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Thermodynamic perturbation theory: Sticky chains and square-well chains
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We extend Wertheim's first-order thermodynamic perturbation theory [J. Chem. Phys. 87, 7323
(1987}]to sticky chains and square-well chains. The predicted compressibility factors for square-well
chains are found to agree with Monte Carlo data. We demonstrate that the effect of chain connectivity
is to reduce the attraction contributions to the compressibility factor and to the critical temperatures.

PACS number(s): 36.20.—r, 61.41.+e, 05.70.—a

INTRODUCTION

In the process of developing thermodynamic theories
of polymer systems, large polymeric rnolecules are often
approximated as homonuclear chains, that is, chains of
equisized segments. For example, hard chains (HC) of
Dickman and Hall [1], Honnell and Hall [2], Chiew [3],
Boublik, Vega, and Diaz-Pena [4], and Schweizer and
Curro [5,6], are composed of freely jointed hard-sphere
(HS) segments. Such hard chains mimic covalently bond-
ed hard spheres where the bond angles are not fixed and
no attractive interactions are allowed. By contrast, at-
tractive chains are composed of segments that can in-
teract through attractive forces. For example, Yethiraj
and Hall [7,8] proposed a theory for chains composed of
freely jointed hard-sphere segments with square-well at-
traction.

Another approach to developing thermodynamic
theories of attractive chains is based on Wertheim s first-
order perturbation theory (TPT1) [9]. The advantage of
using TPT1 to square-well chains is that TPT1 can be
consistently extended to associating chain fluids. For ex-
ample, in statistical associating-Quid theory (SAFT)
[10—14], which applies to associating and nonassociating
chain fluids, TPT1 was used to account for aggregation,
i.e., association and chain formation, of HS segments.
Specifically, TPT1 was used to calculate the thermo-
dynamic properties of HS and HC reference fluids and
contributions due to attraction (dispersion term) were
treated as perturbation. However, the contributions due
to attraction were approximated with models of non-
bonded spherical segments, for example, Lennard-Jones
(LJ) segments. Therefore the effect of chain connectivity
on the dispersion term was not accounted for explicitly.

While such an approximation has been very effective in
describing real systems [11—13] when combined with the
temperature-dependent hard core diameter, we want to
probe the effect of chain connectivity by allowing the
reference fluid to be composed of attractive segments,

rather than HS segments. Our specific objective is to
quantify the effect of chain connectivity on those parts of
the compressibility factor and critical temperature which
are due to attraction. Our approach is to apply TPT1 to
chains of freely jointed attractive spheres, such as chains
of sticky spheres (SS), referred to as sticky chains (SC),
and chains of square-well spheres (SWS), referred to as
square-well chains (SWC).

GENERAL THEORY FOR CHAINS
OF FREELY JOINTED ATTRACTIVE SEGMENTS

In TPT1 framework, the compressibility factor Z for
chains composed of m spheres (segments) can be ex-
pressed as [10,14]

(2)

In Eq. (2) g (cr, q) is the contact value of the pair correla-
tion function of the reference fluid, that is, for the separa-
tion r =a, o. is the diameter of a spherical segment, and
q is the reduced density defined as

7TPo

6
(3)

where p is the number density of nonbonded segments,
that is, the number of nonbonded segments per unit
volume. In our notation, the subscript "ref" refers to the
nonbonded reference fluid, whereas the subscript "chain"
refers to the incremental change due to chain formation.
Quantities without any subscripts are total. Superscripts,
on the other hand, refer to specific model fluids, such as
HS, HC, SS, SC, SWS, and SWC.

Equations (1) and (2) are general and can be applied to

ref chain

where Z„f is the compressibility factor of the reference
Quid (nonbonded segments), and Z,h„„ is given by the
equation
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any spherical reference Quid. For example, for a HS
reference Quid, the contact value of the pair correlation
function can be approxim. ated by the Carnahan-Starling
expression [15],which is

gHS( )
1 — /2
(1—g)

Therefore, for a HC Quid, the compressibility factor is

ZHc mZHs +ZHc
ref chain

(4)

(5)

where Z„f is the HS compressibility factor in the
Carnahan-Starling approximation:

2
Z"', =1+ 4"

(1—rl)

For Z,h„„Eq. (2) becomes

(6)

Z h,;„=(1—m) 1+q lng s(cr, H)a
(7)

Zref —
ref +Zatt

where the superscript seg indicates that the correspond-
ing contribution is due to nonbonded segments, and the
subscript "att" indicates that the corresponding contribu-
tion is due to attraction. Therefore, after substituting Eq.
(8) into Eq. (1), the compressibility factor for chains with
attraction is

Furthermore, Z,h„.„can be separated into a hard chain
contribution Z,h„„and a corresponding contribution due
to attraction, Az,h„„,as

HC
chain Z chain +~ chain (10)

Equation (5) agrees well with Monte Carlo (MC) simula-
tion data for hard chains [10].

