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Simulations of shear-induced melting and ordering
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We describe the e8ect of shear on the solid-liquid phase boundary of particles that interact via
a screened Coulomb potential. Both fcc and bcc phases shear through layer-over-layer sliding. As
the shear rate j increases from zero, the degree of disorder in the layers increases and. the stacking
sequence changes. A first-order shear-melting transition occurs if the temperature is greater than
about half of the equilibrium melting temperature T ~. Near T'~ the transition rate is proportional
to T'" —T. As j increases further, shear becomes an ordering inHuence and a reentrant solid
phase is observed. Dimensionless plots of the nonequilibrium phase diagram and of the shear stress
versus strain rate show considerable universality and are in excellent agreement with experiments
on charge-stabilized colloidal suspensions.

PACS number(s): 62.20.—x, 64.70.Dv, 82.70.Dd

I. INTRODUCTION

There has been growing interest in the effect of shear
on the structure and dynamics of condensed matter.
Several types of shear-induced phase transitions have
been discovered, including shear-induced melting [1—15],
shear-induced ordering [ll—27], phase segregation [28],
and liquid-crystal transitions [29—31]. These transi-
tions are of fundamental interest as examples of non-
equilibrium phase transitions, and may aid the construc-
tion of general criteria for identifying stable steady states
far from equilibrium. Studies of the mechanism of shear
flow and the structure of shearing systems are also of
great practical interest. Shear can be used to produce
desired alignments of a system or to change its phase.
An understanding of solid How at high shear stresses is
needed for models of flow in the Earth's crust [32] and of
friction and wear [33].

In this paper we consider the effect of shear on the
relatively simple phases formed by spherical particles
interacting with a purely repulsive screened Coulomb
(Yukawa) potential. The potential and parameters are
chosen to correspond to a well-studied experimental
system charge-stabilized colloidal suspensions of spher-
ical particles. These systems have several features which
make them particularly fruitful testing grounds for the-
ory and experiment. One is that their interactions are
fairly simple [34], and can be varied continuously by
changing the density of particles or by adding salt to the
solution (see Sec. II). A second is that colloidal spheres
form fcc, bcc, and Quid phases like atomic matter, but
with interparticle separations of 1 pm rather than 0.1
nm [14,35—41]. The large separation allows the structure
of suspensions to be imaged directly with light. It also
leads to dramatic reductions in the elastic moduli, which
scale as energy per unit volume. Since the energy scale
in colloidal solids is comparable to that in atomic solids,

the elastic moduli are roughly 10 times weaker than
in atomic systems [42]. This makes it possible to study
the response of systems at extremely high dimensionless
shear stresses with a benchtop experiment.

Experimental studies of charge-stabilized colloidal sus-
pensions have focused on measurements of the shear
stress [42—44] o and structure factor [1,3] S(k) as a func-
tion of shear rate j. At low shear rates, polycrystalline
samples become aligned in an orientation which mini-
mizes the shear stress. As j increases, gradual struc-
tural transformations occur [1—3). In some cases, these
culminate in a first-order melting transition [1,3,42,43],
while other suspensions remain solid [15]. Normalized
values of the stress vs strain-rate for different systems fall
onto nearly universal solid and Quid curves. A counter-
intuitive observation is that the measured shear stress in-
creases discontinuously when the solid melts solids with
the preferred alignment flow more easily (are less viscous)
than fluids [42,43].

In this paper, we present detailed calculations of
the nonequilibrium phase diagram, structure, and shear
stress of systems whose equilibrium phase is fcc, bcc,
or Quid. The main mechanism of shear in solid phases
is shown to be layer-over-layer sliding. The calculated
stress vs strain-rate curves are in good quantitative agree-
ment with experiments, and show the same universal
solid and Quid behavior. A dimensionless shear-melting
phase diagram is constructed, and found to agree with
most existing experimental data. Shear plays a surpris-
ing dual role in this phase diagram. Low shear rates
increase the degree of disorder and destabilize the solid
phase. SufBciently high shear rates increase the degree
of order and lead to a reentrant solid phase [14].

We also compare our results to previous simulations
and to analytic calculations. Analytic work has treated
shear as a weak perturbation from equilibrium within a
density-functional or mode-coupling theory [7—9]. Ra-
maswamy and Renn [8] and Bagchi and Thirumalai [9]
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concluded that the shear-melting transition evolved con-
tinuously from equilibrium melting, and that the transi-
tion point decreased as j . Our simulations support the
view that shear-melting evolves continuously from the
equilibrium transition. However, we find that the lead-
ing correction scales linearly with j and show that this
can be attributed to the presence of a finite yield stress
for the solid phase.

Most simulations have focused on structural changes
within sheared fluids [11,16,22—25,27,45]. Several groups
have found an ordered phase at high shear rates which
is closely related to our reentrant solid. However, we
And strong two-dimensional order within shearing planes
of atoms while some previous groups [11,27] have iden-
tified one-dimensional "stringlike" order along the veloc-
ity direction. The presence of an ordered phase at high
shear rates remains controversial [20,24,25], and we dis-
cuss what facets of an experiment or calculation may
influence its existence.

Prior to our recent work with Yukawa potentials [14],
the efFect of shear on solid phases had only been stud-
ied for the case of a soft sphere potential [5,46]. Evans
[5] found a melting transition, but without the stress dis-
continuity seen in experiments [42,43]. As pointed out by
Brown and Clarke [46], this may be because the system
was not sheared in the experimentally observed crystal
alignment. Brown and Clarke performed constant-stress
simulations of fcc crystals in the observed alignment [46].
As in our simulations, the solid sheared through plane-
over-plane sliding and the stacking of planes changed
with shear rate. However, they did not observe shear-
melting in their system.

The outline of the rest of the paper is as follows. Sec-
tion II describes the interactions between charged col-
loidal spheres and the characteristic time scales for their
motion. Details of our simulation techniques are provided
in Sec. III. Then results for the changes in the orienta-
tion, phase, stress and structure of sheared systems are
presented in Sec. IV. Concluding remarks and a summary
are given in Sec. V.

where

4vre (Z*p+ 2p, ),ek~T
(2.2)

Up ——
(Z* )

2K,R

(1+ KB)2 (2 3)

e is the dielectric constant of the solvent, T is the tern-
perature, and p, is the molecular density of added salt
(typically HC1 in experiments). We will use the typical
interparticle spacing a = p ~ to make lengths dimen-
sionless.

The experimentally controlled parameters are p, and
the volume fraction of spheres, P = 47rB p/3 Fig.ure
1 shows the calculated equilibrium phase diagram [41]
for spheres with B = 455 A and Z* = 450 in water at
T = 300 K where e = 78. The phase diagram is typical
of that found for many other sets of parameters in exper-
irnents and calculations [50]. Three phases are evident: a
fluid phase and bcc and fcc solid phases. As p, increases
from zero, the Coulomb repulsion becomes more strongly
screened. Systems that are in a solid phase at p, = 0 pM,
melt as p, increases. In contrast, increasing the volume
fraction favors solidification: The distance between par-
ticles decreases and they interact more strongly. As P
increases along p, = 0, one Ands the system changes
from a fluid phase into a bcc solid phase and R.nally into
an fcc solid phase.

