 states simulated with the TIP4P potential,
is given in Tables II, ITI and IV. Presented are the val-
ues of p and T selected for each simulation, the length of
each run, and the values of P and the internal potential
energy U that resulted. For some states, the diffusion
constant D is also given.

III. THE SPINODAL LINE

In this section, we first systematically explore several
distinct approaches to calculate the position of the spin-
odal in the ST2 simulations. Then the results are shown
to be consistent with the behavior found in the TIP4P
simulations.

A. Minima in Pr(p) isotherms

As noted in Sec. I A, the liquid spinodal occurs at the
minimum of an isotherm of P versus V', and hence, equiv-
alently at the minimum of an isotherm of P versus p. The
behavior of the Pr(p) isotherms from the ST2 data can
therefore be examined to give an estimate of the location
in the phase diagram at which the spinodal of the lig-
uid state under tension may be found. Figure 3(a) shows
the five Pr(p) isotherms from the ST2 liquid-state data
given in Tables II and III that exhibit such a minimum
[41]. As p decreases, Pr(p) decreases more and more
slowly and exhibits a minimum at the smallest values of
p- This behavior is similar to that expected of Pr(p) as
the mean-field spinodal is approached. The lowest value
of P found along each Pr(p) isotherm is thus taken as
an estimate of P, (T).

The resulting estimate for the spinodal line P,(T) is
plotted in Fig. 3(b). Also shown are P,(T) isochores,
obtained by constructing a bicubic spline model [42] of
the data set in Tables II and III. The line connecting
the estimated P,(T') isochore minima for different p lo-
cates the TMD line. Notably, the TMD line avoids the
spinodal line, by changing slope in the negative pressure
region. The spinodal P,(T) continues to decrease as T
decreases, even in the temperature region where a TMD 1is
observed. This behavior (which we discuss in more detail
in Sec. IV) is qualitatively different from that predicted
by the SLC.

B. Power-law behavior of Pr(p) isotherms

In this section, we obtain an independent set of es-
timates of P,(T) by fitting the data to the anticipated
power-law relationship between P and p near the spin-
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FIG. 3. (a) Pr(p) isotherms for the ST2 liquid, for 7' = 390 K (v7), T = 360 K (A), T = 330 K (¢), T = 310 K (O),
and T = 290 K (o). Splines (solid lines) are drawn through each isotherm. The spinodal values P;(7") are estimated from
the minima at each temperature: P,;(390 K) = —76 + 4 MPa, P,(360 K) = —101 + 5 MPa, P,(330 K) = —121 + 6 MPa,
P,(310 K) = —157 + 11 MPa, and P,(290 K) = —190 + 16 MPa. (b) P,(T) isochores for the ST2 liquid, for p = 1.10 g/cm?
(x), p=1.05 g/cm® (+), p = 1.00 g/cm® (v7), p = 0.95 g/cm® (A), p = 0.90 g/cm® (o), p = 0.85 g/cm® (O), and p = 0.80
g/cm? (o). The isochores are obtained by constructing a bicubic spline model of the data set in Tables II and III. The estimate
for the spinodal, P;(T), based on the value of P at the minima of the isotherms in (a), is given by the filled dots and dotted
line. The TMD line (dot-dashed line) is also plotted. (c) Pr(p) ST2 isotherms fitted to Eq. (3.1), for T = 390 K (v7), T = 360
K (A), and T = 330 K (¢). The dotted lines are the fitted curves, for which the fit parameters are given in Table I. (d) Pr(p)
isotherms for the TIP4P liquid, for T = 250 K (filled O), T' = 225 K (filled o), and T = 200 K (filled A). Splines (solid lines)
are drawn through each iostherm.
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TABLE 1. Fits of Pr(p) isotherms to Eq. (3.1)

T (K)| P, (MPa)] ps (g/cm?®)] 6 A (cma‘sMPa/g'SH
390 -76+4 0.70 +0.04| 2.3 +0.3| 3500 + 500
360 —101+6 | 0.74+£0.03| 1.8 £0.3| 2600 + 400
330 —121+6| 0.76 £0.02| 1.6 £0.2| 2200 + 300

odal. The virtue of this independent set of estimates is
that it utilizes the data at densities away from the density
which gives rise to a minimum in the Pp(p) isotherms of
Fig. 3(a). Specifically, in Fig. 3(c) we fit all the data for
the T = 390 K, 360 K, and 330 K isotherms to a power
law of the form

P—P,(T)=Alp— ps(T)]sv (3.1)
where A is a constant, § is the critical exponent char-
acterizing the shape of isotherms in the spinodal region,
and p,(T') is the density of the spinodal at temperature T'
[25,26]. The values that result for the fitted parameters
are shown in Table I.

The success of this fitting for these values of T', shown
in Fig. 3(c), confirms that spinodal-like behavior can be
observed over a range of states, and not only at the sta-
bility limit itself. Fitting the data to Eq. (3.1) is par-
ticularly useful because it exploits data describing states
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away from the spinodal, where finite-size effects due to
the size of the simulated system are likely to be less im-
portant since the correlation length is reduced from its
value near the spinodal. The fact that Table I shows the
same values of P,(T') and p,(T) that may be estimated
from the Pr(p) minima in Fig. 3(c) indicates that even
close to the instability, finite-size and nucleation effects
are not perturbing the results enough to mask the ther-
modynamic manifestation of spinodal behavior. Finally,
note that the value of § found is close to the value § = 2
predicted in mean—field theory for the spinodal [26].

The T = 310 K and T = 290 K Pr(p) isotherms of
Fig. 3(a) are not fit to Eq. (3.1) because of the strong
deviations from a simple power law that appear along
these isotherms at densities above that of their minima.
In particular, this deviation involves a change in the sign
of the curvature of the Pr(p) isotherms, a behavior not
previously predicted to occur in liquid water. This unex-
pected feature (also observed in the TIP4P data — see
Sec. IIID) can, however, be shown to be consistent with
the known thermodynamic properties of liquid water, as
shown in detail elsewhere [21,43].

C. Mechanical stability of simulated states

If the spinodal P,(T) of the ST2 liquid is located as
indicated in Fig. 3(b), then those metastable states for

TABLE II. The ST2 data set at low T: constant-V simulations of N = 216 molecules, where T' is maintained near the
specified values using Berendsen’s method with 7 = 0.5 ps. Most of these runs were carried out on workstations requiring
approximately 1 CPU day of computation for each 80 ps of simulation.