The compressibility factor for a reference HS Quid with
attraction, on the other hand, can be written as a sum of
the HS contribution Z„f and a contribution due to at-
traction of nonbonded segments, Z",„,

ments (Z') due to stronger excluded volume (repulsive)
interactions. As a result, we expect Az,h„„ to be posi-
tive.

One way to account for Az,h„„ is to calculate the
chain term Z,h„„using g (cr, g) in Eq. (2) for a reference
fluid with attraction, rather than using g (o, rl), and
then to calculate Z from Eq. (9). This will consistently
take into account the e6'ect of chain connectivity on Z,«.

In this work we apply TPT1 to SC and SWC Quids be-
cause there are analytical solutions available for contact
values of g (r, rl) and g (r, r)), and there are MC data
available for SWC Quids.

APPLICATION TO STICKY CHAINS

Properties of SS Quids have been extensively studied
[16,17] and applied to adsorption [18], microemulsions
[19], colloids and grafted polymers [20], and gelation of
dispersions [21]. The two-body interaction energy u (r)
is such that the Boltzmann factor, e(r)=exp[ —u /
(kT)], is

e (r) = 5(r —o )+e(r —o ),12' (14)

where e is the standard Heaviside function, o. is the SS
diameter, and ~ is a dimensionless, temperature-related
parameter. If ~ goes to zero, T goes to zero, and when ~
goes to in6nity, T also goes to infinity.

In this section, we work within the framework of the
Percus-Yevick (PY) approximation, using the compressi-
bility pressure for calculating the compressibility factor
of SC Quid. In order to calculate the compressibility fac-
tor for sticky chains from Eqs. (1) and (2), we need the
reference compressibility Z„f and the pair correlation
function at contact of the reference fluid, g (o., g). Since
the SS pair correlation function has its continuous and
singular parts [16], it cannot be directly substituted into
Eq. (2). We show, however, that instead of using

g (o, rl) in Eq. (2), one can use the contact value of a
cavity function for sticky spheres, y (o,g), which agrees
with the theory of Stell and Zhou [22].

Following Baxter [16,17], we list the expression for Z„z
andy "(o,rl):

Thus the total Z can be written as a sum of repulsive and
attractive parts:

Z =Zseg+Z
att

where Z is given by Eq. (5) and the attractive part is

ss 1+g+q p(1+g/2)+(p—, q '/36)
zef (1—g)

where p=k, g(1 —g), and

(15)

att ~ chain ™att (12)

Ez,h„„ is our measure of the attraction e6'ect due to con-
nectivity. For example, setting Ez,h„„equal to zero is
equivalent to assuming that Z",„~ is equal to mz", tg, and
hence that Z,« is simply that for nonbonded segments.
When Ez,h„„=0,the corresponding expression for Z is

'2 1/2 '

+g PYHS( o

with g (a,g)=(1+g/2)/(1 —rl) and

z'=z "c+mz-gatt (13) ySS( )
—gPYHS( ~)+

12 1 —9' (17)

where the prime means that Az,h„„=0.
For chains of attractive bonded segments, however, we

expect Z,« to be smaller than Z,« for the nonbonded seg-

where g (cr, g) is the PY contact value of the HS pair
correlation function. Now Z can be calculated from
Eqs. (1) and (2),
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Zsc=mZ, sf+(1 —m) 1+rI iny (o )
an

and pressure P from

PSC 00 '9 Zsc
kT m

(19)
0.025

0. 02

0.01

00 3where v =no /6 is the segment volume. Similarly, for
chain

0.00

Z =mZ~~f+(1 —m) 1+ii lng H
( )

an
(20)

For small q, that is, at low densities, we find the anal t-
ical form of Z

e n eana yt-

Z =1+ 4g ——SC

20

FIG. 2.
1

Calculated values of the reduced pressur P /kTe v

p otted as a function of inverse reduced density g
' and dimen-

sionless temperature ~ for sticky chains with m =4.