The values of R, T, and e used in Fig. 1 match those in
some of the shear experiments done by Chaikin and co-
workers [42—44,51]. The value of Z* is not directly mea-
surable, but the melting line can be used to determine its
value. As shown in Fig. 1, the measured melting point
lies above the melting line calculated for Z' = 450 [52].
Good agreement is obtained [52] for the slightly larger
value of Z* = 625. While our calculations of sheared
systems were all done for Z* = 450, the small difference
in effective charge does not appear to alter the dimen-
sionless quantities that we compare to experiment. A

II. PHYSICAL PARAMETERS

A. Interparticle potential

e
u(r) = Up r (2.1)

The Derjaguin-Landau-Verwey-Overbeek (DLVO) po-
tential [34,47] provides a very successful description of in-
teractions between like-charged spheres in solution. The
potential contains a screened Coulomb repulsion and a
van der Waals attraction. The latter is negligible in the
systems of interest here. Although the original derivation
of the DLVO potential is only valid for weakly charged
spheres and low volume fractions, analytic [48] and nu-
merical studies [49] show that it can be used more gener-
ally. However, the bare charge Z must be replaced by a
smaller e8'ective or "renormalized" charge Z*. The pair
potential for spheres of radius B and density p is then a
Yukawa potential:

I I I I I I I I I I I I I—3 —8 —1
logio&

FIG. 1. Calculated equilibrium phase diagram for a col-
loidal suspension in water at T = 300 K with R= 455 A and
Z* = 450. The salt concentration p, is in units of pM. Solid
lines indicate the melting and fcc-bcc transitions. Dashed
lines indicate the volume fractions, 0.01 and 0.04, whose rhe-
ology was studied. A cross indicates the experimental melting
point at g = 0.04 for a similar system. This point is consistent
with Z* = 625.
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much more important factor is the structure of the solid
phase. We contrast results for an fcc system (P = 0.04)
and a bcc system (P = 0.01) in the following sections.
The volume fractions corresponding to these systems are
indicated by dashed lines in Fig. 1.

to the second derivative of the Yukawa potential [36,41].
Dividing the derivative of the hydrodynamic force by the
second derivative of the Yukawa potential gives a dimen-
sionless measure of the relative strength of hydrodynamic
interactions in determining local structure

B. Time scales
f = 6De(P ~ —P ~ ) (kT/mar&a ). (2 4)

The shear rate, j = Bv /Oz, has units of frequency.
A dimensionless measure of its magnitude is provided by
the Deborah number De = jw, where w is a characteristic
relaxation time of the system [53). At low De the system
is able to respond to shear and relaxes to a state near
equilibrium. For De ) 1, the system relaxes more slowly
than it is altered by shear. This may produce dramatic
changes in the structure of the steady state.

The choice of ~ is usually not unique, because most
systems have a distribution of relaxation times. The
range of time scales is particularly dramatic in solids:
Infinite relaxation times are associated with the break-
ing of translational invariance, and rapid relaxation times
are associated with phonon vibrations. We will define De
in terms of the rapid vibrational relaxations, keeping in
mind that the degree and nature of long-range order may
change at arbitrarily small shear rates. In the following,
De = jw@, where r@ = 2a/w~ is the Einstein period.
This is a natural time scale for solids since it describes
the oscillations of a single particle with all others held
fixed on lattice sites, and because u& is the mean of the
squares of all phonon frequencies. Other characteristic
times are given by a typical interparticle spacing divided
by the sound velocity, or by the decay time of the veloc-
ity autocorrelation function [54]. All of these are within
a factor of two of ~~. Our simulations cover the range of
De from 0.01 to 1.0.

The Huid surrounding colloidal particles produces two
major effects that are not incorporated in the simula-
tions described below. One is to change the dynamics
from undamped, ballistic motion to overdamped, Brown-
ian motion. While ballistic and diffusional dynamics may
in principle lead to different behavior, our studies indi-
cate that only De is relevant. However, the relaxation
time in suspensions is quite different from v~, because
most phonon modes are overdamped [55]. As explained
below, the relevant relaxation time is rg;ir = a /6D
the time for a free particle to diffuse a typical interpar-
ticle distance. The free difFusion constant for spheres
is D = kiiT/6vrgR, where q is the viscosity of the sus-
pending fluid. For the experimental system of Fig. 1,
D = 4.8 x 10 cm /s. In the fcc system, a = 2.15 x 10
cm and 'Tg ~ = 1.6 ms. In the bcc system, a = 3.4 x 10
cm and wg;g

——4.0 ms. Published experiments on the fcc
system have gone to j = 300 Hz or De = 0.48 [42,44].

The surrounding fluid. also leads to hydrodynamic
forces between colloidal particles. These may become
important at high shear rates, but are smaller than the
direct Yukawa repulsion for the cases studied here. The
restoring force which determines the phonon spectrum
and the melting temperature in our simulations is propor-
tional to the energy of a typical phonon mode and thus

For our parameters, f ( 0.02 when De ( 1. Thus hydro-
dynamic interactions should be negligible over the range
of interest here.

III. SIMULATION METHOD

A. Applying shear

We use a method called the Sllod algorithm [56] (so
named because of its close relationship to the Dolls tensor
algorithm), which has been extensively used in nonequi-
librium molecular dynamics (MD) and shown to agree
exactly with adiabatic Couette Bow. Our simulation cell
is oriented with the shear velocity along the x axis and
the velocity gradient along the z axis. Periodic bound-
ary conditions are imposed, and the system is sheared by
deforming the cell at a constant rate [57]. The period
in each direction, L, with i = x, y, or z, and the total
volume, V = J L„L, are constant.

For reasons discussed below, we have generalized the
Sllod algorithm to allow the system to shear along y
in response to internal stress using an extension of the
Parrinello-Rahman algorithm [57]. An extra equation of
motion is added which describes deformations of the peri-
odic cell with displacements along y and gradients along
z. This degree of freedom is assigned a fictitious mass
and responds to a force equal to the internal stress. Pre-
vious work suggests that the mass should be roughly 10
times that of the particles, and this is the value used here
[58]. We have verified that our results are not sensitive
to the mass. Indeed, if the system is large enough, the
results do not depend significantly on whether the system
can shear along y.

Simulations were performed with a fixed number N of
spheres, that ranged from 768 to 2592. The equations
of motion were integrated using the fifth-order predictor-
corrector algorithm [59]. The time step At varied be-
tween r@/300 and r~/150, depending on the potential
and shear rate. In each case, we checked that the time
step was small enough to insure accurate integration. A
cutofF radius of 3a was used to evaluate the force and po-
tential. This cutoff has been shown to produce negligible
changes in the equilibrium properties [36].

B. Thermostats

The energy put into the system by shear must be re-
moved or the temperature will rise. All thermostats pro-
posed to date assume that, locally, the system is close
to equilibrium. The temperature is defined in terms of
the kinetic energy relative to the mean flow v(r, ) at the
position r, of each particle:
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A constant value of this kinetic temperature can be main-
tained using any of the methods of equilibrium MD [54].
In our simulations the Nose-Hoover algorithm [60] was
used.

The remaining element needed to define the thermostat
is the mean flow v(r). This is not known a priori and
may not have the simple linear Couette form expected
from Newtonian hydrodynamics: v(r) = jzx. The so-
called proflle-biased thermostat (PBT) assumes Couette
How. Deviations from the linear Qow profile are then
treated as fluctuations and are damped by the thermo-
stat. To remove this bias, Evans and. Morriss introduced
a profile-unbiased thermostat (PUT) in which the mean
flow is calculated self-consistently [20]. The simulation
cell is divided into bins and v(r, ) is defined as the av-
erage instantaneous velocity of the particles in each bin.
Since the components of the mean velocity in each bin are
no longer treated as thermal degrees of freedom, the fac-
tor K on the left hand side of Eq. (3.1) must be reduced
by the number of bins.

