PHYSICAL REVIEW E

VOLUME 48, NUMBER 5

NOVEMBER 1993

Density fluctuations during crystallization of colloids

Klaus Schitzel
Institut fir Angewandte Physik, Universitdt Kiel, D-2300 Kiel, Germany

Bruce J. Ackerson
+ Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078
(Received 20 November 1992)

Long-wavelength density fluctuations are recorded by small-angle light scattering during the
crystallization of hard colloidal spheres. Measured structure factors show approximate scaling with
2 peak at finite scattering vectors. The time dependences of the peak intensity and the wave vector
clearly reveal two different crystallization regimes. For samples near melting density, we find diffusion
limited growth at small times and Lifshitz-Slyozov ripening at large times. Growth exponents in
the ripening process seem to increase for higher densities. All measurements demonstrate a strong
coupling of the observed conserved density parameter to the nonconserved crystal-order parameter.

PACS number(s): 64.70.Dv, 81.10.Fq, 82.70.Dd

I. INTRODUCTION

While the study of crystallization phenomena has a
long history [1], our theoretical understanding of this im-
portant first-order phase transition is still rather poor.
The very definition of a nonconserved order parameter
“crystallinity” is not straightforward, if features like lo-
cal crystal orientation are to be incorporated. Further-
more, solidification of atomic or molecular systems in-
volves several additional conserved parameters: density,
energy, and momentum. All these parameters will typ-
ically be coupled to the order parameter in a nonlinear
fashion. In view of these complications, it is not sur-
prising that most treatments of crystallization phenom-
ena were based on phenomenological approaches, some
of which will be outlined in Sec. T A.

Experimental investigations of crystallization kinetics
are also sparse, particularly for solidification through ho-
mogeneous nucleation. Major problems in atomic sys-
tems are the high speed of nucleus formation and subse-
quent crystal growth as well as the difficulty of prevent-
ing heterogeneous nucleation under conditions of large
supercooling [2]. Recent work on polymers [3] and model
colloids [4-7], however, indicates a change of this situa-
tion. The dynamics of these systems proceeds sufficiently
slowly to allow direct, time-resolved measurements of
crystallization kinetics [7-10]. While these Brownian sys-
tems are not identical to atomic ones, because energy and
momentum are not conserved due to their strong cou-
pling to a suspending fluid, many of the essential features
of the phase transition are. Furthermore, the smaller
number of relevant parameters may even ease the task
of theoretical modeling. In Sec. IB we will summarize
previous work on colloidal crystallization.

A. Phenomenological theories

In the classical picture [11], solidification of atomic
matter proceeds via nucleation and subsequent growth
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of small crystallites. The growth period is followed by a
much slower ripening process, where large crystals grow
at the expense of smaller ones.

Nucleation most often occurs through the presence of
local impurities—as heterogeneous nucleation. Only in
the absence of impurities is it possible to observe homo-
geneous nucleation, the spontaneous generation of crys-
tal nuclei from thermal fluctuations [12]. Except at very
large supercooling, homogeneous nucleation is typically
associated with a large energy barrier. The favorable de-
crease of bulk energy in a small crystallite is more than
offset by unfavorable surface tension contributions, un-
less the crystal size exceeds a certain critical diameter.
Once beyond the critical size, further growth of the crys-
tal proceeds extremely rapidly.

Characteristic of homogeneous nucleation is the dra-
matic dependence of the nucleation rate upon undercool-
ing. Moderate temperature changes, say by 1% of the
melting temperature, lead to order of magnitude changes
in the nucleation rate. Such strong temperature depen-
dences were indeed found experimentally, for example, by
Turnbull’s droplet technique [2], where the small volume
of droplets limited the detrimental effects of impurities
and of the rapid growth of nucleated crystals.

To our knowledge, there are no time-resolved studies of
the growth following homogeneous nucleation in atomic
matter. Crystal growth is typically studied at small un-
dercooling for heterogeneously nucleated crystals, where
the process proceeds sufficiently slowly for direct obser-
vation. In this situation, the incorporation of atoms into
the growing crystal limits the growth rate and constant
growth velocities are typical (interface limited growth).
However, if there are composition differences between
solid and liquid, diffusive processes may be rate limiting
and square root of time growth laws are expected [13].
More complicated situations arise if heat transport away
from the crystallization front is included in the analysis
[14,15].

Late-stage ripening processes have achieved much re-
cent attention for different first-order phase transition
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processes [13]. Classical prototypes are the t'/3 Lifshitz-
Slyozov behavior found for systems with conserved order
parameter [16] and the t1/2 Lifshitz-Allen-Cahn behav-
ior, which is characteristic for systems with nonconserved
order parameter [17]. With crystallinity being noncon-
served, one assumes the latter type of ripening should
apply to solidification processes.

B. Colloidal crystals

Colloidal crystals are ordered, periodic structures of
colloidal particles, which are suspended in a fluid. Pop-
ular systems are charged spheres, where particles re-
pel each other by screened Coulomb potentials, and
uncharged spheres, which interact predominantly just
through hard-core repulsion. In both cases, there is no
attractive interparticle force necessary to form crystals.
For hard spheres entropic driving forces are sufficient to
drive solidification at high densities [18-20].