+(1—m) 1+—rI+ ——g +o( )
5

2 12r r

Z sc' 1Z =1+ 4' ——rl+(1 —m)[1+ —,'g]+o[rI], (22)

EZ,h„„=(1—m)
1 1 +o[g] . (23)

From these low density expansions, we can easil find
that AZ . h,h»„should be positive, for r) —,', (which is well

y n

below the critical temperature), as expected. For a given
density, we can also calculate both Z and AZs
analytically, but the full expressions are lengthy, so that
we do not present them here.

Figure 1 illustrates a significant difference between Z
and Zsc' Zsc iis systematically and significantly greater
than the corresponding Z, which means that hZ .„is
positive.

(21)

and the corresponding expressions for Z and AZ chain'

We can also calculate pressure as an analytical func-
tion of ~, m, and g, which is an equation of state for
sticky chains. For example, Fig. 2 shows a pressure sur-
face for m =4 as a function of ~ and g '. The
critical temperature is found at z =0.1465 which as

C

expected, is much higher than that for sticky spheres
(r, =0.0976 [16,17]). We see, from Fig. 2, that for r (r,
there is a two-phase region, and that the Maxwell con-
struction can be performed to determine a coexistence
curve. Similarly, we can determine ~, for any chain
length m. As expected, ~, increases monotonically with
increasing ~, as shown in Fig. 3, for both Zsc and Zsc'.
for a given m, ~, corresponding to Z is overestimated
compared with ~, corresponding to Z

APPLICATION TO SQUARE-WELL CHAINS

According to the perturbation theory of Barker and
Henderson [23—26], the molar Helmholtz energy of SW
fluid (with the well extended from r =o. to r =1.5o ),
a I~f, up to the second order, is

3 ~

2
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FICx. 1Cx. 1. Calculated values of the compressibility factor of 4-
nmr sticky chains based on Eqs. (18) [Z —solid] and (

[Z —dashed].
—so i j an (20)

FICz. 3. Sti ~'cky chains: the critical temperature v, corre-
sponding to Z (triangles) and the critical temperature ~, cor-
responding to Z (diamonds), as a function of chain length m.
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FIG. 4. Hard-sphere pair correlation function at r =1.5o.
versus reduced density g. Monte Carlo data shown as filled cir-
cles [28]. Solid curve is calculated from Eq. (32).

FIG. 6. Compressibility factor of 4-mer square-well chains,Z, plotted as a function of reduced density q. The solid and
dashed curves represent values calculated from Eqs. (33) and
(34), respectively. The symbols represent Monte Carlo data re-
ported by Yethiraj and Hall [7,8], at T =3.0 (diamond),
T*=2.0 (triangle), and T*=1.5 (circle).

(&)

=Ci 1 expRT p( —p"
cx )p

+p)p +q)p (25)

where T* is the reduced temperature, T*=kT/u, T is
absolute temperature, u is the depth of the square well, K
is Boltzmann's constant, aref is the molar Helmholtz en-

ergy of the reference HS Auid, and

is the reduced number density, p*=po. , R is gas con-
stant, and the coeKcients C,a,P,p, and q are listed in the
Appendix.

We can calculate the compressibility factor of the
reference Quid, Zref, from the thermodynamic relation
[27]:

sws
SWS 3 a ref

8 RT
a(&)

RT
=C 1 —exp

&~
—s*

CX2

P
I3z

Therefore, by substituting Eq. (24) into (28), we obtain

where

+p,p'+q, p", (26)

(27)

(&) (2)zswsz~s+1BQ+ 1 ea(29
Bg RT T* Bg RT

Let us also evaluate g (o,q), the contact value of
the SWS pair correlation function, using the first-order
perturbation theory of Henderson and Barker [25]:

20
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0.2 0.4 0. 6 0.8 0

FIG. 5. Square-well sphere pair correlation function at con-
tact, g (o.,p*), computed from Eq. (30) is plotted as a func-
tion of the reduced number density p*=po. for well width
A. =1.5'. Curves are calculated from Eq. (30) and points are
determined from computer simulation [29] at different reduced
temperatures: star, T*=4.0; triangle, T =2.0; diamonds,
T*=1.5.
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FIG. 7. Compressibility factor of 8-mer square-well chains,Z, plotted as a function of reduced density g. The solid and
dashed curves represent values calculated from Eqs. (33) and
(34), respectively. Circles represent Monte Carlo data reported
by Yethiraj and Hall [7,8], at T =3.0.
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FIG. 8. Compressibility factor of 16-mer square-well chains,Z, plotted as a function of reduced density g. The solid and
dashed curves represent values calculated from Eqs. (33) and
(34), respectively. Circles represent Monte Carlo data reported
by Yethiraj and Hall [7,8] at T =3.0.