As discussed in detail by Loose and Ciccotti [25], there
is significant freedom in the choice of bins in the PUT
algorithm. One should choose enough bins to allow the
system to express any tendency towards nonuniform Qow.
However, increasing the number of bins decreases the
number of modes which are directly coupled to the heat
bath. If there are too many bins, thermal Quctuations in
v will not be adequately thermostatted. Recent work by
Evans et al. [15] used bins containing only 4—11 particles
per bin. This only controlled the kinetic energy asso-
ciated with velocity Quctuations at short wave vectors.
Longer wavelength Quctuations were not directly ther-
mostatted and could heat up substantially. We have not
explored their thermostat to see how large these effects
are. However, we encountered a similar phenomenon
when we only controlled the kinetic energy in the y and
z directions where the mean velocity is expected to van-
ish. The thermal coupling to Quctuations in the x. direc-
tion was slow enough that the effective temperature in
this direction more than doubled. for simulations with De
= 0.1. Evans et al. note that their algorithm becomes
completely unstable if they further decrease the number
of particles per bin. We will return to a discussion of
their results in later sections.

The difFiculties with defining an appropriate thermo-
stat for De 1 are not surprising. At this shear rate,
adjacent lattice planes are moving relative to each other
by an interparticle distance in one phonon period, the
velocity difFerence between adjacent planes is about one
fifth of the longitudinal sound velocity and twice the rms
thermal velocity, and work is being done on the system at
a rate of more than kT per particle per w~. At such high
shear rates the assumption of local equilibrium on which
all thermostatting techniques are based becomes ques-
tionable. Recent simulations by Liem, Brown, and Clarke
[61] show that thermal conduction is not fast enough
to remove heat in the center of relatively thin samples

( 50a) when De exceeds about 0.1. Thus simulations
for De 1 are probably not relevant to any atomic sys-
tem.

The situation is very difFerent in macromolecular sys-
tems such as polymers and colloidal suspensions. Long
relaxation times associated with large-scale structure de-
termine the Deborah number where shear becomes im-
portant. These will be therrnostatted by many fast de-
grees of freedom which remain close to equilibrium. In
the case of colloids, the surrounding solvent provides an
excellent heat bath whose specific heat is roughly 10
times larger than that associated with changes in order-
ing of the spheres. The solvent acts much like a PBT
thermostat, removing heat homogeneously throughout
the system and favoring uniform Couette Qow. Measured
flow profiles in charge-stabilized colloidal suspensions [2]
are consistent with Couette Qow.

For these reasons we have performed simulations for De
between 0.01 and 1.0 using both the PBT and a version
of the PUT. In the latter, we divide the cell into layers
that span the system in the x and y plane (cf. Refs. [24]
and [25]). In the solid phase, the location and spacing of
the layers are usually chosen to correspond to the planes
of the equilibrium crystal. As a check, we performed
simulations with a larger number of layers (up to four
times more) and found no effect on the results. The type
of thermostat used for each figure is indicated in the text.
Except as noted, the PBT and layered PUT thermostats
gave the same results within our accuracy ( 10%).

C. Calculating the phase diagram

One method of determining phase boundaries is from
the shear rates at which a crystalline state melts or a Quid
state crystallizes. However, melting is a first-order phase
transition and there may be a large difFerence between
the shear rates where these transitions are observed. The
source of this hysteresis is the energy barrier against cre-
ation of an interface between the phases. A more ac-
curate melting point can be determined by performing
simulations on a system which is constructed with a pre-
existing interface [14,41,62].

We create an initial configuration in the following man-
ner [14]. A j = 0 solid phase is formed by placing par-
ticles on the sites of a perfect crystal and allowing the
system to equilibrate. Particles on the bottom half of the
system are then held fixed, while the top half is melted
by increasing the salt concentration to a value in the Quid
part of the equilibrium phase diagram. When the Quid
half has equilibrated, the salt concentration is returned
to the initial value and shear is applied. The resulting
two-phase configuration has no nucleation barrier pre-
venting growth of either phase, and the more stable one
rapidly expands to fill the simulation cell. Note that the
initial interface is aligned normal to the velocity gradient
so that shear does not force the two phases to mix.

Mechanical equilibrium requires that the shear stress
o = e in the two phases must be equal. However, the
phases may shear at difFerent rates. In fact, experiments
show that the total viscosity (p = u/p) of the fluid phase
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is greater than that of the solid phases [42]. In order to
allow the difFerence in shear rates to develop, the layered
PUT algorithm was used for all two-phase simulations.

The two-phase method has been used previously to
calculate the phase diagram of equilibrium [62] and non-
equilibrium [14] systems. Recent work on the equilibrium
phase diagram of Yukawa systems [41] shows that it is
more reliable than the phenomenological criteria used in
earlier studies [36,63,64] and that the results agree well
with explicit free energy calculations [37].

IV. RESULTS
0.

A. Shear direction and crystal orientation

One important observation from experiments on col-
loidal crystals is that polycrystalline samples become
aligned when shear is applied [1—3,65]. The final orien-
tation maximizes the distances between particles as they
shear past each other, and thus minimizes the shear stress
[1—3]. The densest lattice planes are stacked along the
gradient direction (z) to maximize the spacing between
successive planes. The nearest-neighbor direction in the
planes is parallel to the shear velocity. Lines of particles
along this direction are then maximally separated. They
lie between similar lines in the planes above and below
(see Sec. IV D).

We have studied the efFect of crystal orientation in our
simulations and find similar behavior. Crystallites which
are not in the experimentally observed orientation melt
very rapidly usually before adjacent layers have sheared
by a single interparticle spacing. The resulting fl.uid then
recrystallizes with the preferred alignment [66]. In the
remainder of this subsection we discuss the favored align-
ments and shear paths of fcc and bcc crystals. All of the
results in following subsections refer specifically to the
preferred crystal alignment.

The densest planes in the fcc structure are the close-
packed (ill) planes and the nearest-neighbor direction
in these planes is (110) (Fig. 2). Successive planes are
stacked so that particles are centered over triangular gaps
in the plane below. There are three inequivalent plane
positions denoted by A, B, and C. In the ideal fcc struc-
ture the planes stack in an ABC or ACB sequence.

Figure 2 shows energy contours (solid lines) for an fcc
crystal sheared in the close-packed (ill) plane. The en-
tire system is sheared coherently without thermal fIuc-
tuations and the parameters are those of Fig. 1 with
P = 0.04 and p, = 0. Contours are plotted as a func-
tion of the relative displacement of a B plane immedi-
ately above an A plane (solid circles). As expected, there
are large peaks in the energy when particles in adjacent
planes are directly above each other. For the case shown,
the energy at these maxima is about 6k~T per particle
higher than that of the undistorted crystal. If the crys-
tal is sheared in an arbitrary direction it will eventually
reach one of these unstable fixed points. Particles can
then gain many k~T by randomly moving away from the
peak and it is not surprising that the system melts. Only
when the system is sheared along one of the three equiv-

FIG. 2. Energy contours for a fcc crystal sheared coher-
ently in the (111)plane. Circles indicate particle positions in
an underlying A plane. Down (up) pointing triangles mark
particle positions in undisplaced B (C) planes. The coordi-
nates indicate the displacement (in units of a) of a B plane
from its equilibrium position with the underlying A plane held
Axed. Contours were calculated for the system of Fig. 1 with
P = 0.04 and p, = 0 pM. The energy per particle is normal-
ized by k&T. The dashed line indicates the minimum energy
path given by the condition o„=0. Arrows indicate the x
and y directions. In our simulations, the velocity is along w

and the gradient is along z.

alent nearest-neighbor directions in the (111)plane does
the energy remain small.

In our simulations, w coincides with one of these
nearest-neighbor directions, and the cell is allowed to
deform in the perpendicular direction, y, in order to
minimize the energy (0„, = 0). The minimum energy
path is indicated by a dashed line in Fig. 2. While
the average direction of the minimum path is along the
nearest-neighbor direction, there are pronounced oscil-
lations. The layer hops between the two inequivalent
minima at B and C sites. These minima correspond to
the two possible fcc twin structures given by ABC and
ACB stacking, respectively. By allowing the simulation
cell to shear along y we make it possible for the crystal
to fIow coherently along the minimal path. However, we
will show below that the actual motion is not coherent.