T (K)| p (g/cm®)| P + 6P (MPa)| U + 86U (kJ/mol)| D (10~ %cm?/s)| ty (ps)|
235 1.10 249 £+ 15 —46.12 £ 0.08 0.34 636
235 1.05 218 + 12 —46.78 £ 0.16 615
235 1.00 209 + 27 —47.39 £0.13 0.18 799
235 0.95 230 + 31 —48.48 £0.12 934
235 0.92 209 + 17 —48.97 £ 0.10 1354
250 1.10 228 £+ 12 —45.10 £ 0.08 0.57 652
250 1.05 193 £ 10 —45.54 £ 0.08 0.50 696
250 1.00 167 £ 15 —46.07 £ 0.11 833
250 0.95 150 + 12 —46.99 + 0.13 0.17 755
250 0.92 131+ 24 —47.53 £ 0.22 0.10 793
250 0.87 75+ 17 —48.48 £ 0.11 0.003 725
273 1.10 227 £ 10 —43.45 £ 0.08 1.36 391
273 1.05 168 & 12 —43.62 £ 0.10 1.00 358
273 1.00 116 +9 —44.10 %+ 0.07 0.96 735
273 0.95 80+7 —44.72 £ 0.15 0.63 561
273 0.90 35411 —45.62 £0.10 0.32 546
273 0.87 -2410 —46.21 £ 0.16 642
273 0.85 —-28+11 —46.79 £ 0.16 0.16 807
273 0.84 —524+17 —47.50 £ 0.22 398
290 1.05 156+ 9 —42.44 £ 0.07 1.87 365
290 1.00 98+ 7 —42.56 +0.13 1.75 253
290 0.90 -7+9 —43.59 £ 0.29 1.17 560
290 0.85 —-64+9 —44.65 £ 0.34 754
290 0.82 ~118+7 —44.34 £0.25 0.63 500
290 0.79 ~165 + 16 —44.41 +0.09 827
290 0.76 —~190 + 16 —43.70 £ 0.44 0.57 458
290 0.73 —141 + 14 —42.50 £ 0.25 189
290 0.70 ~128 +15 —42.32 £ 0.26 139
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which P > P,(T) and p > p,(T), while perhaps not ther-
modynamically stable, are mechanically stable, while any
state not satisfying these two conditions will be unstable.
In this section, we shall check the stability of the states
in Tables II and III, to provide an independent confir-
mation of the estimates for P,(T) reported in Fig. 3(b).
This stability check is also important because thus far we
have not confirmed that the system is indeed mechani-
cally stable up to the spinodal limits reported.

A simulated liquid can be tested in a particularly strik-
ing way for the presence or absence of mechanical stabil-
ity by simulating the system using an algorithm which
constrains P, rather than V as in the simulations de-
scribed thus far. With P constrained, V must take on
that value which satisfies the condition of mechanical sta-
bility.

We distinguish two cases

(i) Attempts to simulate liquid states at a pressure
value P < P,(T) should fail since no liquid states are
possible at such P for any value of p. Such a simu-
lated system, its tensile limit exceeded, should be ob-
served to “cavitate” to a gaslike phase containing large
voids. Therefore we use constant-P continuations of the

constant-V simulations to confirm the existence of a ten-
sile limit at P,(T") [44]. Specifically, we find the constant-
P continuation of the simulation at (T' = 330 K, p = 0.76
g/cm®), with fixed P = —115 MPa, and of that at
(T =290 K, p = 0.76 g/cm?), with fixed P = —180
MPa, to be stable over 200 ps of continued simulation.
However, constant-P continuations of the same simula-
tions using fixed P = —127 MPa and P = —193 MPa,
respectively, cavitate after a few tens of picoseconds of
continued simulation. This test places bounds on the re-
gion of P over which the liquid state loses mechanical
stability at T = 330 K and 290 K. The bounds we find
bracket the estimates of P,(T') shown in Fig. 3(b).

(ii) Conversely, attempts to simulate liquid states at
a pressure P > P,(T) with p < p,(T) should also fail:
the density of the system should either increase [to give
the stable liquidlike density above p,(T')], or catastroph-
ically decrease [in the direction to give the stable gaslike
density far below p,(T')]. Therefore, to confirm that the
spinodal is near the points indicated in Fig. 3(b), the
system trajectories resulting from the constant-V simu-
lations conducted near the Pr(p) minima are continued
in constant- P simulations. We find that those states hav-

TABLE III. The ST2 data set at high T: constant-V simulations of N = 216 molecules, where T' is maintained near the

specified values using Berendsen’s method with 7 = 0.5 ps.

T (K)| p (g/cm®)| P+ 6P (MPa)| U + 86U (kJ/mol)| D (107° cm?/s)| ts (ps)|
310 1.05 162 £ 8 —41.01 £+ 0.06 216
310 1.00 84 £6 —41.07 £0.07 346
310 0.90 -23+7 —41.42 £0.21 213
310 0.85 —86+6 —41.73£0.14 294
310 0.82 —114£5 —41.51 £0.13 545
310 0.79 —142+6 —41.24 £0.27 320
310 0.76 —157+ 11 —40.69 £0.14 647
310 0.73 —137+8 —40.33 £0.14 332
330 1.05 172+ 6 —39.69 £ 0.08 425
330 1.00 90 +4 —39.69 £ 0.04 590
330 0.95 25+5 —39.60 £ 0.07 466
330 0.90 —28+4 —39.56 £ 0.07 480
330 0.87 —60+£5 —39.44 £ 0.09 3.62 471
330 0.85 —81+5 —-39.41 £0.15 4.48 384
330 0.82 —-102£5 —-39.23 £0.14 3.92 257
330 0.79 —114+6 —38.70 £0.13 3.85 240
330 0.76 —121+6 —38.38 £0.15 3.76 505
330 0.70 —107 =4 —37.63 £ 0.09 5.22 569
360 1.05 205+ 6 —38.00 £ 0.05 283
360 1.00 117+5 —37.76 £ 0.05 259
360 0.95 47+ 6 —37.51 £ 0.07 298
360 0.90 —-10+4 —37.27 £ 0.07 334
360 0.85 —57+4 —36.73 £ 0.08 358
360 0.80 —89+4 —36.22 £ 0.07 400
360 0.75 —101%5 —35.60 £ 0.07 414
360 0.70 —98 7 —34.93 £ 0.06 270
390 1.05 255 + 8 —36.50 £+ 0.05 134
390 1.00 155+ 6 —36.10 £ 0.05 236
390 0.95 79+t6 —35.74 £ 0.05 189
390 0.90 19+4 —35.26 = 0.04 443
390 0.85 —26+4 —34.77 £ 0.05 301
390 0.80 —56+4 —34.13 £ 0.06 344
390 0.75 -71+4 —33.46 £ 0.05 278
390 0.70 —76+4 —32.82 £ 0.07 193
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ing p > p,(T) do not exhibit a change in density during
the constant-P simulations, indicating stability. How-
ever, those states having p < p,(T") display behavior in
which their density either increases [shifting these states
to the stable liquid side of the Pr(p) isotherm minimum]|,
or decreases enormously (shifting the system to a stable
gaslike state).