Hard-core systems are special, since temperature is ir-
relevant for freezing. The density or the volume frac-
tion, defined as the product of number density and single-
particle volume, is the only available control parameter.
Computer simulations as well as density functional the-
ory yield freezing and melting volume fractions of 0.494
and 0.545, respectively [21]. By continuous compression
it would be possible to increase the volume fraction up to
the close packing limit 7/3+/2 = 0.74. However, colloidal
solids are typically prepared by rapid quenches from a
metastable fluid phase. These quenches lead to glasslike
amorphous phases for volume fractions in excess of 0.58
[22]. Such colloidal glasses cannot be compressed beyond
the maximum random close packing volume fraction of
0.64 [23,24].

Several previous studies of colloidal crystals deter-
mined their phase diagrams and equilibrium structures
[6,22]. For hard-sphere systems, the theoretical transi-
tion densities were well reproduced [25]. The final struc-
ture obtained by rapid quench experiments was found
to be a random stacking of hexagonal layers, with just
a small tendency to favor fcc packing at some volume
fractions [26]. Microscopic observations of single crys-
tals during growth indicated rounded, sometimes slightly
“lozenge” shapes [22].

Previous kinetic measurements included video mi-
croscopy of single crystals and turbidity data for charged
spheres, where growth with constant radial velocity was
observed [4]. Dhont, Smits, and Lekkerkerker performed
a series of time-resolved measurements on growing crys-
tals of weakly charged particles [27]. They recorded the
scattered light intensity around the first Bragg reflec-
tion and evaluated their data in terms of an “induction
time,” nucleation and growth rates, as well as numbers
and sizes of nucleated crystals. On hard spheres, there
exist a few observations of times since the quench, when
crystals could first be seen by eye [28] and growth rates
estimated from samples undergoing sedimentation [29].
In both cases the authors assumed a growth with con-
stant radial velocity but did not actually prove this fact
experimentally.
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Some of these kinetic data were compared to theoreti-
cal expectations based upon the classical theory of nucle-
ation and growth [30]. There was agreement on a qual-
itative level, but significant quantitative deviations were
found between hard-sphere systems, soft-sphere systems,
and the theoretical predictions. No nucleation rate data
were included in this study, but later measurements on
weakly charged spheres [7] clearly showed a much less
dramatic dependence on density than what was predicted
on the basis of classical nucleation theory.

None of the kinetic studies was extended into the late-
stage ripening or coarsening phase of crystallization. Our
small-angle light-scattering data, which were recently
presented in a Letter [10] and will be described in de-
tail here, appear to be the first observation of such a
ripening on hard-sphere colloids. In addition we also ob-
tained a wealth of new data on the early time nucleation
and growth phase.

In the main part of this paper we present the exper-
imental results of a series of small-angle light-scattering
experiments during the crystallization of a model colloid,
which closely approximates a hard-sphere system. Sec-
tion II will describe our samples and the experimental
setup. Kinetic small angle scattering data will be pre-
sented in Sec. III and Sec. IV will discuss our present
interpretation of these data.

II. EXPERIMENT
A. Particles

All measurements reported here were performed on
samples of polymethyl-methacrylate (PMMA) spheres,
which were coated with a thin layer (some 10 nm) of hy-
droxystearic acid [31]. This coating provides sufficient
steric stabilization to prevent flocculation. The parti-
cles were suspended in a mixture of decalin and tetralin,
which closely matched the particles’ index of refraction.
Hence clear samples were obtained even at high volume
fractions of the order of 50%. The difference in index
of refraction between core and coating prevented a per-
fect index match of the particles. Such a perfect match
also would have been difficult to maintain, due to its
sensitivity to changes in sample temperature or probing
wavelength. All our samples showed a total scattering of
less than 50% of the incident light for a path length of
10 mm at a wavelength of 633 nm.

The particle radius was 500 nm as determined by dy-
namic light-scattering experiments on diluted samples.
Polydispersity was estimated by static light scattering to
be less than 5% relative standard deviation. For our com-
paratively large particles we observed very little tendency
to grow heterogeneously nucleated crystals on the cell
walls. However, sedimentation effects are quite marked.
A free particle would sediment at a velocity of the order
of 0.1 mm/h. This velocity is reduced by strong particle
interactions in concentrated samples and significant sed-
imentation was not observed until after about one day
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three years ago [33]. The volume fractions were deter-
mined by careful weighting and drying of part of a stock
solution, followed by controlled dilution with the pre-
pared mixture of decalin and tetralin. Phase diagrams
obtained from sedimentation studies on the samples three
months after preparation were in reasonable agreement
with theoretical calculations for hard-core systems, if a
small correction (+3.6%) was made to all the measured
volume fractions [32]. Such a correction may account for
some swelling of the particles, most probably due to the
finite solubility of tetralin in the hydroxistearic acid coat-
ing. This correction was smaller than the one reported
by Pusey and van Megen on similar PMMA particles
in decalin-CS, [25], most likely due to the larger diam-
eter of our particles. Measurements of phase diagrams
[25,34], sedimentation behavior [32], particle response to
shear [35], and extremely small values of measured elec-
trophoretic mobilities [36] all indicate that our PMMA
particles closely approximate an ideal hard-core system.