The densest planes in a bcc crystal are the (110)planes.
They can be viewed as slightly distorted triangular lat-
tices which stack in an ABA sequence. Particles in each
plane are centered between four particles in the plane
below (Fig. 3). The preferred bcc flow direction is also
along the nearest neighbor direction, (ill) in this case.
Lines of nearest neighbors along the shear direction are
directly centered above similar lines in the plane below.
This contrasts with the fcc structure, where the lines
are slightly ofI' center, and leads to diferent structural
changes when shear is applied.

Figure 3 shows energy contours (solid lines) for a bcc
crystal sheared coherently in the (110) plane. The 2: and
y coordinates correspond to the distances a B plane is
sheared relative to an underlying A plane (closed circles)



48 SIMULATIONS OF SHEAR-INDUCED MELTING AND ORDERING 3783

1.0
I I

I

I I I I

I
I

0.8

0—
0.6

0.4

0.2

= X

0.0—
0

I I I I I I I I I I

10 20
p, (p,M)

30

FIG. 3. Energy contours for a bcc crystal sheared coher-
ently in the (110) plane. Closed (open) circles indicate par-
ticle positions in A (B) planes. The coordinates show the
displacement (in units of a) of a B plane from its equilibrium
position with the underlying A plane held flxed. Contours
were calculated for the system of Fig. 1 with P = 0.01 and
p, = 0 pM. The energy per particle is normalized by k&T.
The dashed line indicates the minimum energy path given by
the condition o„=0. Arrows indicate the x and y directions.
In our simulations, the velocity is along x and the gradient is
along z.

and there are no thermal fluctuations about lattice sites.
The parameters are the same as in Fig. 1 with P = 0.01
and p, = 0. As in Fig. 2, energy maxima occur when
particles in adjacent planes lie directly above each other
and are about 6kI3T per particle higher than the equi-
librium energy. Crystals sheared in arbitrary directions
melt when they pass near these unstable configurations.
The minimum energy path (dashed line) lies along one of
the equivalent nearest-neighbor directions. Although this
path oscillates along y, the amplitude of the oscillations
is much smaller than in Fig. 2. In addition, there are
no inequivalent minima along the shear path, because
there are no possible twin structures or stacking faults
along the (110) direction for bcc crystals. This difFer-
ence between fcc and bcc structures leads to qualitative
differences in the sliding mechanism.

FIG. 4. Nonequilibrium phase diagram for the fcc system of
Fig. 1. Calculated bounds on the transition line are indicated
by symbols: squares for the solid phase and circles for the fluid
phase. The solid line is a guide to the eye.

size effects by increasing N by a factor of 4 and doubling
both L and L . The only change was that a narrow
coexistence region appeared about the phase boundaries
in Figs. 4 and 5. Within this region, neither phase ex-
panded to fill the entire system during the course of our
longest runs. A coexistence region is expected at a first
order melting transition, but since its width was compa-
rable to the uncertainties in our plotted phase boundaries
( 5%) we did not explore it further.

The fcc and bcc phase diagrams in Figs. 4 and 5 are
clearly similar. However, it is diFicult to compare them
directly because p, has different effects at the two values
of P. A dimensionless measure of the efFective tempera-
ture is provided by the ratio of T to T, the equilibrium
melting temperature for the potential (specified by Uo
and K in Eq. 2.1) [67]. As seen in Fig. 6, the fcc and bcc
phase boundaries show an amazing commonality when
plotted in terms of De and T/T'q. This suggests that
the phase transitions for the two solid structures share
common origins and mechanisms.

For both structures, the shear-melting transition tem-
perature T decreases smoothly from T q as De increases

B. Nonequilibrium phase diagram

The calculated nonequilibrium phase diagrams for fcc
and bcc structures are shown in Figs. 4 and 5. These
phase diagrams were calculated using the two-phase
method described above, with the solid phase aligned in
the preferred shear orientation. Simulations were made
for many values of De and p, to determine the stable
phase. The figures show only the solid and fluid points
closest to the phase boundaries. The system generally
contained 768 particles for the fcc simulations, and 864
for bcc simulations. For these values of N the system di-
mensions were I = 8.98a, L„=7.78a, L = 11.00a for
fcc simulations and L = 8.73a, L„=9.26a, L, = 10.69a
for bcc simulations. In both cases, there were 12 layers
stacked along the shear gradient. We checked for finite-
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FIG. 5. Nonequilibrium phase diagram for the bcc system
of Fig. 1. Calculated bounds on the transition line are indi-
cated by symbols: squares for the solid phase and circles for
the fluid phase.
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FIG. 6. Normalized phase boundaries calculated for the
fcc (D) and bcc ( ) systems of Fig. 1. Plotted points are
midway between the bounds on the transition lines shown
in Figs. 4 and 5. Normalized experimental results for the
melting transition of fcc systems at P = 0.04 (x) and 0.05
(+) are also indicated [44].

from zero. This indicates that the shear-melting transi-
tion evolves continuously from the equilibrium transition.
An increase in shear rate acts like an increase in the ef-
fective temperature. Particles are forced past each other
more rapidly, and have less time to establish positional
correlations. Since correlations are responsible for lower-
ing the energy of the solid phase relative to that of the
Quid, the region of solid stability decreases.

Density functional calculations [8,9] have started from
the assumption that shear melting could be described as
a perturbation from equilibrium melting, and predicted
that the value of p, or T/T " at melting should decrease
as De . While our results are consistent with a pertur-
bative approach, the analytic behavior is markedly dif-
ferent. The values of T/T'~ and p, at melting decrease
roughly linearly as De increases from zero. A linear de-
crease is also found in the experimental data shown in
Fig. 6 and discussed further below [42,44]. The origin of
this discrepancy between density functional results and
simulation and experiment is explained in Sec. IV C.

As De increases above about 0.2, the phase boundary
between solid and Quid phases makes a dramatic turn.
At low p„where T/T'q & 0.5, there is no shear-melting
transition. At higher p, there is a reentrant transition
to a solid phase at large De. In the reentrant regime,
shear induces order. For De 1, shear dominates the
temperature in determining the structure. As will be
shown in the next subsection, order reduces the shear
stresses by decreasing the frequency of collisions. The
weaker equilibrium solids (higher T/T'q) require larger
De to enforce an ordered structure. At su%ciently high
De, even systems with an equilibrium Quid phase can be
solidified.

The origin of the reentrant phase can be understood in
terms of an attractive interaction which is loosely anal-
ogous to that which produces superconductivity. When
a particle is sheared along a path, it pushes other par-
ticles out of the way and creates an empty region in its
wake. Nearby particles will feel an attraction to this
cleared path, and will tend to align into strings of parti-
cles parallel to the shear velocity. Strings with the same

z coordinate are not sheared past each other and will
have time to establish long range two-dimensional order.
Successive planes cannot become correlated along x, but
lines of atoms parallel to w can become registered in the
y direction. As shown in later subsections, this is the
structure which we observe in the reentrant regime.

Experimental results obtained by Chaikin et al. [42,44]
for the fcc system can be compared directly to the scaled
theoretical results shown in Fig. 6. Equilibrium melt-
ing is observed at p, —50 pM which is consistent with
Z* = 625 [41]. Values of T'q at other p, are computed
from the equilibrium phase diagram [41] without any ad-
ditional unknown parameters. The value of j at melt-
ing is determined from the stress discontinuity in experi-
mental stress vs strain-rate curves (see next subsection).
Multiplying by the relaxation time, r~, tr = 1.6 ms (1.4
ms) for P = 0.04 (0.05), one obtains De. Experimen-
tal points normalized in this way are shown as crosses
(plusses) in Fig. 6, and lie remarkably close to the the-
oretical curves. This supports the notion that ballistic
and Brownian systems have closely related nonequilib-
rium phase diagrams. Although the relaxation times
in De are only defined up to a constant of order unity,
the definitions used here are independently confirmed by
comparisons of calculated and measured stresses in the
fluid phase (Sec. IU C).