D. Confirmation in the TIP4P liquid

The TIP4P potential also exhibits a TMD, and so it
is useful to compare the accompanying spinodal behav-
ior to that found in the ST2 simulations. In analogy
to the method of Sec. IIT A, the results of the TIP4P
simulations given in Table IV are plotted in the form
of Pr(p) isotherms, shown in Fig. 3(d). Examination of
the minima of the Pr(p) isotherms shows that P,(T) at
T = 225 K is less than P,(T) at T = 250 K. In Fig. 2
it was shown that a TMD occurs in the TIP4P simula-

TABLE IV. The TIP4P data set: constant-V simulations
of N = 216 molecules, where T' is maintained near the speci-
fied values using Berendsen’s method with 77 = 0.5 ps. Sim-
ulations for which §t = 2 fs rather than 1 fs are indicated with
an *.

|T (K)| p (g/cm®)| P+ 6P (MPa)| U + 6U (kJ/mol)| s (ps)|

200 0.90 —256 =15 —48.96 + 0.04| *5756
200 0.95 -59+13 —49.23 £0.06| *3399
200 1.00 49 £ 14 —48.92 +0.14| *4585
200 1.05 99 £+ 14 —48.63 £ 0.07| *2846
200 1.10 177 £ 15 —48.27 £ 0.10| *3912
200 1.15 288 + 20 —48.29 £ 0.07| *1425
200 1.20 437+ 13 —48.04 +0.08| *2299
225 0.84 —274+11 —46.08 = 0.22 294
225 0.85 —324 17 —46.72 £ 0.15 839
225 0.87 —289 + 17 —47.19 £ 0.22 2762
225 0.90 —215+19 —47.38 £0.12 2217
225 0.94 —125+19 —47.34£0.16 2510
225 0.98 —26+9 —47.17£0.08 1970
225 1.00 5+13 —47.19 +£0.10 698
225 1.02 38+9 —46.89 £ 0.08 992
225 1.05 68 =8 —46.81 £0.11 877
225 1.10 170 £ 12 —46.59 £ 0.06 *952
225 1.15 315+19 —46.66 £ 0.05 *708
225 1.20 461 £ 12 —46.59 & 0.09 *891
225 1.25 692 £+ 11 —46.53 +£0.10| *1239
225 1.30 954 £ 12 —46.55 + 0.07| *1189
250 0.80 —196 =18 —43.76 = 0.14 659
250 0.85 —230+19 —44.12 £ 0.15 663
250 0.87 —237x7 —44.49 +£0.17 766
250 0.90 —204 5 —44.93 £+ 0.06 1794
250 0.95 —117+5 —45.12 4+ 0.07| *2000
250 1.00 —25%5 —45.08 = 0.04 1062
250 1.05 69 + 6 —45.08 £ 0.06] *1158
250 1.10 194 + 12 —45.08 £ 0.04| *1448
250 1.15 343 £ 12 —45.05 £ 0.05 *511
275 1.00 —25%7 —43.33 £ 0.08 489
300 1.00 5+5 —41.73 £ 0.05 367
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tions near T = 260 K. Therefore in TIP4P, like in ST2,
P,(T) continues to decrease as T decreases even at tem-
peratures below those at which a TMD is found. The
overall shape of the family of Pr(p) isotherms found us-
ing TIP4P is similar to that found using ST2, including
the appearance of a change in the sign of the curvature
of the Pr(p) isotherms at the lowest T. The thermo-
dynamic behavior of liquid water as simulated using the
TIP4P potential is therefore consistent with the ST2 re-
sults: both potentials give behavior which is qualitatively
different from that predicted by the SLC.

IV. THE TMD LINE

The above data demonstrate that in the ST2 system
the spinodal line P, (T') is not reentrant, even at temper-
atures below those at which a TMD is observed. Indeed,
a spinodal is expected to become reentrant at the point
where it interacts with the TMD line in the phase dia-
gram (see Appendix A). The SLC is implicitly based on
the assumption that the P-T projection of the TMD line
always has negative slope. As indicated in Fig. 3(b), the
TMD line has negative slope at positive and low negative
pressures, but has positive slope at the largest negative
pressures. This behavior of the TMD line prevents an
intersection with the spinodal, in the range of T simu-
lated. Furthermore, as discussed in Appendix A, a pos-
itively sloped TMD line cannot meet a positively sloped
spinodal in a thermodynamically consistent phase dia-
gram. Thus the TMD and the spinodal cannot meet in
a region of T' and P not probed in the simulations (un-
less the TMD line were to again change slope). Note
that the appearance of a TMD line with positive slope
is thermodynamically possible, and has been observed in
simulations of a simple pair potential unrelated to ST2
or TIP4P, the Gaussian core model [45].

The importance of these considerations is that they
show that the behavior of the TMD line in the ST2 lig-
uid is in itself sufficient to demonstrate that the behavior
of this simulated liquid is not consistent with the SLC.
Though finite-size and boundary condition effects may
skew the results from simulations of states near the spin-
odal, it is less likely that these problems extend into the
region of states where the TMD line changes slope be-
cause the correlation lengths are smaller away from the
spinodal. Thus we see that the conclusion that the ST2
liquid is inconsistent with the SLC can be based not only
on the behavior of the spinodal line P, (T'), but also on the
overall thermodynamic properties of the stretched liquid.

A. Confirmation in larger ST2 systems

Ideally, in order to check for finite-size effects in our
results, we should reproduce the isotherms used to locate
the spinodal in a simulation of a much larger system.
Unfortunately, the equilibration times in the present size
system are already quite long, so simulations for a larger
system would be computationally prohibitive. However,
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since the appearance of a TMD line with positive slope is
alone sufficient to prove an incompatibility between the
ST2 liquid behavior and the SLC, the opportunity for a
simpler check presents itself.

The p = 0.80 g/cm® P,(T) isochore in Fig. 3(b) is
useful for demonstrating that the TMD line has positive
slope because this isochore has no identifiable minima
over a range of T for which isochores at higher P do
have minima. If the only reason the TMD-spinodal line
intersection is not observed in Fig. 3(b) is due to the finite
size of the system studied, then this p = 0.80 g/cm3
isochore must have a quite different shape in the limit
of an infinitely large system—it must either display a
minimum not seen in the N = 216 particle simulations,
or it is not a metastable isochore at all (actually lying
beyond the spinodal of the infinite system).

We therefore check the position and stability of points
on the p = 0.80 g/cm® P,(T) isochore in a sys-
tem containing N = 1728 particles. We perform a

set of three comnstant-P simulations at T = 290 K,
330 K and 360 K [46]. The states simulated are
(N = 1728,P = —150 MPa,T = 290 K), (N =

1728, P = —100 MPa,T = 330 K) and (N = 1728, P =
—80 MPa,T = 360 K). By allowing p to vary, the abso-
lute stability of these states in the N = 1728 system is
checked in the same way as described in Sec. III C.