Repeating the sedimentation experiments with our
samples 14, 23, and 31 months after preparation, we
noticed slight changes in their phase behavior. These
changes were largely due to slow evaporation of some
solvent (rates between 10 and 50 mg/year), which was
detected by reweighting of the samples. We used this
gradual increase in sample concentration to check the
phase behavior of individual samples. As indicated in
Fig. 1, the observed volume fractions of the crystalline
phase as a function of density corresponded reasonably
well to what is expected for hard spheres. In Fig. 1 each
sample’s density was rescaled (corrections between 2%
and 7% as given in Table I) in order to obtain best fits
to the theoretical hard-sphere phase diagram. Unfortu-
nately, this procedure could not be applied to samples
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FIG. 1. Experimental phase diagram of our particle sys-
tem as determined from measurements nine months before,
at the time of our light-scattering measurements, and eight
months later (increasing volume fractions). We show equilib-
rium solid fraction vs effective particle volume fraction. Sam-
ple P8 appeared to be glassy, all other samples formed small
polycrystals. The theoretical prediction of the phase diagram
for hard-core particles was taken from [21] (continuous line).

TABLE I. The sample volume fraction according to weight
at the time of preparation, ¢;, at the time of the crystalliza-
tion experiments, ¢,,, and the volume fraction of the corre-
sponding ideal hard-core system, ¢.. The accuracy of the last
digit is doubtful.

Sample P2 P3 P4 P5 P6 pP7 P8

bi 0.443 0.462 0.474 0.482 0.492 0.501 0.523
Pw 0.497 0.531 0.490 0.508 0.519 0.521 0.555
Qe 0.523 0.542 0.519 0.545 0.556 0.559 0.595

already above melting density (our P6, P7, and P8),
as for these fully crystalline or even glassy samples no
phase boundary could be observed. In the case of P6 and
P7, the method still sets a lower limit of about 6% for
the necessary density corrections. We used—somewhat
arbitrarily—the correction factor of sample P5 (7%) for
all three higher density samples.

Table I gives the initially measured sample volume
fractions ¢; at preparation, measured values ¢, based
upon sample weights at the time of our light-scattering
experiments, and the effective volume fractions ¢., which
we believe to characterize the ideal hard-core system
which most closely matches the observed phase behav-
ior of each individual sample.

Samples were transformed to a metastable amorphous
state by shear melting [37]. Vigorous stirring was re-
quired to loosen up dense sediments, which typically
formed at the bottom of all samples after a few days.
Crystals could easily be melted by tumbling of the cu-
vettes at a rate between 10 and 20 revolutions per minute.
After tumbling, samples were left at rest to crystallize.
Due to the viscosity of the solvent (2.37 x 1073 Pa s at
20°C) all macroscopic flows stopped within a few sec-
onds. Since crystallization occurred on a time scale of 103
s, the initial time (¢ = 0), where crystallization started,
was well defined.

B. Small-angle light scattering

Static light scattering has typically been used at scat-
tering angles close to the peak in the fluid structure factor
or a low-order Bragg reflection of a colloidal crystal. For
concentrated hard-sphere systems, this is also the region
where the single-particle form factor falls from its low-
angle limit of unity [22]. Our measurements, however,
were all performed at much smaller scattering angles,
where form factors and equilibrium structure factors are
essentially constant. These light-scattering experiments
on colloids are quite analogous to small-angle x-ray or
neutron studies on atomic matter. We expect to probe
density fluctuations on length scales large compared to
particle diameter and spacing.

Low-angle scattering experiments demand special at-
tention. They require the use of a wide beam with a
narrow range of spatial frequencies. The number of op-
tical surfaces should be kept as small as possible and all
surfaces must be kept very clean to reduce stray light.
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FIG. 2. Optical setup used for small-angle light scattering.

Our light-scattering setup (Fig. 2) utilized a small HeNe
laser (5 mW, polarized). The beam was spatially filtered
and expanded using a microscope objective (20x) and
a pin hole (25-pm diameter) in a commercial mechani-
cal unit (Newport). The resulting divergent beam was
refocused with a single “best form” lens (f = 80 mm,
antireflection coated for 633 nm). The expanded beam
passed through a 9 mm circular aperture placed just be-
fore the sample, which limited the beam close to its first
diffraction minimum. This kept low-angle scattering due
to diffraction at this aperture sufficiently small. The use
of a beam slightly narrower than the sample cell elim-
inated diffraction due to light propagating through the
side walls of the cuvette.

After transversing the sample, which was contained in
a rectangular cuvette (10 x 10 mm?), the illuminating
beam finally hit a distant screen about 1 m from the
sample. A hole with a diameter between 2 mm and 5
mm was cut into the center of the screen to allow the
primary beam to pass to a distant beam stop. Smaller
holes were used for samples in the coexistence region,
which produced strong scattering at very small angles.
Larger holes were used for samples at higher densities,
where the scattered intensity was weak but peaked at
larger angles.

Scattered light was detected by a charge-coupled de-
vice (CCD) video camera placed slightly off axis, typi-
cally just below the main beam and close to the sam-
ple. This arrangement kept geometric distortions of the
observed small-angle scattering pattern and possible in-
fluences of the scattering function of the screen negligi-
ble. The scale of scattering vectors q in the camera plane
was calibrated by placing a grating of known spatial fre-
quency in the position of the sample, typically using two
orthogonal orientations of the grating. The camera re-
solved 192 by 165 pixels. All exposure times were kept
close to 200 ms.