Note that Chaikin et al. [42,44] did not observe shear-
melting for T/T'q & 0.5. This corresponds closely to the
lowest T/T'q where melting is observed in our calcula-
tions. However, their experimental apparatus had a lim-
ited operating range that prevented exploration of higher
De at low salt concentrations. Results for the fcc system
at p & 30 pM and P = 0.04 only extended to De = 0.32.
While this indicates an upturn in the phase boundary, it
does not conclusively support the absence of melting at
low T/T'q. More conclusive evidence comes from recent
experiments by Evans et al. [15]. They studied suspen-
sions with the same sphere diameter and nearly the same
concentration P = 0.0439, but in a different solvent. The
equilibrium structure was bcc rather than fcc and the
salt concentration at melting was diferent. Evans et al.
found that a suspension with p, = 0 remained solid for
j as high as 2 x 104 Hz (De 30). In contrast, systems
with p, = 25 pM melted at j = 43 Hz (De 0.07). Thus
there is good experimental evidence that colloidal solids
which are well below their equilibrium melting tempera-
tures do not shear melt.

Evidence from simulations and experiments for a reen-
trant solid phase at high De is much less conclusive.
Shear-induced order has been observed in several experi-
ments at volume fractions near the freezing point for hard
spheres [12,23]. Chaikin et al. did not go to high enough
shear rates to observe the reentrant phase in their more
dilute systems [42,44], but Evans et al. found that their
p, = 25 p,M system did not recrystallize for j as high as
3890 Hz (De 6). This system appears to be relatively
far from the transition between systems which shear-melt
and those that do not (e.g. , 0 pM). Based on the value of
De = 0.07 at melting, we would predict a reentrant tran-
sition near De = 0.6. It is possible that hydrodynamic
interactions become important by this point and modify
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the phase diagram. Experimental studies near the low-
est value of p, where shear melting is seen might reveal a
reentrant phase at lower De where hydrodynamic effects
would be smaller. It is clear that the melting line must
exhibit interesting behavior in this region either rising
precipitously or becoming reentrant.

Simulation studies have also reached conflicting con-
clusions about the presence of reentrant solid structure.
The results seem to depend predominantly on which of
the thermostats described in Sec. IIIB is used, rather
than on the potential, system size, or other parameters.
Reentrant phases have been found by a number of groups
using the PBT or the layered PUT [11,14,22,24, 25]. Our
results [14] and those of Evans et al. [15] show that these
two thermostats yield nearly equivalent phase boundaries
(within 10%). The reentrant phase is only suppressed
in simulations where fewer degrees of freedom are ther-
mostatted [15,20]. Our belief is that these simulations
allow heating at long wavelengths and that this destroys
the reentrant phase. Colloidal suspensions are well ther-
mostatted by the surrounding solvent at all length scales
and we suspect that any deviations between experiment
and results of PBT or layered PUT simulations reflects
other effects of the solvent, including hydrodynamic in-
teractions and turbulence.

C. Stress vs shear rate

The variation of shear stress with strain rate provides
another quantitative test of our simulations. Chaikin et
al. [42,44] found that their experimental data collapsed
onto universal solid and fluid curves when the stress was
normalized by the measured polycrystalline shear mod-
ulus G and plotted against j. This collapse is shown in
Fig. 7. While the data for the equilibrium fluid case
(p, = 50 pM) lies slightly below the other fluid curves,
this is probably because G could not be measured and a
calculated value was used [44]. To facilitate comparison
with our simulations, De = j~g;g is indicated on the top
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axis of Fig. 7 and 0/c44 is plotted on the right axis [68).
Results from our simulations for the fcc and bcc sys-

tems are shown in Figs. 8 and 9, respectively. Both the
shear stress and the normal stress, Nq = o. —o. , col-
lapse onto universal solid and fluid curves when normal-
ized by c44 and plotted against De. The value of 7~
changes substantially with p, and the curves do not col-
lapse when plotted against j. Hence the success of the
collapse of experimental curves in Fig. 7 indicates that
the relevant relaxation time in experiments is indepen-
dent of p, . The diffusion time wg;g meets this criterion,
but any time related to interparticle interactions does
not. This justifies our use of 7g;g in Fig. 6 and in the
top axis of Fig. 7.

The dotted line in Figs. 7—9 shows calculated values
of a/c44 for the fluid phase at the equilibrium melting
point of the fcc system (p, = 31 pM). This line agrees
quite well with the experimental curve taken just above
the melting point (p, = 50 pM) in Fig. 7. Both curves
also show pronounced non-Newtonian behavior: The dif-
ferential viscosity, do/d j, drops by more than a factor
of 2. Non-Newtonian behavior is also evident from the
large calculated normal stress in Fig. 8(b). The value
of Kz rises to about 10% of the shear stress. Although
the interparticle potential for the bcc system is quite dif-
ferent, the calculated fluid response is nearly identical to
that for the fcc system. Similar response curves have also
been obtained in studies of simpler interparticle poten-
tials [69].

The universal curves for the solid phases show a finite
yield stress 0~"~ in the limit De ~ 0. Linear fits to the
calculated curves give 0.~"~ = 0.016c44 for the fcc system
and o ~"~ = 0.006c44 for the bcc system. The former value
agrees well with the apparent experimental yield stress
of cr~"~ 0.02c44 for fcc systems. However, experiments
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FIG. 7. Normalized shear-rate vs shear-stress curves for the
indicated p, (in pM) from Ref. [44]. The stress is normalized
by the polycrystalline modulus G on the left axis and by c44
on the right axis. The bottom axis indicates j and the top
shows De = jag;fI. A dotted line shows the calculated stress
from Fig. 8 for the equilibrium fluid state at P = 0.04, p, = 31
pM.
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(b) normal stress for the fcc system at the indicated values
of p, (in pM). The dotted line shows the shear stress for the
equilibrium fluid state at p, = 31 pM.
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FIG. 9. Calculated variation with De in (a) shear stress and
(b) normal stress for the bcc system at the indicated values
of p, (in pM). A dotted line shows the shear stress from Fig.
8 for the equilibrium Huid state at P = 0.04, p, = 31 pM.

at very low shear rates show that there is no true yield
stress. The value of o begins to decrease towards zero for

& 0.1 Hz (De & 10 ). This change in experimental
behavior suggests a change in the mechanism of shear
flow. Unfortunately, simulations in this regime are not
currently feasible.

As De increases from zero, the calculated and measured
shear stresses in the solid phases rise gradually from o.&"~.

The calculated normal stresses rise rapidly from zero at
De = 0, and exceed o for De & 0.1. Preliminary exper-
imental measurements on the solid fcc phase also show
that Wq exceeds o [70].

When the melting point is reached, the shear and nor-
mal stresses jump discontinuously to the fluid curves.
The increase in o as the solid melts may seem surprising,
since one expects a fluid phase to flow more readily than
a solid. However, the solid phase is oriented to minimize
o by maximizing the separation between particles as they
shear past each other. The fluid phase is disordered, and
at high shear rates particles do not have time to avoid
each other. Hence shear produces more interparticle col-
lisions in the fluid phase, and the stress exceeds that in an
aligned solid for De greater than about 0.05. Note that
the calculated stress for other solid orientations is higher
than that in the fluid phase, but that these orientations
melt at the lowest De studied here.

A second discontinuity in the calculated values of o.

and Ni occurs at higher De. This discontinuity marks the
shear-induced ordering transition to the reentrant solid
phase, and o and Ni switch back to the universal solid
curves. Experiments on hard sphere systems also show a
shear-thinning transition to a reentrant solid phase [12].