We find that after 70 ps each of constant-P simulation,
both the T = 330 K and T' = 360 K simulations appear
to be well past the equilibration stage and show no signs
of cavitating. At T = 330 K, we found the density to be
p = 0.825 & 0.005 g/cm?® and U = —39.3 + 0.3 kJ /mol,
while at T = 360 K, we found the density to be p =
0.807 £ 0.005 g/cm® and U = —36.4 + 0.2 kJ/mol. As
it is especially important to confirm the behavior of the
T = 290 K system at p = 0.80 g/cm3, it was evolved
for 330 ps; we found p = 0.797 £ 0.005 g/cm?® and U =
—44.2 + 0.3 kJ /mol, with no indications of cavitation.

P(MPa)
8

0.68 0.72 0.76 0.80 0.84 0.88
p (g/cm®)

FIG. 4. Detail of the Pr(p) isotherms for the N = 216 ST2
simulations at 7' = 290 K (o), T'= 330 K (¢), and T' = 360 K
(A). For each isotherm, the filled symbol shows the result of
the N = 1728 constant-P ST2 simulation at the same T'.
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The average values of p and U produced in each of
these N = 1728 simulations are very close to being within
error of what would be predicted from the data set of the
N = 216 simulations; see Fig. 4. There does not therefore
seem to be a large finite-size effect in these quantities
when N is varied from 216 to 1728, confirming the phase
behavior shown in Fig. 3(b).

B. Confirmation in the TIP4P liquid

Next we check if the results for the TMD line reported
for the ST2 potential are valid for the TIP4P potential.
In the same spirit as the checks described in Sec. IV A,
we focus our tests on the question of whether the TIP4P
potential also exhibits a TMD line which assumes a posi-
tive slope in the P-T plane, thus avoiding an intersection
with the spinodal. As seen in Fig. 2, the TIP4P poten-
tial exhibits a minimum in the p = 1.0 g/cm?® P,(T) iso-
chore, demonstrating that the TMD line of TIP4P passes
through this isochore at negative P near T' = 260 K. The
slope of the TMD line can be established in this region of
the phase diagram by plotting the p = 0.9 g/cm® P,(T)
isochore. A negatively sloped TMD line requires that
the minimum of the p = 0.9 g/cm3 P,(T) isochore oc-
curs at a higher temperature than the minimum of the
p =1.0 g/cm3 P,(T) isochore. The opposite behavior is
associated with a positively sloped TMD.

Accordingly, in Fig. 5, we plot the p = 0.9 g/cm?
and p = 1.0 g/cm® P,(T) isochores for TIP4P. The
p = 0.8 g/cm3 and p = 0.9 g/cm3® P,(T) isochores for
ST2 are also shown for comparison. The TIP4P data in-
dicate that the p = 0.9 g/cm? P,(T) isochore has positive
slope between 7' = 250 K and T' = 200 K. The minimum
of the p = 0.9 g/cm3 P,(T) TIP4P isochore is there-
fore expected to occur below T' = 200 K. In contrast, the
minimum of the p = 1.0 g/cm® P,(T) TIP4P isochore
is clearly above T' = 200 K. Therefore the TMD line in

250 — T T m T T T
200 - J

150

100

o E\l |
0 » b | /<>
-100 £ O/o/ E
-150 f

-200

P (MPa)

-250

300 ) i L . . .
175 200 225 250 275 300 325

T (K)

L
350 375 400

FIG. 5. P,(T) isochores for TIP4P at p = 1.0 g/cm? (filled
0) and p = 0.9 g/cm® (filled A), and for ST2 at p = 0.9
g/cm® () and p = 0.8 g/cm® (o).
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the TIP4P phase diagram must take on positive slope at
sufficiently negative P, as it does in ST2. The behavior
of TIP4P is thus shown again to be similar to the ST2
behavior, and not consistent with the predictions of the
SLC. This check makes less plausible the possibility that
the properties observed in the ST2 phase diagram for
P < 0 are unphysical artifacts associated with the ST2
model.

V. IMPLICATIONS FOR (8U/8V)r

In this section, we show that the thermodynamic be-
havior indicated in Fig. 3(b) can also be observed in the
relationship between U and V. We begin with the ther-

modynamic identity
oUu as
— =T|~—) —-P
(%), =7 (5),-»

which follows from P = —(8A/8V)r where A=U — TS
is the Helmholtz potential. The term —(8U/8V )7 rep-
resents the energetic contribution to the total pressure,
while T'(85/0V)r is the corresponding entropic contri-
bution. Note that T'(8S5/0V)r is proportional to ap,
using the Maxwell relation (8S/0V)r = (0P/8T)v, and
the fact that vy is related to ap through Eq. (1.5). Since
K is always positive in the stable and metastable region,
v will always have the same sign as ap.

We note that two well-defined behaviors for (8U/dV )
can be predicted by Eq. (5.1), and by the knowledge of
the sign of ap.

(i) In the region of positive P and negative ap, as in
real water at atmospheric P below 4 °C, (8U/8V )z must
be negative. This follows from Eq. (5.1) when P > 0, and
because T'(8S/8V)r < 0 when ap < 0. Thus, in this re-
gion, fluctuations of energy and volume must be anticor-
related [47]. This observation confirms the expectation
[48-52] that an increase in local volume strengthens the
network of H bonds in the liquid at sufficiently low 7T'.

(ii) Next we note that ap, and therefore T(8S/8V)r,
is always positive in the vicinity of the spinodal for the
phase behavior depicted in Fig. 3(b). The thermody-
namic identity Eq. (5.1) then leads to the requirement
that (OU/0V)r be positive, since P < 0 in the vicinity
of the spinodal. We can confirm that this is indeed the
case in the ST2 data by plotting, in Fig. 6, isotherms of
U as a function of V: in all cases where the spinodal is
reached, (OU/AOV)r > 0 near the specific volume of the
spinodal. A corresponding plot of the TIP4P data for U
from Table IV gives the same result.

The nonmonotonic behavior of U in Fig. 6 admits of
physical interpretation. At high temperatures where no
TMD is observed at any V, U as a function of V always
has positive slope, as expected for a normal low-density
liquid in which V is increasing. At lower T where the
TMD line is observed, a V range emerges where U takes
on negative slope. This is an indication that the random
H-bond network is enhanced by stretching the liquid at
lower temperatures. However, even at these lower tem-

(5.1)
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FIG. 6. ST2 isotherms of U vs V at T = 390 K (+),
T =360 K (>), T = 330 K (<), T = 310 K (v), T = 290
K (A), T =273 K (o), T = 250 K (0), and T = 235 K (o).
Splines (solid lines) are drawn through each isotherm.

peratures, U again takes on positive slope at sufficiently
large V, at the extremes of stretching.