C. Data analysis

Image data were immediately digitized with 8-bit res-
olution and stored on magnetic disks. Frame rates var-
ied between one image every 3 min at small times (after
shear melting) and one image per hour at large times,
typically. Data were processed on a personal computer.
The processing involved careful manual centering of each
series of scattering images followed by the calculation of
radial intensity distributions I(g). Most of the recorded
images showed sufficient circular symmetry to justify this
procedure.
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The problem of static low-angle scattering by the cu-
vette and—typically much less—by the optical system
was solved by subtracting an early image of each se-
quence from all the others. For most of our samples,
the magnitude of the subtracted background was small
compared to the recorded intensities at large times. At
the same time, the subtraction procedure eliminated any
constant offset (dark level) from the image data. The
image of choice for background subtraction was typically
the one with the smallest intensity data throughout the
useful g range. In most cases all early images (less than
10 min from start of crystallization) were almost equiv-
alent. But some experiments showed rapid small initial
changes which we attribute largely to thermal equilibra-
tion of the sample, which becomes visible through the
sensitive dependence of index matching on temperature.

The transmission of the samples was typically found
to change by no more than 10% during the course of
crystallization. We did not correct our data for these
changes. The intensity of the observed small-angle scat-
tering was well above multiple scattering contributions,
as estimated from a consideration of double scattering.

Background corrected images typically showed rings,
that is, the scattered intensity attained its maximum at
some finite scattering vector. As a function of time, we
observed a rapid growth of the scattered amplitude ac-
companied by a slow shift of the intensity peak towards
smaller scattering vectors (Fig. 3). Hence data were eval-
uated in terms of position and height of the peak in the
radial intensity distribution. Practical experience showed
that the fit of a second-order polynomial to the I(q) data
around the peak provided a reasonable estimate of peak
height I,,,. The peak positions calculated from such a fit
contained, however, large statistical errors due to noise
on the scattering data. More stable scattering vector es-
timates were obtained by looking for the characteristic
q value g,/ where the intensity beyond the peak had
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FIG. 3. Temporal evolution of measured light-scattering
intensity as a function of scattering vector for sample P3.
For comparison, the lowest-order Bragg peak is observed at
scattering vectors larger than 6/um, more than one order of
magnitude larger than the peak in our low-angle data.
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FIG. 4. Temporal evolution of scaled structure factors for
sample P3. Empirical scaling function E(Q) (continuous line,
see Sec. VIC) and Furukawa scaling function F(Q) [47] (bro-
ken line) are included for comparison.

fallen to % of the peak value. I,, and ¢,/ were studied
as functions of time and also used to obtain normalized

structure factors

S@) =1(g)/Im , Q= ‘I/‘h/z- (1)

As an example, Fig. 4 shows normalized structure fac-
tors obtained for sample P3, which was close to the melt-
ing volume fraction. Note the extraordinary range of
times over which we observe scaling of these low-angle
scattering data.

III. RESULTS
A. Time dependence

Since the normalized structure factors exhibit scaling,
the data may be characterized by the two scaling parame-
ters I, and gy /2. In order to discuss the time dependence
of our light-scattering data, we plotted peak intensity I,
and characteristic scattering vector ¢;/, as functions of
the time t elapsed since stopping the shear melting (Figs.
5 and 6). Double logarithmic scales were used to cover
the large dynamic range of all our data. All intensities
were represented on approximately the same scale, com-
pensating for differences in the optical setups, apertures,
and exposure times of individual experiments.

A prominent and common feature of I, (t) for all sam-
ples is the clear distinction of two very different phases
of solidification. An initial phase, which is characterized
by an intensity growth between ¢ and t*, shows a sharp
transition to a second process with a moderate, linear, or
sublinear growth in peak intensity. Transition times are
close to 30 min for sample densities close to melting or
higher. Lower volume fraction samples show significantly
larger crossover times.

For all samples investigated in the coexistence region,
i.e., at densities up to melting, the initial rise of peak

Time (min)
FIG. 5. Peak intensity I;n(t) as a function of time ¢ for sam-

ples P2-P7. Power laws t* (continuous line) and t' (broken
line) are indicated.

intensity as a function of time follows a t* law. Only the
two higher density samples, P6 and P7, seem to indicate
weaker growth, more like t3. However, these samples
also show the smallest total scattering intensities and our
present data do not exceed the noise floor sufficiently in
order to unambiguously prove a different growth law over
a sufficient range of time.

The late-stage growth in peak intensity proceeds ap-
proximately proportional to ¢ in samples P6 and P7.
Samples P3 and P5, which were close to the melting
density, indicate a slightly weaker growth. The lowest
density samples P4 and P2 could not be measured for a
sufficient length of time to detect their late-stage growth
laws. This limitation arose due to significant interference
by sedimentation under gravity.

In addition to the two power-law regimes at small and
large times, a significant region of small intensity change
or even a decrease in peak intensity with increasing time
t was observed at intermediate times in samples P2 and
P4.
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10000

FIG. 6. Characteristic scattering vector g;,2(t) as a func-
tion of time ¢ for samples P2-P7. Power laws t~'/2 (continu-
ous line) and ¢t~/ (broken line) are indicated.
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The characteristic scattering vector as a function of
time t (Fig. 6) shows a similar distinction into different
time regimes as do the peak intensity data. The situation
is particularly clear, again, for samples close to melting
density (P3 and P5). At small times, the peak position
moves as t~1/2, there is no motion at intermediate times,
and a slower motion like t~1/3 at large times.

For samples at lower densities (P4 and P2), the small
magnitude of the characteristic scattering vector made its
precise determination difficult. The data point towards
a slightly steeper decrease than ¢t~1/2 at small times and
a peculiar increase at intermediate times.