Solid bcc and fcc phases have quite diferent shear
stresses. In the bcc phase, o rises relatively rapidly until
De = 0.1 and then levels ofF at about 0.025c44. Higher
stresses and an interesting flow instability are observed

in the fcc phase. We find that o reaches a maximum
value of about 0.045c44 and then begins to decrease with
increasing De, if the PBT is used. This is one of the
few cases where the PBT and PUT algorithms produce
qualitatively diQ'erent results.

When do jdDe & 0 (De ) 0.4), uniform shear is lin-
early unstable. Layers that slip more rapidly feel less
stress and accelerate, while slower layers are decelerated.
The PBT algorithm suppresses this instability and al-
lows us to obtain o vs De in the unstable region. If the
PUT thermostat is used, the system lowers o by localiz-
ing all the strain at a few planes. The regions between
these planes move together as rigid blocks. The transi-
tion to nonuniform shear is illustrated in Fig. 10 which
shows PUT velocity profiles for De = 0.3 and 0.5. Both
profiles were averaged over 50004t. The profile for De
= 0.3 is within thermal fluctuations of the linear profile
correspanding to uniform Couette flow (dotted line). In
contrast, the profile for De = 0.5 shows that the system
has broken into three comoving blocks. All of the strain
is localized at their interfaces which lie at z/I, = 0.3, 0.5,
and 0.95. It is not clear whether this flow instability will
also occur in colloidal systems, because the surrounding
solvent favors Couette Qow. This may change the onset
of the instability or suppress it completely, as in the PBT
simulations.

The calculated stress curves give important insight into
the shape of the nonequilibrium phase diagram. The den-
sity functional theories mentioned above assumed that
the thermodynamic and correlation functions of sheared
systems could be expressed in terms of a power law ex-
pansion about equilibrium properties [8,9]. They then ar-
gued that the lowest order contribution from shear scaled
as De, since reversing the direction of shear does not al-
ter the system. However, the product o.De also has the
correct symmetry. Moreover, this product has an appeal-
ing physical interpretation. One expects that the increase
in free energy due to shear is related to the deviation from
equilibrium imposed by energy dissipation. The rate of
energy dissipation per unit volume times the relaxation
time is precisely oDe.

For the fluid, o. oc De and the leading changes from
equilibrium are indeed of order De ~ In a solid with a
yield stress, the leading terms are of order ~De~ cr(") . Thus,
to lowest order in De, the di8'erence between sheared solid

1.0 &

v

0.0 0.5 1.0
z/

FIG. 10. Flow profjles for the fcc system at p, = 1 p, M.
Uniform Couette flow is indicated by the straight dotted line.
Dashed and solid lines show the observed profiles for De = 0.3
and 0.5, respectively. I is the height of the simulation cell.
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and fluid free energies is:

F, (De) —Fj(De) F, (0) —F((0) + K(r(")De (4.1)
—b, L(T —T'q)/T'q + Ko (")De, (4.2)

where LL is the latent heat per unit volume and K is
a dimensionless constant. An estimate of K can be ob-
tained from the increase in energy of the solid phase with
De. For the fcc phase we find K AE, /o(")De 3.

The nonequilibrium melting temperature is given by
setting Eq. (4.2) to zero:

:L ' ' '

I

' w' I. '.'. ' Ie' '~' Ia '.
10 ~ g ; % ~ a

e ~ F e . —

8 —y ~e. + ~~ 4
i 0 eh 0 -

6 ~ ~ Qi % (y

e ~~~
e4—

— + I 4' g6' o—

',
2 ~ y + + % w

a s +% + ~e-
I I I I II I I

II

0 2 4 6 8

T/T q —l. = —Ka(s)De/aL. (4 3)

The predicted melting temperature decreases linearly
with De as found in Fig. 6. The initial slope,

Ko(")—/AL', can be obtained from the yield stresses
quoted above and values of AL reported in Ref. [36].
We find —0.5K for the fcc system and the observed slope
on Fig. 6 is about —2. These values are in reasonable
agreement, given our estimate of K. Our assumptions
work less well for the bcc system since 0 is roughly twice
0 t"~ at the first data point on the phase diagram. How-
ever, the results remain roughly consistent with our crude
arguments for the transition point.

D. Structure

Figures 11 and 12 show projections of instantaneous
particle positions onto the yz plane for fcc and bcc solids,
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FIG. 11. Projections of sheared fcc solids onto the yz plane
at (a) De = 0.05 and (b) De = 0.8. Note that particles lie
on well-de6ned layers normal to the z direction and on lines
parallel to x within each layer. At low De, the successive lay-
ers tend to lock in one of the preferred close-packed stacking
positions. However, the original ABC stacking sequence be-
comes interrupted by stacking faults whose number increases
with De and time. Dashed lines in each panel indicate the
y coordinate of particles in A planes. The sequence in panel
(a) corresponds to ABCABACACABACBCABCA. . . . As
De increases, the stacking sequence gradually changes to a
regular alternation between A and B'. The A, B, C, and B'
configurations are illustrated in Fig. 14.

FIG. 12. Projections of a sheared bcc solid onto the yz
plane at De = 0.06. Particles form sharp layers and lie on
lines parallel to x within each layer. As in unsheared crystals,
the layers stack in an alternating AB sequence. A dashed line
indicates the y coordinate of particles in A layers.

respectively. In each case, particles lie on well-defined
layers normal to E. The rms displacement of particles in
the z direction is much smaller than the interlayer spac-
ing. The ratio reaches values expected from a Lindemann
criterion as the melting transition is approached.

These yz projections also show that particles within
each layer order into lines along k. Each line collapses
onto a small area in the yz plane. The spread of the
projected positions is anisotropic. Although the degree of
anisotropy varies with De, the rms particle displacement
in the y direction is consistently larger than that in the
z direction.

The structure within selected fcc and bcc layers is
shown in Fig. 13. Note that they retain much of the
structure of the corresponding unsheared solids. How-

ever, there are systematic changes in the degree and type
of disorder. Fcc and bcc systems exhibit somewhat dif-
ferent behavior and we will discuss them separately.
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FIG. 13. Structure of layers normal to z for p, = 0 pM.
Panel (a) shows enhanced 6uctuations about lattice sites at
De = 0.04 in a fcc crystal. At De = 0.25 (b) in-plane disloca-
tions (marked by *) are found. Panel (c) shows the structure
of a bcc layer in a crystal sheared at De = 0.03. An arrow
indicates the location of a twin boundary in the sheared sys-
tem. The lines of atoms on either side of the boundary are
directly above each other.
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In an unsheared fcc crystal, particles in each layer vi-
brate about the sites of ideal hexagonal close-packed lat-
I;ices. As De rises from zero, the degree of disorder in-
creases. This loss of order can be understood in several
ways. One is that shear brings the crystal through higher
energy configurations where the restoring forces on par-
ticles and the energy barriers for difFusion are smaller. A
second is that shear brings particles past more sites in
the adjoining planes, thereby increasing the likelihood of
strong collisions.

At low shear rates, the lattice structure of the planes
remains intact [Fig. 13(a)]. However, the amplitude
of oscillations about lattice sites increases with De. At
somewhat larger shear rates, a few particles dift'use be-
tween layers producing vacancy-interstitial pairs. The
concentration of these point defects rises with De, reach-
ing up to 2%%uo at the melting transition. This is much
larger than the density of point defects seen at the melt-
ing transition in our equilibrium simulations (& 0.2%%uo).

Vacancies and interstitials do not disturb the long-
range order within layers or the registry between adjacent
layers. More profound deformations of the layers are ob-
served close to the melting transition. Figure 13(b) shows
a pair of dislocations which formed within an individual
layer. They decrease the alignment of particles along the
shear direction, and reduce the registry with neighboring
layers. In particular, lines of atoms along x are no longer
channeled smoothly between corresponding lines in the
planes below. This misorientation of lines appears to be
particularly destabilizing, and is only seen close to the
melting transition.