One possible interpretation of this result arises from
considering the possible evolution of the molecular struc-
ture as the liquid is stretched. U first decreases with
V during the initial phase of stretching because the for-
mation of more perfectly formed H bonds is facilitated
by the larger volume per molecule becoming available.
However, this process can only proceed to a finite extent
before V increases so much that even a fully formed four-
coordinated open network of H bonds cannot fill the vol-
ume being made available. In this regime, the H bonds
are for the most part already straight, and stretching
can only be accommodated through stretching along H
bonds. This process necessarily induces U to increase
again, and may also cause the entropy S to increase with
increasing V in this extreme of stretching, since the in-
creasing molecular volume in this regime ceases to further
improve the tetrahedrality of the H-bond network. If this
is the case, then in the extremes of stretching, the system
ceases to display the anomalous feature that S decreases
with an increase in V' (ap < 0). Thus this behavior
is consistent with the possibility that the vicinity of the
spinodal is characterized by ap > 0.

VI. IMPLICATIONS FOR STRUCTURE

An examination of the molecular structure of the
stretched liquid can afford insight into the thermo-
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dynamic behavior discussed in the preceding section.
Specifically, we can verify near the spinodal the suppres-
sion of thermodynamic anomalies such as ap < 0 (i.e.,
a return to more normal liquid behavior). In the pre-
ceding section, it was inferred from the behavior of U
that, upon initially being stretched, the open network
of H bonds becomes better formed as V increases. This
process necessarily removes disorder from the network of
H bonds since the four-coordinated network has a lower
entropy.

We can monitor this tendency toward entropy reduc-
tion by examining how the peaks of the three atomic
radial distribution functions (RDF’s)— goo(r), gou(r),
and gupu(r)—sharpen as V increases, as shown for states
of the ST2 liquid along the T' = 290 K isotherm in
Fig. 7(a). A quantitative (though arbitrary) measure of
this sharpening is the value of the RDF at its first min-
imum, which should decrease as the coordination shells
become better defined. In Fig. 7(b) are shown isotherms
of the value Mr(p) of the first minimum of the ST2
oxygen-oxygen RDF as a function of p. Consistent with
the increasing order in the H-bond network, the value of
the minimum initially drops as the system is stretched.
However, in all cases where the spinodal is reached, there
is a tendency for Mr(p) to flatten, and perhaps pass
through a minimum as the immediate vicinity of the
spinodal is probed. The ordering phenomena seen in the
anomalous liquid therefore seem to be reversed in the
regime of most extreme stretching, consistent with the
possibility that (85/8V)r > 0 near the spinodal as in-
ferred from the behavior of U. An analysis of the RDF’s
resulting from the TIP4P simulations corroborates this
result.

The structure of stretched liquid water has not been di-
rectly measured in experiments because of the difficulties
of maintaining the homogeneous liquid under high ten-
sion. However, previous simulation studies of stretched
water by Geiger and co-workers [53,54] have predicted
that the stretched liquid structure tends toward that
of a four-coordinated random network. This predic-
tion was justified through a consideration of the struc-
ture of the low-density amorphous (LDA) ice, formed
via vapor deposition [55,56]. LDA ice has both struc-
tural and thermodynamic characteristics that are con-
sistent with its being the amorphous solid realization of
a four-coordinated random network of water molecules
[65]. Geiger and co-workers showed that the structure of
simulated stretched liquid water is very similar to that
of LDA ice.

It is useful to reproduce the comparison between
stretched water and LDA ice here, since more structural
studies of the LDA ice have become available since the
original work of Geiger and co-workers. Determinations
of the LDA ice structure have been made by Bellissent-
Funel et al. via neutron scattering [56,57]. In these ex-
periments, the Fourier transform h(r) of the static struc-
ture factor S(g) is the most direct real-space representa-
tion of the system. The function h(r) is a weighted sum
of the atomic RDF’s, where the weights are determined
by the intensity of the neutron scattering from specific
pairs of atomic species. The relative weights are such
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that h(r) may be expressed for pure water as [55]

h(r) = 4wpr[0.092go0 () + 0.422gou(r)

+0.486gHH(r) - 1]. (6.1)

This h(r) function can easily be evaluated from the con-
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FIG. 7. (a) gou(r), gun(r), and goo(r), for the T = 290
K ST2 liquid at p = 1.05 g/cm® (thin line), p = 1.00
g/cm?® (long-dashed line), p = 0.90 g/cm® (short-dashed line),
p = 0.85 g/cm?® (dot-dashed line), p = 0.79 g/cm?® (dotted
line), and p = 0.76 g/cm® (thick line). (b) Isotherms of
Mz (p), the first minimum of goo(r), as a function of p at
T =235K (o), T =250 K (0), T = 273 K (o), T = 290 K
(&), T =310 K (v), T = 330 K (<), T = 360 K (>), and
T =390 K (+).
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figurations resulting from the simulations, and is shown
in Fig. 8(a) at several densities of the ST2 system for
T = 290 K. From the standpoint of h(r), there seems to
be a marked evolution in the organization of the system
as it is stretched.

Figure 8(b) compares h(r) as determined from exper-
iments on the liquid [56,58] with the simulated ST2 and
TIP4P liquids at the same density, and suggests that
the simulations approximate the real liquid structure to
a fair degree. In Fig. 8(c) the structure of LDA ice
[56,58] is compared to that of the simulated stretched
liquid for ST2 and TIP4P. The change in liquid struc-
ture on stretching does seem to be in the direction of
forming the same structure as that found in the LDA ice.
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This observation in turn confirms the suggestion [53,54]
that stretched water is indeed tending toward a four-
coordinated random network. The result of the present
study is to show that such a stretched liquid may pos-
sess a thermodynamic behavior in which anomalies are
suppressed by extreme stretching. In fact, it is the very
possibility that a four-coordinated random network can
form, and then itself be stretched, that makes this phe-
nomenon possible.

Note that it is significant that a substance with a sim-
ilar structure to that of LDA ice can (at least in simula-
tion) be formed continuously from the liquid at ambient
T via stretching. This observation bears on the ques-
tion of the thermodynamic relationship between liquid

h(r) (10'nm™)

0.2 03 04 0.5 0.6 07 08
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FIG. 8. (a) h(r) of the ST2 liquid at T = 290 K at p = 1.05 g/cm?® (thick solid line), p = 1.00 g/cm?® (dotted line), p = 0.90
g/cm?® (dot-dashed line), p = 0.85 g/cm?® (short-dashed line), p = 0.79 g/cm® (long-dashed line), and p = 0.76 g/cm® (thick
dotted line). (b) h(r) at p = 1.0 g/cm?® for ST2 at T = 290 K (dotted line), and TIP4P at T = 300 K (dot-dashed line),
compared to h(r) of liquid D20 at T = 284 K and p = 1.0 g/cm?® (solid line) as measured by Bellissent-Funel, et al. [56]. (c)
h(r) of ST2 at T = 290 K, p = 0.76 g/cm®, and P = —190 MPa (dotted line), and of TIP4P at T = 225 K, p = 0.85 g/cm?®, and
P = —314 MPa (dot-dashed line), compared to h(r) of low-density amorphous ice (solid line) as measured by Bellissent-Funel

et al. [56].