Higher density samples (P6 and P7) reveal ap-
proximately constant characteristic scattering vectors
throughout small and intermediate times and a clear de-
crease at large times. This decrease closely follows a t~1/2
law for P6 while P7 data indicate an even slightly larger
negative exponent.

Please note that the scattered data at small times
(t < 20 min) are not significant. At these very early
times, the peak in the structure factor at small scatter-
ing vectors ¢ was not yet clearly above the noise floor
and residual low-angle noise was likely to be taken for
the peak. Data at intermediate times, where we observe
little change of the characteristic scattering vector with
time, possibly already fall into the crossover between the
fast and slow processes, and we may well have missed a
possibly existing regime of decreasing ¢,/ at very early
times in our present measurements.

B. Scaling of the structure factor

In order to recognize changes in the shape of measured
structure factors, we rescaled our raw data by peak in-
tensity and characteristic scattering vector. Figure 4 al-
ready showed such data obtained for sample P3 through
a large range of times. Early and late data seem to co-
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FIG. 7. Temporal evolution of scaled structure factors for
sample P7 and empirical scaling function E(Q) (continuous
line, see Sec. VIC). Deviations from scaling are visible, par-
ticularly at large times.
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FIG. 8. Temporal evolution of scaled structure factors for
sample P2 and empirical scaling function E(Q) (continuous
line, see Sec. VIC).

incide almost perfectly. For times close to the onset of
the late-stage growth process, we typically recognize a
small skewing of the structure factor with a peak motion
towards smaller scaled scattering vectors @ and slightly
more weight in the large Q tail.

While the behavior of sample P5 closely matches that
of P3, the denser samples P6 and P7 show increasing de-
viations from perfect scaling. These deviations are most
obvious for sample P7 (Fig. 7). At early times we find
similar shapes as for the lower density samples with some
downward motion of the large Q tail. However, during
the late-stage growth we see definite skewing: The peak
moves towards smaller @ and the tail rises significantly.

At lower sample densities, the absolute peak positions
move towards smaller scattering vectors q and it becomes
experimentally difficult to access scattered intensites at
g values below the peak positions. This is evident in Fig.
8, which shows data obtained for sample P2. Within
the limited accuracy of these data, no definite deviations
from scaling were detected.

IV. DISCUSSION
A. Qualitative discussion

Previous structure factor data for order-disorder tran-
sitions were mostly obtained by measurements of the non-
conserved order parameter. These structure factors al-
ways show a monotonic decay with increasing scattering
vector; the largest signal is obtained at zero scattering
vector [13]. In contrast, our data generally show a clear
maximum of the scattered intensity at some finite scat-
tering vector. We see “rings” qualitatively like those ob-
served in spinodal decomposition [38,39], a process where
the order parameter is conserved.

There is a fundamental reason for the observation of
“rings.” Small-angle light scattering is generated by long-
wavelength density fluctuations in the sample. Initially
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the sample had a uniform density. Since density is a
conserved parameter and obeys diffusive transport, only
finite wavelength density changes are achievable within
any finite time. Hence our structure factors must strictly
vanish at zero scattering vectors and attain their maxi-
mum at some finite scattering vector.

If we consider the formation of a single crystallite in a
metastable fluid, the region of spontaneous crystal order
will have reduced osmotic pressure, be compressed, and
create a depletion zone having lower volume fraction in
the surrounding (fluid) phase. The integrated densities
exactly balance each other due to particle number con-
servation. Again there should be no scattering at very
small scattering vectors, which correspond to extremely
long-wavelength density fluctuations.

Actually we must expect diffusion to slowly spread the
depletion zone and hence reduce the range of small scat-
tering vectors, where we see the decrease of the structure
factor towards zero. But as long as the growth of the
crystal keeps up with the spreading of the depletion zone,
the shape of the structure factor will remain constant
[40]. We will just see a gradual contraction in scattering
vector—scaling behavior. This is exactly the behavior we
found for samples close to the melting density.

The growth of crystals must also be accompanied by
a strong increase in the total scattered intensity under
small angles. The intensity due to a single (small or
nearly index matched large) spherical crystal rises like the
sixth power of its radius. Correspondingly, all our data
indicate a rapid initial increase in peak intensity. The
levelling off of this intensity at some finite time indicates
completion of the growth phase.

The fact that the shape of the measured structure fac-
tors for sample densities close to melting stays similar
even beyond this completion time is quite surprising (see
Fig. 4). At these large times we expect crystals to be
in near contact and increasing in size via some ripen-
ing process. A depletion zone model for single crystal
growth is no longer applicable. Apparently, the dense
packing of crystals at this stage induces sufficient spatial
density correlation between crystal grains of different ori-
entations to reduce the very low-angle light scattering at
very large times.

B. Small times

In the context of classical theories of crystallization, it
is tempting to view the fast growth process as the nu-
cleation and growth of discrete crystallites. For random
positions of the nuclei, the measured scattered intensity
should equal the averaged form factor of these crystal-
lites. For very early times it seems reasonable to as-
sume a constant rate of nucleation. Hence at any time ¢,
light is scattered by crystallites, which were nucleated at
some time 7, uniformly distributed between times 0 and
t. This assumption leads to a total scattered intensity
proportional to

I(q,t) = /0 L(q,t — 7)dr, 2)

where I (q,t) denotes the scattering by a single crystallite
at time ¢ after nucleation.