Within the reentrant regime, the degree of disorder de-
creases with increasing De. In systems which melt, the
disorder begins to decrease above the refreezing transi-
tion. In systems which do not melt (p, & 6 pM for

P = 0.04), disorder decreases for De ) 0.25. By De 0.7
most of the defects that formed at intermediate shear
rates have been annihilated. The remaining degree of
disorder is similar to that shown in Fig. 13(a).

Similar structural changes are seen in the layers of
shearing bcc systems. The major difference is that the
bcc layers exhibit an additional type of deformation
in-plane twin boundaries. In an unsheared bcc crystal,
particles vibrate about the sites of a distorted triangu-
lar lattice (Fig. 3). The two possible orientations of the
distortion correspond to two twin structures which are
related through a reflection in the xz plane. As shown
in Fig. 13(c), shear produces twin boundaries within in-
dividual bcc layers. These twin boundaries appear at
the lowest studied shear rates. They do not penetrate
the entire system and are not stationary. Indeed, their
motion appears to be an important feature of the shear
mechanism in bcc solids.

E. Shear-Qow mechanism

Simulations can determine the mechanism of shear flow
directly by following the motion of individual particles.
Possible flow mechanisms include layer-over-layer sliding,
sliding at grain boundaries, vacancy motion, and dislo-
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FIG. 14. trajectories of the interlayer displacement, Ar, of
an fcc plane over an A layer (~ ). Local energy minima occur
at the B (A) and C (~) positions. The dotted line at the
top shows the minimum energy path for T = 0. The straight
dashed line is the trajectory for which o. = 0. We call this
plane position B . Solid lines show typical trajectories for
p, = 10 pM at De = 0.02, De = 0.13 (just below melting), and
De = 0.6 (reentrant phase), in order of decreasing height. The
displacement locks for varying intervals at B and C positions.
In this figure, locking produces wiggles about the local energy
minima.

cation motion. The close correspondence between exper-
imental and theoretical stress curves indicates that our
simulations correctly reproduce the major shear mech-
anism. We find that layer-over-layer sliding dominates
for 0.01 ( De ( 1. This is not surprising, given that
the crystal orientation observed in both theory and ex-
periment [2,3] minimizes the stress for interlayer sliding.
The observed densities and velocities of vacancies, inter-
stitials and dislocations are too small for them to play
an important role. Grain boundary sliding is only im-
portant in specific limits. For example, the co-moving
blocks found in the fcc system for De ) 0.4 may be
viewed as platelike grains which slide over each other.
A more dramatic example of grain boundary sliding has
been observed [4] in experiments at De & 5 x 10 . The
sample breaks up into spherical grains that rotate like
ball-bearings between the walls of the experimental cell.
This large length-scale, low De behavior is far beyond the
range of our studies.

In fcc crystals, the dift'usion of particles relative to oth-
ers in the same layer is much less than a lattice constant
on the time span of our simulations. Thus the entire layer
moves coherently and its position can be described by a
single coordinate the average particle displacement. At
low De, one expects [2,3] that the relative motion of adja-
cent close-packed planes will follow the minimum energy
path shown in Fig. 2 and reproduced at the top of Fig.
14. To test this conjecture, we calculated the difI'eren-
tial displacement between two planes, Ar, as a function
of time. As shown in Fig. 14, Ar follows the zig-zag
minimum path quite closely at De = 0.02. However, the
motion is not uniform. Instead, Lr sticks for prolonged
intervals at positions corresponding to the low energy B
and C stacking positions.

The intermittent nature of a plane's motion is more
clearly seen in Fig. 15 which shows the time dependence
of the x and y components of Ar for De = 0.02. Note
the pronounced plateaus where the planes have locked
into a favorable stacking sequence. These are separated
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FIG. 16. Trajectories of the interlayer displacement, Ar, of
a bcc plane over an A. layer (~). Local energy minima occur
at the B (Q) sites. The dotted line at the top shows the
minimum energy path for T = 0. Solid lines show typical
trajectories for p, = 0 pM at De = 0.01, De = 0.06, and De
= 0.38 (reentrant phase), in order of decreasing height.
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FIG. 15. Solid lines illustrate the intermittent motion along
one of the fcc trajectories in the preceding figure: p, = 10 pM
at De = 0.02. Both x and y components of Ar are plotted
against time t. The upper layer advances along x in a se-
quence of sudden jumps. The time interval between jumps
varies widely, and the layer spends the majority of the time
locked in a favorable B (Ay ( 0) or C (Ay ) 0) stacking posi-
tion. Broken lines show Ax for two other pairs of neighboring
planes in the same system. Note that they also advance in a
sequence of sudden jumps, but at difFerent times. The change
in Ax during a jump is always quantized and corresponds to
the distance between favorable stacking configurations.

not move coherently along the minimal path. Although
the trajectories have oscillations along y whose ampli-
tude is comparable to those on the minimal path, the
oscillations do not have a well-defined period or ampli-
tude. Figure 17 shows the time dependence of Lr for De
= 0.01. The relative displacement between neighboring
planes increases in a series of steps, but the transitions
between plateaus are much more gradual than in the fcc
system. The height of the steps is not well quantized, and
is often much less (0.3—0.5a) than the distance between
local minima on the minimal path (l.la). In addition,
the shear rate at which the steps disappear (De ( 0.06)
is more than an order of magnitude smaller than in the
fcc system. All of these difFerences indicate that the bcc

I
I

I I

by sudden jumps where the upper plane slides forward
to a new local energy minimum at a B or C position.
The length of the plateaus between jumps is not uni-
form, and different planes in the system jurnp forward
at diferent tissues. This creates stacking faults which are
clearly evident in Fig. 11(a). These appear at the lowest
studied shear rates and increase in number with De and
the length of the simulation. The final state seems to be a
nearly random stacking sequence of close-packed planes.
This explains why allowing the simulation cell to shear
in the y direction does not produce significant changes
in the results. The cell geometry would only play an im-
portant role if layers moved coherently on length scales
comparable to I

As De increases, the relative displacement is less able
to follow the minimum path (Fig. 14). There is also
less locking at favorable stacking positions. The plateaus
seen in Fig. 15 completely disappear by De = 0.6. A
corresponding change occurs in the stacking of layers. As
shown in Fig. 12(b), the layers alternate between A and
B' configurations, where B' is halfway between B and C
positions (Fig. 14). At these De, layers shear so rapidly
that adjacent layers do not have time to shift laterally.
They settle into an AB' sequence which represents the
best time-averaged alignment [3].

Trajectories of adjacent planes in shearing bcc crys-
tals are shown in Fig. 16 ~ Even at low De, planes do

—0.1—
I

I I I
I

I I

0—-I
0

I I I-
200

FIG. 17. Solid lines illustrate the intermittent motion along
one of the bcc trajectories in the preceding figure: p, = 0 pM
at De = 0.01. Both x and y components of Ar are plotted
against time. Broken lines show Ax for two other pairs of
neighboring planes in the same system. The plateaus in Ax
are more rounded than in the fcc system, and the transitions
between them are more gradual. The forward advance be-
tween plateaus is not well quantized and is typically smaller
than the distance between local energy minima in the preced-
ing figure.
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planes move less coherently than fcc planes. Our struc-
tural studies indicate that the formation and motion of
twin boundaries is responsible for this loss of coherence.
More detailed studies of the microscopic shear mecha-
nism are currently underway [71]. They reveal that par-
ticles within a line along the w direction move together,
but that lines within the same plane advance at slightly
diiferent rates due to twin boundary motion [71].