3812

water and LDA ice. If the quenched form of this sim-
ulated low-density liquid is identified with the LDA ice,
then the simulations suggest that there exists a contin-
uous thermodynamic path from the liquid to the LDA
ice, at least in a certain regime. The present simulations
would therefore be consistent with the possibility that
the LDA ice is thermodynamically contiguous with the
liquid [59]. However, this view is a subject of ongoing
scientific debate [60].

VII. CONCLUSION

The results of this work can be summarized as follows:
(1) The spinodal of liquid water as modeled by the ST2
and TIP4P potentials is located and is found not to be
reentrant, a result which is not consistent with the pre-
dictions of the SLC. (2) The position and shape of the
TMD line is also calculated, and it is found to change
slope in the metastable region of the phase diagram at
P < 0. (3) The relationship we find between the spin-
odal and TMD lines, though not predicted by the SLC, is
thermodynamically consistent, and can be incorporated
into an understanding of how the energetic and struc-
tural properties of the liquid change as it is subjected to
tensile stress.

One cannot overstate the fact that our approach can-
not disprove the existence of a reentrant spinodal in lig-
uid water. The SLC remains a thermodynamically self-
consistent possibility. In addition, the predictions of the
SLC are similar to those found when the widely used
empirical equation of state of Haar et al. [39] (which de-
scribes thermodynamically stable fluid water) is extrap-
olated into the metastable region where P < 0 [7,20].
Though the thermodynamic behavior derived from ex-
trapolations of a high order polynomial (like that of Haar
et al.) may give spurious predictions, the SLC itself can-
not be similarly dismissed. Our work consists of com-
puter simulations using idealized interparticle potentials
(ST2 and TIP4P). Based on our calculations, we propose
a different equation of state for water in the region where
P < 0, which is itself thermodynamically self-consistent.
Our present proposal therefore is an alternative to the
SLC, but it remains to be determined which applies to
real water.

A primary motivation for the SLC is that it provides
a means of understanding why a thermodynamic singu-
larity, in the form of a spinodal, could be present in the
supercooled region of the phase diagram of liquid water.
This singularity would in turn induce the rapid changes
in static and dynamic properties observed in experiments
on liquid water. A question that therefore remains unan-
swered in this work is that of the origin of anomalies in
liquid water. The present results show that the ther-
modynamic feature which expresses itself through the
anomalies of liquid water may not be a reentrant spin-
odal. In the absence of a reentrant spinodal, we propose
elsewhere [21,43] an alternative thermodynamic feature
to explain the anomalies of water.

POOLE, SCIORTINO, ESSMANN, AND STANLEY 48

ACKNOWLEDGMENTS

We thank M. C. Bellissent-Funel, P. Debenedetti,
S. C. Glotzer, T. Grande, M. Hemmati, S. Schwarzer,
J. Shao, R. J. Speedy, and especially C. A. Angell and
S. Sastry, for valuable discussions. Special thanks are
also due to L. Striemann and A. Geiger for sharing their

preliminary results. Financial support was provided by
BP and NSF.

APPENDIX A: INTERACTIONS OF
THERMODYNAMIC ANOMALIES AND
SPINODALS

This appendix reviews some of the thermodynamic be-
havior that is possible when a liquid exhibits both a spin-
odal stability limit and a TMD line. Some of the results
below were first demonstrated by Speedy [2] for the spe-
cific case of liquid water; the approach given here follows
closely the presentation of Debenedetti and co-workers
[12-15].

For the purposes of this section, thermodynamic be-
havior will be discussed in the context of a mean-field ap-
proximation in which the spinodal is a well-defined locus
of points P,(V,T). On a P(V,T) EOS surface which it-
self is everywhere analytic, P,(V,T') is the locus of points
satisfying the condition

9P _o.
oV ),
In order to determine the properties of the P-T projec-

tion of the spinodal line P;(T'), consider the differential
dP of P, which is everywhere on P(V,T) equal to

P oP
dP = (ﬁ)vdT + (W>TdV.
Along an arbitrary path  embedded in the P(V,T) sur-

face the total derivative of P with respect to T anywhere
along z is given by

dPY _ (0PY , (0P (oV

ar ), \oT )y, v )p\0T )’
Taking the path = to be the spinodal line, Egs. (A1) and
(A3) give the condition

=0 (%),

(A1)

(A2)

(A3)

(A4)

The above relation, due to Skripov [61], is significant be-
cause it shows that the spinodal line P,(T') is everywhere
tangent to the P-T projection of a P,(T') isochore of the
system. In a classical van der Waals liquid-gas system,
the liquid spinodal represents the lowest P at which the
metastable liquid is observable at a given 7. Beyond
the liquid spinodal, in the unstable regime, P rises above
P,(T) at fixed T, as shown in Fig. 1(c). Hence, the P-T
projection of the liquid spinodal P,(T) will be a low-P
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envelope of the family of metastable liquid isochores, each
touching P,(T) tangentially.

If the system considered also exhibits a density
anomaly, the location of a TMD line in the phase dia-
gram is given by the locus of points for which ap = 0,
or equivalently, as the locus of P,(T) isochore minima

where the condition
oP
il =0
(5),

is satisfied. Given that both the spinodal and TMD lines
can therefore be related to the behavior of P,(T) iso-
chores, it is reasonable to expect that their properties
are not independent when they occur in the same phase
diagram. This can be seen immediately for the case of
an intersection of a TMD and spinodal line: At a TMD-
spinodal intersection point R, both Egs. (A4) and (A5)
must be satisfied, with the result that dP,(T")/dT = 0 at
R. Also, from Eq. (A4), the sign of dP,(T)/dT neces-
sarily changes from one side of R to the other, since R
is a point where (0P/8T)y changes sign. Therefore an
extremum occurs in P,(T) at R.

As stated above, the detailed analysis of the specific
thermodynamic constraints on the relationship between
the spinodal line and the TMD line was first made by
Speedy for the specific case of liquid water, and later by
Debenedetti and co-workers for arbitrary fluids exhibit-
ing TMD lines. Their analysis follows from the assump-
tion of the analyticity of the P(V, T surface, as described
above, and provides two main results.

(i) A TMD line cannot end in a thermodynamically
self-consistent way without either (a) meeting a line of
density minima in the P(V,T) surface (a circumstance
that has never been experimentally observed), or (b)
meeting a spinodal line.

(ii) Only a subset of all conceivable TMD-spinodal line
intersections satisfying Eq. (A4) are thermodynamically
possible.