Our second assumption is that of a self-similar single-
crystallite form factor,

I(g,t) = [R(t)]°F (¢R(t)), (3)

of characteristic size R(t) and peak scattering intensity
proportional to the sixth power of R(t). This assumption
appears to be well satisfied due to the close index match-
ing of our samples [41]. If we further assume a power-law
growth for R(t),

R(t) = Rot®, (4)

we obtain a raw scattered intensity

1 qRot™
i/a / 2TV R(2)dz. (5)
0

100 = g ama) 7

We proceed by introducing a scaled scattering vector

Q = qRot?, (6)

which leads to a scattered intensity

Q _ Rftert 1 ? 541/a
I(Rgt""t = o Q6+1/a/0 z F(z)dz. (7)

While the ¢t scaling of the scattering vector was im-
mediately expected, we can now also predict the time
dependence of the peak intensity as t*+1, Our data for
samples P3 and P5 are clearly compatible with o = 1/2.
This is true for both the peak intensity as well as the
characteristic scattering vector data. The intensity scal-
ing of the lower density samples P2 and P4 leads to the
same conclusion of square root of time growth. The time
dependence of the characteristic scattering vector agrees
well with a = % for P4, while the P2 data point to slightly
larger values of «, but do so over a very small range of
times, only.

For the higher density samples, we cannot detect any
significant change of the characteristic scattering vector
at early times and find a slightly weaker increase of peak
intensity as a function of time. We may either conclude
that « falls below % or that our assumption of a constant
rate of nucleation does not hold at the times considered.
In fact, if nucleation stopped, a = % would imply a peak
intensity proportional to t8 = ¢3, very much like the
observed values.

The finding of a square root of time growth for the
crystallization of hard spheres is in conflict with previ-
ous observations on charged colloidal particles [4], where
a linear growth had been found or assumed. But there
is an important distinction between the crystallization of
spheres with hard core and those with long-range inter-
actions: The hard-core particle crystal density is some
10% above that of the corresponding liquid at coexis-
tence, whereas this density difference appears to be small
for charged spheres [42]. Without a significant change
in density between crystal and liquid phases, there is no
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need to diffuse particles over large distances and interface
limited growth should prevail.

C. Large times

Understanding the short-time process as nucleation
and growth, the completion of this process leaves the
sample with an equilibrium fraction in the crystallized
state. Beyond the corresponding completion time t. the
crystallized fraction of the sample should remain approx-
imately constant. This behavior may in principle be
tested by static light-scattering experiments in the re-
gion of the first Bragg peak. The area under this peak
should remain constant over time. Such experiments are
under preparation at our laboratory.

Small-angle light scattering, however, clearly reveals
further changes in our samples. We view these changes
as a coarsening or ripening process, where large crystals
grow at the expense of smaller ones. Assuming again per-
fect scaling, as justified by our data except for the highest
volume fraction sample P7, there emerge simple relations
between a characteristic length scale R and the scatter-
ing properties. The characteristic scattering vector g; /2
should decrease as 1/R. The peak scattering power of a
single crystallite should increase as RS. The total num-
ber of scattering crystals should decrease as R~—3. This
implies a peak intensity which increases as R3.

Comparing our data with these predictions, we find a
growth like

R x t'/3 (8)

for samples P3 and P5, which are close to the melting
density. Both the approximate t~'/3 behavior of gy,
and the t behavior of the peak intensity are visible in
Figs. 5 and 6.

In fact an exponent of % is quite common in coarsen-
ing processes. But this exponent is generally associated
with phase transitions, where the order parameter is con-
served — known as Lifshitz-Slyozov ripening [16]. In our
case, the primary order parameter “crystalline order” is
clearly nonconserved. But, of course, we have a second
conserved parameter, which is density. Apparently, this
parameter controls the coarsening process. Such a behav-
ior would not be surprising at sample volume fractions
in the coexistence region of the phase diagram. Here
we have a mixture of crystals and liquid, both of differ-
ent density. Particularly at low crystalline volume frac-
tions, the original Lifshitz-Slyozov theory should apply,
where material must diffuse from small crystals through
the liquid phase towards large crystals. Unfortunately,
our present data sets do not include samples at densi-
ties in the lower coexistence region, and data close to
50% solid fraction (samples P2 and P4) do not extend to
sufficiently large times due to sedimentation problems.

At higher sample densities, coarsening is characterized
by an increasing temporal exponent. For sample P6 the
observed behavior closely matches Lifshitz-Allen-Cahn
behavior,

R o t'/2, (9)

as is expected for phase transitions with nonconserved
order parameter [17]. However, this agreement may be
accidental. P7, the slightly more dense sample, clearly
showed violations of scaling and the g,/ data of this
sample indicate an even larger exponent than % Without
any data between samples P5 and P6 we cannot rule out
a continuous increase of the coarsening exponent from %
to % and even larger values at still higher densities.
Coarsening processes have often been found to obey
dynamical scaling at large times resulting in intensity

patterns given by

Ia.t) = s AOF (). (10)

where d denotes the dimensionality of the system
[43,44,38,45,46]. In order to compare our data to this
prediction of dynamical scaling, Fig. 9 displays the mea-
sured peak intensities as functions of the corresponding
characteristic scattering vectors. Samples P3 and P5
clearly satisfy dynamical scaling for d = 3 dimensions
at large times. However, samples P6 and P7 seem to in-
dicate d = 2. Such a behavior would really be expected
for a two-dimensional system only [45]. At present we
can only speculate that this fact may result from the
two-dimensional nature of grain boundaries.