FIG. 10. Reduced pressure of SWC Quid is plotted as a func-
tion of reduced density g

' for di8'erent values of the reduced
temperature T*. From bottom to top, T*=2.20, 2.21, 2.22,
2.23, 2.24, and 2.25.

gs s(cr, g)=gHs(o, g)+ (1.5) g (1.5o, g)
1

(30)

where g (o.,g) is the contact value of the HS pair corre-
lation function (reference for SWS), and g (1.5o, g) is
the value of the HS pair correlation function at r =1.5o..
We approximate g (cr, g) by the Carnahan-Starling ex-
pression

1 —g/2Hs(~ +) 7 (31)
(1—g)

and we fit g Hs(1. 5o, q) to MC data interpolated for
r =1.5o an the basis af Barker and Henderson's simula-
tions [28]. The result is

(32)

80 ~

where y &, yz, y3, y4 are numerical coefficients listed in the
Appendix. In Fig. 4, we show that our 6t represents the
MC data well. In Fig. 5, we show that the first-order per-
turbation theory for g (o, g), Eq. (30), is reasonably
accurate at different T*'s [29], which means that we can
use g (o,g) for calculating Zs

Substituting Eqs. (29) and (30) into Eq. (1), we obtain
the compressibility factor for square-well chains, Z

r

=mZ„+(1—m) 1+g lng (g, rl)
a
'g

and the corresponding Z is

(33)

Z =mZ„+(1—m) 1+g lng (o, q) (34)

We calculate Z from Eqs. (33) and (34) for different
m's and T*'s as a function of g, and compare it with the
MC data of Yethiraj and Hall, and Hall, Yethiraj, and
Wichert [7,8,30]. The results are presented in Figs. 6—9.
We demonstrate that Z calculated from Eq. (33)
agrees with the MC data for different reduced tempera-
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FIG. 9. Compressibility factor of 32-mer square-well chains,Z, plotted as a function of reduced density q. The solid and
dashed curves represent values calculated from Eqs. (33) and
(34), respectively. Circles represent Monte Carlo data reported
by Hall, Yethiraj, and Wichert [30],at T*=3.0.
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FIG. 11. Square-well chains: the critical temperature corre-
sponding to Z (triangle) and the critical temperature corre-
sponding to Z (diamond), as a function of chain length m.
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tures and chain lengths. However, this is not the case
with Z calculated from Eq. (34). The difference be-
twccIl Z RIld Z CRIl bc coIls1dclcd a Illcasurc of
the chain-connectivity effect on the attractive part of Z.
As for the sticky chains, this difference is positive. At
lower temperatures (e.g., at T*=2.0 in Fig. 6) the agree-

of Z swc w1th the corresponding MC data 1s not as
good as that at higher temperatures. This is not surpris-
ing because the high temperature expansions [Eqs. (25),
(26), and (30)] become less accurate at lower temperatures
and in the vicinity of critical region.

Finally, we calculate the critical temperatures T,* for
chains of different m's. The method is illustrated for
m =4, by locating the critical isotherm in Fig. 10. The
results for different m's are presented in Fig. 11; T,*
monotonically increases as m is increased for both Z
RIld Z . F01 a g n Pl, T coI' cspond1ng to Z 1s

overestimated compared with T,* corresponding to Z
Again, we attribute this difference to the chain-
connectivity effect on the attractive part of Z.

CONCLUSIONS

The compressibility factors derived from TPT1 agree
well with Monte Carlo data for square-well chains. The

chain connectivity is found to reduce the attraction con-
tribution to the compressibility factor and to critical tem-
peratures for both sticky chains and square-well chains.
This is because the excluded-volume interactions for
chains are greater than those for nonbonded segments.
Also, the calculated critical temperatures monotonically
increase with increasing m for both SWC and SC, as ex-
pected.
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APPENDIX

The y coefficients used in Eq. (32) are y, =0.653 305,
yz= —1.38146, y3= —7.58844, and @4=8.401 66.

The coefficients for a"' and a' ' in Eqs. (25) and (26)
are a i

=4. 5, P, =&2, C, =3. 173 136, p, = —4.974 192,
qi =5.134186, a~=9.75, p2=&2, C2= —0.384466,
p q

= —2.487 096, and q2 = —0.047 652.
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