In both cases, (i) and (ii) are arrived at by examin-
ing the behavior of a truncated Taylor expansion of the
P(V,T) surface around a TMD line end point, which is
either within the stable or metastable region [yielding
()], or at the spinodal boundary of the metastable re-
gion [yielding (ii)]. The proof of (i), although straight-
forward, is not particularly important to the conclusions
that will be drawn in the present work, and is not repro-
duced here. However, the method used to obtain (ii), by
which a given kind of TMD-spinodal line intersection is
assessed for thermodynamic consistency, is useful in the
present context, and so is given below.

As shown above, the intersection point R of a spinodal
and TMD line is necessarily an extremum of the P-T
projection of the spinodal line P,;(T"). Therefore, begin
by assuming that such an analytic spinodal extremum R
exists at (Pgr, Vr, Tr), and that a TMD line intersects the
spinodal at R. Change coordinates such that the spinodal
extremum occurs at the origin, via the transformation:

(A5)

pP= P — PR, (A6)

v=V — Vg, (A7)
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and
t=T — TR. (AS)
In these variables, everywhere along the spinodal,
op
— ] =0 A9
(81} ) t ’ (49)
while specifically at R, the condition
dp
(52) =0 (A10)

also holds, since the TMD line intersects the spinodal at
R.

Given the analyticity of the p(v,t) surface, expand
p(v,t) around R in a Taylor series truncated at second
order:

_(p dp 1/3p\ ,.
pen = (5) 1+ (an) o+ 3 (3.
1/9%p\ , *p
+§(5&72)t” +(atav)t”'

From Egs. (A9) and (A10), the linear terms are both zero
at R, giving

(A11)

p(v,t) = at? + bv? + ctv, (A12)
where
0= %(g%)v, (A13)
and
c= (;231’; ) (A15)

The signs of the constants a, b, and ¢ depend on the
circumstances being considered. In general, for R to be
the intersection of a spinodal with a TMD line [which is
a locus of P,(T) isochore minima), isochores in the im-
mediate vicinity of R must have extrema with positive
curvature, and given the form of Eq. (A12), this requires
a > 0. (The constraint a < 0 would imply an intersection
with a line of density minima.) In addition, if R occurs on
a liquid spinodal connected to a liquid-gas critical point,
then the spinodal necessarily lies below a coexistence line
in the p-t plane. In these circumstances, the spinodal
represents the first minima along isotherms of p with re-
spect to v; this condition gives b > 0. Further, assume
that K7 only decreases along an isochore as t increases.
This last assumption corresponds to a metastable liquid
which never loses mechanical stability on isochoric heat-
ing, a condition met by all known liquids; for example, it
is easily shown to be true for the van der Waals equation.
This last condition requires that ¢ < 0, since ¢ indicates
the ¢ dependence of (8p/8v);, which should only become
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more negative as t increases if Kr is to decrease as t
increases.

The spinodal p,(t) in the region of R is easily found
as the locus of points on p(v,t) satisfying Eq. (A9). This
locus is given by

P,(t) = a(1 — c*/4ab)t>. (A16)

Similarly, the TMD line is the locus of points on the
surface described by Eq. (A12) which satisfy Eq. (A10).
The TMD line is thus described by

prMp(t) = a(4ab/c? — 1)t2.

Now, consider the specific case in which the extremum
R is a minimum along the spinodal line. (This is the
case which is relevant to the prediction for the shape
of the spinodal given in the SLC.) From Eq. (A16), it
can be seen that for R to occur at a spinodal minimum,
the relative magnitudes of a, b, and ¢ must be such that
(1 — c?/4ab) > 0, or

(A17)

c?/4ab < 1. (A18)

A plot of the relevant thermodynamic features near
R resulting from these conditions is given in Fig. 9. As
assumed, the spinodal passes through a minimum and
the TMD line intersects it so as to satisfy Eq. (A4). It is
particularly important to note that the TMD line does
not appear beyond the intersection with the spinodal,
in the region where ¢ > 0. This can be understood by
applying the stability criterion (8p/dv); < 0 to points
along prmp(t): Eq. (A12) gives

(@) = 2bv + ct.
t

B (A19)
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FIG. 9. Intersection of TMD line (heavy dashed line) with
spinodal minimum (heavy solid line), as described in Ap-
pendix A. p,(t) isochores of the metastable liquid (thin solid
lines) and their extension into the unstable region (dotted
lines) are also shown. Note that the stable branch of the
TMD line (thick dashed line) only occurs for ¢ < 0; its unsta-
ble extension at ¢ > 0 (thin dashed line) is also shown.

The volume vrmp(t) of the TMD line is described by

'UTMD(t) = (—2a/c)t. (A20)
Combining Eqs. (A19) and (A20) gives the expression for
(8p/Bv); along the TMD line:

[(g{)ﬂ)t] = el —dab/e)

From Eq. (A18) it must be that (1 — 4ab/c?) < 0. Given
that ¢ < 0, then only the portion of the TMD line for
which ¢ < 0 is stable. In this case therefore, the observ-
able TMD line has negative slope and appears only in
the ¢t < 0 range where p,(¢) also has negative slope. Note
that, under the assumptions of this section, the TMD line
cannot meet a spinodal minimum with positive slope.

(A21)

APPENDIX B: SIMULATION PROTOCOL AND
RESULTS

The conclusions of this study are based on the results of
molecular-dynamics computer simulations of systems of
water molecules interacting via a model potential [62]. In
this work, the ST2, TIP4P, and SPC/E potentials are all
used to varying degrees. Each of these potentials models
a single water molecule as a rigid set of interaction sites.
Specific sites on different molecules interact via either
Lennard-Jones or Coulomb potentials. The total inter-
action of a given molecule ¢ with another molecule j is
calculated explicitly when the separation of the O atom
sites on each molecule r;; is less than a cutoff distance r..
In all cases, we choose 7. = 2.50, where o is the charac-
teristic length associated with the Lennard-Jones interac-
tion between molecules. The contribution to the force on
i due to Coulomb interactions with j when r;; > 7. is ap-
proximated using the reaction-field method, as described
by Steinhauser [63]. Also, the approximate influence of
Lennard-Jones interactions between molecules separated
by more than r, is included in the evaluation of thermo-
dynamic properties like the potential energy U and the
pressure P.

Except where otherwise indicated, each simulation is
conducted at constant V, with N = 216 molecules en-
closed in a cubic box having sides of length L chosen so as
to give the desired density. Periodic boundary conditions
are used throughout. The time step 6t for the integra-
tion of the molecular trajectories is fixed for all the ST2
simulations at 1 fs. The TIP4P simulations are carried
out with either 6t = 1 fs or 2 fs, as indicated in Table IV.
The very first simulations were started from configura-
tions of particles distributed throughout the simulation
box so that their centers of mass formed a simple cu-
bic lattice, while their initial orientations were chosen at
random. After the completion of several such runs, a sim-
ulation for a new state point would be started from the
final configuration resulting from a simulation of a nearby
state point. Equilibration is considered complete when
the values of P and U are observed to be clearly fluctu-
ating around a fixed value, and when the rms distance



traversed by the molecules from their starting positions
has exceeded at least one molecular diameter, taken to
be o.