In this context, please note again the observed lack
of scaling of the structure factors measured for sample
P7 at large times. Quite clearly, additional experimental
data are required for a complete discussion of hard-sphere
crystal coarsening at large times.
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Characteristic Scattering Vector (mm~')

FIG. 9. Double logarithmic plot of peak intensity I,,(t)
as a function of characteristic scattering vector g¢,,2(t) for
samples P3, P5, P6, and P7. A slope of —3 (continuous line)
is expected based on dynamic scaling for three-dimensional
systems. Large time data at high volume fractions are much
closer to a slope of —2 (broken line).
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D. Shape of the structure factor

Empirically it is possible to fit our structure factor data
for samples and times where we observe good scaling by
an expression

27Q*
2(1 +2Q2)3°

This function is similar to but distinctly broader than
the Furukawa function

3Q/2
FQ')= PP
which is valid for late-stage spinodal decomposition after
off-critical quenches [47]. Both functions were included
in Fig. 4.

At early times, we may consider the observed low-angle
scattering to correspond to a single-crystal form factor.
The density profile of a spherical crystallite surrounded
by a diffusive depletion layer was calculated by Frank
[40]. This calculation, however, leads to structure fac-
tors which are either much narrower than Eq. (11) or
miss the peak position [48]. Assuming a very wide distri-
bution of sizes of crystallites (say a negative exponential
distribution) yields only moderate improvements. More
efficient is the introduction of some nonspherical shape
for the crystalites, e.g., a prolate ellipsoid [48]. Observa-
tions of aspheric crystals indeed were made on PMMA
particle systems very similar to ours [22]. Some computer
simulations suggest anisotropic nuclei, as well [49-51].

At late times, high solid fractions make single-crystal
form factors an insufficient model for the observed scat-
tering. An adequate treatment would have to include
a structure factor contribution due to relative positions
of individual crystals. The situation should approach a
close packed system of nonspherical, polydisperse crys-
tals at high solid fractions.

In view of these differences, it is even more surprising
that for several samples, particularly close to the melting
point, we observe essentially identical shapes of the mea-
sured structure factors from very early through very late
times. The coincidence may well be accidental. However,
please note the geometric similarity of an “early-time”
depletion layer and a “late-time” grain boundary, both
being essentially surfaces of crystals.

E(Q) = (11)

Q' = 1.504Q, (12)

E. Density dependences

For a final discussion of our scattering data, we focus
our attention upon the dependence of kinetic parameters
on the volume fraction or density of our samples, the rel-
evant control parameter. A characteristic time may — at
least approximately — be defined as the crossover time
or completion time of our small time process, t.. A char-
acteristic length may be defined as the size of crystals at
this time ¢, of the small time process. For spherical crys-
tallites of radius R, calculations [48] yield a characteristic
scattering vector
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q1/2 ~ 1.8/R. (13)

Let us use R, to denote 1.8/¢;/2(t.). While there remain
some difficulties in defining this size for samples P2 and
P4, which show a region of increasing g,/ close to t., the
higher density samples allow a fairly unique definition of
R.. Figure 10 displays the characteristic crystal radii R,
as a function of density. We note a pronounced decrease
towards larger densities, which may be extrapolated to
almost zero at the glass transition density of 0.58 [52].

In addition to the usual explanation of glasses by com-
plete freezing of the long-time self-diffusion, our data sug-
gest a view of the colloidal glass as a solid where the
grain size becomes comparable to the particle size. Still
we need freezing of self-diffusion, however, in order to
explain the absence of coarsening, which would lead to
growing crystals at large times.

As shown by Russel [30], the classical theory of nu-
cleation predicts enormous changes of nucleation rates
for small changes of sample density. At the completion
time t. of the fast process, we can estimate the number
density of crystals in each sample by the crystallized vol-
ume fraction divided by (47/3)R3, the typical volume of
a single crystal. The ratio of this number density over
the completion time may then serve as a rough measure
of the nucleation rate. Figure 11 shows such nucleation
rate estimates as a function of sample density together
with Russel’s prediction. Absolute nucleation rates agree
well for samples P3 and P5. But the theoretically pre-
dicted density dependence is much stronger than what we
observe experimentally. This disagreement sheds some
doubt upon the applicability of a naive nucleation pic-
ture, where a large nucleation barrier must be crossed
in order to generate a growing crystallite. Possibly, our
crystallization experiments indicate a very moderate nu-
cleation barrier only. We may even be close to a situation
more like spinodal decomposition, where the phase tran-
sition starts spontaneously over a large range of wave vec-
tors. This finding is supported by recent measurements
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Crystal Radius at Completion Time (pm)

FIG. 10. Typical crystal radius R. at completion time ¢,
as a function of effective particle volume fraction. The ar-
row denotes the volume fraction 0.58 beyond which samples
remain in a glassy state.
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FIG. 11. Estimate of observed nucleation rates vs effective
particle volume fraction. The continuous line corresponds to
Russel’s theoretical prediction [30].

of Dhont, Smits, and Lekkerkerker [27], who investigated
the crystallization of slightly soft spheres by static light
scattering close to the first Bragg peak. They also claim
a much weaker dependence of nucleation rate on sample
density than predicted by Russel.