Many of the above conclusions about the shear mech-
anism can also be deduced from the time-averaged stress
curves discussed in Sec. IV C and the rms fluctuation
in the stress, bo. The stress along the minimal paths
oscillates between —o „and +cr „, where cr „/c44 is
about 0.045 for the fcc system and 0.09 for the bcc sys-
tem. The average value of u is identically zero, since there
is no net, energy change. Thus the time-averaged stress
would vanish if the planes sheared over each other at con-
stant velocity. The observation of a yield stress indicates
that the planes move nonuniformly, slowing (accelerat-
ing) when the stress opposes (favors) their advance. In
the fcc case, the layers actually stick at local energy min-
ima and the yield stress is nearly half of o. . Bcc layers
slide more uniformly. As a consequence, the yield stress
is much smaller than o, and o varies more rapidly
with De than in the fcc system.

If all planes slowed and accelerated in phase, the total
stress in the system would still oscillate between +o.
In contrast, we find. that fluctuations in the stress are
smaller than the mean value (Sa ( cr ( o ) [72]. This
is consistent with the observation that planes move inco-
herently. The small size of bo also implies that the dif-
ference between constant stress and constant strain rate
simulations is not great at the system sizes considered
here.

Ackerson and co-workers have studied the structure
factor of sheared fcc and bcc systems [2,3]. They also
concluded that the dominant shear mechanism was layer-
over-layer sliding. Their results for fcc systems show a
transition from random stacking of close-packed layers
to an AB' stacking as De increases [3]. Scattering from
sheared bcc crystals shows a superposition of the two
twin structures [2]. These results are consistent with our
simulations, and a detailed comparison to scattering mea-
surements will be presented in a future paper [71].

To interpret their results, Ackerson et al. [2] devel-
oped a simple zero-temperature model in which planes
moved coherently along minimal energy paths. The in-
ertia of the planes made them less able to follow zig-zags
in the minimal paths as De increased. Some aspects of
this model are consistent with the trajectories described
above. However, there are two important difFerences.
The first is that the motion of fcc planes is far less coher-
ent than the model would predict. Planes lock together
for a period and then jump to a new configuration. There
are pronounced deviations from the minimal path due to
thermal fluctuations.

The second difference is that Ackerson et al. [2] also al-
lowed each layer to shear coherently within the xy plane
to maintain o y: 0 This reduces the maximum stress
needed to shear the solid. The efFect is most dramatic
for bcc solids where they predicted that the entire lat-

tice would deform coherently from one twin to the other.
To check their conclusions, we performed a separate set
of bcc simulations which allowed deformations in the xy
plane in addition to shear within the yz plane (see Sec.
III A). However, adding this extra degree of freedom did
not produce significant changes in any of our bcc results.
Apparently, the simulation cells are too large to shear co-
herently at the studied shear rates. Instead, twin bound-
aries appear within individual bcc layers [71].

V. CONCLUSIONS

We have presented detailed studies of the phase dia-
gram, stress, structure and Bow mechanism for sheared
systems. The results are in good quantitative agreement
with previous experiments on charge-stabilized colloidal
suspensions [42—44]. Several predictions are made which
we hope will be tested by future experiments.

A dimensionless nonequilibrium phase diagram was
constructed by scaling the temperature by the equilib-
rium melting temperature and multiplying the shear rate
by a characteristic relaxation time (Fig. 6). Experimen-
tal results for fcc systems and theoretical results for fcc
and bcc systems fall onto nearly universal transition lines
on this phase diagram. Shear plays a dual role, desta-
bilizing the equilibrium crystal at low shear rates and
stabilizing an ordered phase at high shear rates.

The melting transition temperature decreases linearly
from T'~ as De increases from zero. Although there is no
general criterion for the onset of nonequilibrium phase
transitions, this region of the phase diagram can be un-
derstood by assuming that a shear-rate dependent "free
energy" functional is minimized. Previous theories had
assumed that the lowest order deviations from equilib-
rium quantities [8,9] scaled as De2. The presence of a
finite yield stress in the solid phase (Figs. 7—9) leads to
terms of order ~o'l"lDe~. This is a natural measure of the
shift in the efFective free energy since it corresponds to
the energy dissipated in a characteristic relaxation time.
The slope of the transition line is consistent with the rate
of increase in the internal energy of sheared solids.

As De approaches 0.25, the melting line begins to turn
around. Solids with T/T'q + 0.5 never melt. Solids
with T/T'q ) 0.5 first melt and then reorder at high De.
There is clear experimental evidence that the melting line
turns upwards as De increases and that low temperature
solids do not melt [15,44]. It is less clear whether there
is a reentrant solid phase at higher temperatures. Some
groups have seen reentrant order [12,23] while others [15]
have not. One possible explanation is that hydrodynamic
interactions suppress the reentrant phase. The magni-
tude of these interactions is difFerent in each experiment.
Hydrodynamic efFects can be minimized in future exper-
iments by using small volume fractions and low shear
rates. Experiments near the upturn in the melting line
have the greatest, chance of observing the reentrant phase.
It will also be important to test the efFect of hydrody-
namic interactions and Brownian dynamics on calculated
phase diagrams.
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The shear and normal stress also collapse onto uni-
versal fcc, bcc, and fluid curves when normalized by c44
and plotted against De. Calculated and measured values
of the fcc and fluid shear stresses are in excellent agree-
ment. There are no reported measurements of the shear
stress in the bcc phase or of th& normal stress in any of
the three phases. Such measurements would provide a
further quantitative check of our simulations.

The calculated shear stresses in fcc and bcc phases
are quite di8erent. The dimensionless yield stress is al-
most three times smaller in the bcc phase, even though
the maximum stress on the minimal path is larger. This
discrepancy results from differences between the shear
mechanisms for the two phases. When fcc systems are
sheared slowly, layers slide over each other in an erratic
sequence of hops between local energy minima. The
mean stress is high because layers spend little time in low
stress configurations between hops. In bcc systems, lay-
ers slide through the generation and motion of in-plane
twin boundaries. This lowers the maximum stress re-
quired to initiate motion of layers. The mean stress is
further lowered because bcc planes slide over each other
more smoothly than fcc planes (Fig. 15).

At high shear rates (De ) 0.4), we find a flow insta-
bility in PUT simulations of fcc systems. The instability
arises because 0 reaches a maximum value and begins to
decrease with increasing De. It is interesting to note that
the maximum value of the shear stress is very close to
0. . The instability is suppressed in PBT simulations,
and may be suppressed by the solvent in experimental
systems. Hydrodynamic forces must be included to de-
termine stability of Couette flow, since their magnitude
is increased by deviations from a Couette profile.

An important outstanding question is whether there
are additional phase transitions within the solid region
of the phase diagram. As shown in Figs. 11—13, there
are definite structural changes as De increases. However,
these changes appear to occur continuously. For exam-

pie, the only discontinuities in the stress curves occur at
the melting transition. There is a change in the deriva-
tive of the bcc stress near De = 0.15, but we have not
identified any corresponding structural transition. Pre-
liminary studies of S(k) indicate that peak positions and
intensities shift continuously with De. This is consistent
with experimental studies [2,3], and is the subject of on-
going investigations [71].

The dimensionless shear rates studied here are higher
than those which can be sustained in normal atomic
solids. However, shear-induced melting may occur in re-
cent experiments on nanometer thick films confined be-
tween atomically flat solid surfaces [33,73—75]. Solid walls
can induce crystalline order in films at temperatures well
above the corresponding bulk melting temperature [76].
In general, the induced order will not have the preferred
alignment for shear, and the films will melt at much lower
De than we have considered here. Simulations indicate
that shear melting occurs when T is near the freezing
point of the film [33,73]. At lower dimensionless temper-
atures, films may exhibit the flow instability found for fcc
systems shear localizes between a single pair of atomic
layers [73]. Experimental determinations of the struc-
tural changes in these shearing films remain an open and
exciting challenge.
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