During both the equilibration phase, and the evalua-
tion of thermodynamic averages following equilibration,
the temperature of each simulation is controlled using
Berendsen’s method of velocity rescaling [64], with a time
constant of 7 = 0.5 ps. Though the use of Berendsen’s
method does not generate states in either the (V,V,T)
or (N,V, E) ensembles, the calculation of the average of
P or U is not affected.

In all cases, the total simulation time t; (that is, equi-
libration plus post-equilibration) is at least 200 ps except
at the highest T'. At the lowest V' and T simulated, run
times of 600 to 800 ps are typical. P and U are calcu-
lated as the arithmetic average of the time series of values
calculated over the second half of the system trajectory,
of length ¢, = t5/2 (i.e., the simulation of each state is
always run for at least enough steps so that the equili-
bration criteria have been met before the simulation is
half complete). The method of calculation of the error
in measurements of P and U, respectively § P and U, is
described in Appendix C. The properties of the states
simulated are given in Tables II, III, and IV.

To measure structural and dynamic properties, the
molecular trajectories resulting from the above proce-
dure are continued in constant-(NNV,V,E) simulations.
From these constant-(NV,V, E) runs, the radial distribu-
tion functions are calculated from the particle positions,
and the diffusion constant D is calculated from the mean
square displacement of the particles as a function of time.
These constant-(N,V, E) simulations also confirm that
the values of P and U measured when T is constrained
via Berendsen’s method reproduce the values that are
calculated from simulations in the (IV,V, E) ensemble.

APPENDIX C: METHOD FOR ESTIMATION OF
ERROR IN MEASUREMENTS OF
THERMODYNAMIC PROPERTIES

This section describes the method used to evaluate
the error 6P in the estimations of the average pressure
P quoted in Tables II, ITI, and IV. In all cases, P is
estimated from the second half of the total simulation
history. Denote the average over 1 ps (1000 time steps
when 6t = 1 fs) of the instantaneous pressure calculated
at each time step, by P;. The time series of P; for the
ST2 simulations at p = 1.0 g/cm?® for several different
T are shown in Fig. 10(a). The fluctuations observed
in these time series over the second half of the system
trajectory represent the error § P; observed when P is es-
timated from any single 1 ps segment of the simulation.
If the decay time 7 for correlations in these time series
can be estimated, then the number N}, of independent
estimates of P available from the time series of P; is just
Np, = tp /7. If the fluctuation §P; is calculated as

(C1)

p = (o SR - P1?) -

t=tp
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then 0P is just

(C2)

0.0

-100.0 L . L . :
. 600.0 700.0 800.0

300.0 T T T T T

2000 fjl | 1

100.0 8 YU R Y ’ Wi :

P(MPa)

-100.0 L . L . .
0.0 100.0 200.0 300.0 400.0 500.0

400.0 T T T T T T T

300.0 | ny' | ||
200.0 LA R

1000 | ‘ ‘ -

0.0 ; .
0.0 100.0 400.0
t (Ps)

80 T T T T T T T T

200.0 300.0 500.0 800.0

70 + |
60 | ) |
50 | .

! | |

8P(t;) (MPa)

30 | -

20

< [
. .

0 .
00 01 02 03

. L

04 05 06 07 08 09 10
-2 -172,

ts (ps)

FIG. 10. (a) Time series of P; for ST2 over the total time
of simulation at p = 1.0 g/cm?®, for T = 330 K (top), T = 273
K (middle), and T = 235 K (bottom). (b) Dependence of
6Ps on t3'/% for T = 330 K (dot-dashed line), T = 273
K (dotted line), and T = 235 K (dashed line). For each
curve, the accompanying solid line passes through the origin
and touches the curve tangentially from above; the crosses
indicate the points on the straight lines taken to give the
values of § P cited in Appendix B.
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An estimate of 7 is available from a plot of the autocor-
relation function C(t) of the time series of P;, defined
as

(Pi(to)Pi(to +1)) — (P1)?
(P?) — (P1)? ’

Cc(t) = (C3)

where (Pj(to)Pi(to + t)) is an average over all possible
starting times to, and (P;) = P and {P2) are both aver-
ages taken over the second half of the time series. The
order of magnitude of 7 can be estimated as the time at
which C(t) begins fluctuating about zero. As expected
from the form of the time series, the corresponding C(t)
functions show that 7 is increasing at lower 7', and is
certainly many tens of picoseconds at T' = 273 K. How-
ever, in general the C(t) plots are found to be very noisy,
making accurate estimation of 7 (for example, via fitting
to an exponential form) difficult.

As an alternative to evaluating 6 P through an estimate
of 7, the following approach is possible: Consider the
second half of the simulation (of length ¢4) from which
P is obtained. Divide this full interval into S segments
each of length tg = t;/S. If the average of P; within
each segment is denoted Ps, then the fluctuation § Ps of
Ps over all S segments is

S

§Ps = <(% > [Ps() - p]2>1/2>,

(C4)

i=1

where here ¢ labels the S different segments, and where
the average () is the average over all possible different
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ways of dividing the second half of the simulation into S
segments. Although the statistics become poor for the
calculation of §Ps as tg — tj, since this means that
S — 1, the trend in § Ps as a function of ts contains use-
ful information. Specifically, if ts > 7, then § Ps should
be a linearly increasing function of t;l/ ? which passes
through the origin. Figure 10(b) shows the dependence

of 6Ps on t;l/z for the time series given in Figure 10(a).
Figure 10(b) thus indicates the decay of the error in the
estimation of P as a larger and larger piece of the simu-
lation is used in the average. Figure 10(b) confirms the
prediction that, once ts becomes greater than 7, §Ps
becomes a linear function of t;l/ 2,

To complete the act of estimating § P, an upper bound
on the behavior of §Ps as it approaches t;l/ 2 _0is
taken as a straight line passing through the origin which
tangentially touches the § Ps curve from above, as shown
in Fig. 10(b). The value of 6 Ps along this straight line
at t;l/z = t;l/z estimates the error § P in the value of P
made using the entire second half of the simulation. In
order to ensure a conservative estimate of § P, the error
quoted in Tables II, III, and IV is actually twice this
value. In other words, the error § P in Tables II, III, and
IV represents the error in an estimation of P in which
the average is taken over a time slice of size tj/4; this
time and error for each time series is indicated by the
+ signs in Fig. 10(b). Although this approach doubles
the error which might justifiably be quoted, it ensures
that the error given is consistent with the variation in
estimates of P actually calculated from subsegments of
the simulation. Note also that the error U in the average
potential energy U is evaluated in exactly the same way.
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