The square root of time growth law found for our sam-
ples at small times leads to the definition of a growth coef-
ficient of the same dimensions as a coefficient of diffusion.
Hence it is tempting to plot this coeflicient, approximated
as R2/t., in comparison to characteristic diffusion coef-
ficients for hard-sphere systems. Figure 12 shows such
a comparison with short- and long-time self-diffusion of
single particles in the approximations used by Russel [30].
All data are normalized by the free particle diffusion co-
efficient. Collective diffusion would be slightly above 1 in

Normalized Growth Coefficient

0.45 0.5 0.55 0.6 0.65
Effective Volume Fraction

FIG. 12. Experimental growth coefficients R2/t. vs effec-
tive particle volume fraction. The continuous and broken lines
are estimates of the short- and long-time values of the coef-
ficient of self-diffusion in a hard-sphere system, respectively
[30]. All coefficients are given in units of the free particle
diffusion coefficient Do = 0.19 pum?/s.
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this plot with little density dependence [22]. Our growth
coefficient shows a sharp maximum in the upper coex-
istence range, where it clearly exceeds self-diffusion. It
falls off much more rapidly than self-diffusion towards
larger densities.

F. Open questions

Our small-angle light-scattering measurements on the
crystallization of hard-sphere colloids leave a number of
questions open. Some of these questions are related to
the nature of our samples. While the hard particle in-
teraction potential seems to be a reasonable assumption,
given the evidence presented in Sec. IT A, the finite thick-
ness of the polymer coating layer certainly implies some
“softness” of the interaction if particles approach each
other by distances less than 1/50 of a particle diameter.
It remains to be studied what the consequences upon
crystallization kinetics are — particularly at very high
volume fractions.

Polydispersity is known to suppress crystallization if
the relative standard deviation of particle size exceeds
about 10% [22]. Experimental as well as theoretical stud-
ies are required in order to understand the effects of small
polydispersities on phase behavior, crystallization kinet-
ics, and relations to the glass transition. We plan to re-
peat some of our small-angle light-scattering studies on
samples from different batches, which will be monitored
for their polydispersities [53].

It is not yet experimentally verified what the actual
levels of impurities are in our samples. Possible impu-
rities may include small permanent clusters as well as
a very small amount of particles with diameters signif-
icantly different from the mean diameter. While early
photon correlation measurements on diluted samples in-
dicated the presence of some impurities [54], more recent
measurements performed with a cross-correlation setup
to suppress multiple scattering [55,56] recognized the ob-
served effects as artifacts due to residual double scatter-
ing [57]. Further experimental investigations using opti-
cal single-particle tracking [58] are under way. A different
source of nucleation centers is possibly provided by our
preparation of the metastable fluid state through shear
melting. If this melting process did not completely de-
stroy all crystalline order, this might well have profound
consequences on crystallization kinetics. However, none
of our samples appeared to be very sensitive to the actual
conditions of shear melting such as shear rates and total
times under shear.

A different class of open questions is provoked by our
experimental results. As of yet, we have data at a few
sample volume fractions only. In order to follow the
indicated trends quantitatively, we need samples with
closer and more precisely defined particle number den-
sities. The use of just very few samples with densities
that are modified through solvent evaporation seems to
be the most promising approach.

Also we would like to extend the time range of our
measurements. In order to cover smaller times, we need
to reduce the low-angle flare of the apparatus, improve
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the temperature stability of our setup, and increase the
sensitivity of the detector. Towards large times, grav-
ity induced settling presents a major problem. The use
of smaller particles is a possible solution, time averaged
zero gravity due to slow rotation of the sample may be
another.

Within the time range of our present measurements,
additional efforts will be required to improve the statis-
tical accuracy of some of our data. Particular problems
were noted at the crossover between the small and the
large time regimes. Some of our data seem to indicate
a dependence of the observed kinetics on beam height
within the sample. Such early gravity dependence may
be related to the first percolation of crystallites through
the sample volume.

Finally it remains to point out once again the lack of
adequate theories for crystallization kinetics in general,
as well as for the particular process of hard-sphere crys-
tallization in colloids.

V. CONCLUSIONS

Time-resolved small-angle light-scattering experiments
on colloidal samples which closely approximate hard
spheres yield intensities which peak at finite scatter-
ing vectors. The experiments clearly resolve two time
regimes of the first-order phase transition from liquid to
crystal.

The small time regime is characterized by a rapid
growth in peak intensity and some decrease in peak po-
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sition. It may be modeled by approximately constant
homogeneous nucleation plus diffusive growth following
a square root power law. Certainly none of our samples
obeys a growth law with constant radial velocity.

The large time regime shows coarsening or ripening
with length scales growing as t!/3 for samples up to the
melting point and larger exponents as } or even more at
higher sample densities. The character of this change in
the growth law needs further investigation.

Through both regimes, samples around the melting
point show good scaling to a common master function
for which an empirical form may be given [Eq. (11)]. At-
tempts to explain the shape of this function lead to the
suggestion that crystallites are nonspherical.

The density dependence of crossover times and the cor-
responding crystal size may be extracted and used to
estimate nucleation rates. These estimates show much
less dependence on density than expected from classical
nucleation theory. Crystal sizes may be extrapolated to-
wards larger sample densities and seem to approach zero
close to the glass transition.
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