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Thermal and structural properties of the liquid-vapor interface in dipolar Auids
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Based on a recently developed density-functional theory for inhomogeneous molecular fiuids [P. Frodl
and S. Dietrich, Phys. Rev. A 45, 7330 (1992}],we investigate the profiles of the number density and of
the orientational order at the liquid-vapor interface of a Stockmayer fluid as well as the corresponding
surface tension. We systematically analyze the dependencies of these quantities on the temperature and
on the strength of the permanent dipole moment of the molecules. This reveals power laws and scaling
behavior. Our approach, which is reliable even for large dipole moments, allows us to determine sepa-
rately those contributions to the surface tension which are due to the orientational degrees of freedom.

PACS number(s): 61.25.Em, 64.70.Fx, 68.10.Cr, 82.65.Dp

I. INTRODUCTION

Under suitable conditions for pressure and tempera-
ture, the interface between a vapor phase g and the solid
wall w confining it can be wetted by the corresponding
liquid phase l. This means that the structure of the wall-
vapor interface undergoes a phase transition such that it
splits into the wall-liquid and the liquid-vapor interfaces
separated by a macroscopically thick liquid film. There
have been numerous efforts to understand this kind of in-
terfacial phase transition on the basis of statistical
mechanics [1—3]. Most of these theoretical studies are
based on models which assume spherical molecules in-
teracting with spherically symmetric pair potentials of
the Lennard-Jones type. On the other hand, to a large
extent the corresponding experiments are performed by
using Auids whose particles carry a permanent dipole mo-
ment m which gives rise to the anisotropic and even-
longer-ranged dipole-dipole interaction potential. Since
the range of the interactions has turned out to be particu-
larly important for the correct description of wetting
phenomena, the aforementioned theoretical models thus
appear to be still too crude for an accurate description of
numerous actual experiments.

In order to narrow this gap between theory and experi-
ment we recently developed a density-functional theory
for inhomogeneous molecular Auids which is capable of
describing wetting phenomena of one-component Stock-
mayer Auids. These are characterized by a pair interac-
tion potential which is the sum of an isotropic Lennard-
Jones potential and of the anisotropic dipole-dipole in-
teraction between the permanent dipoles. Compared
with previous theories of that kind our approach has the
virtue to be reliable even for strong dipole moments. For
this advantage one has to pay the price of substantially
increased technical efforts whose details are expounded in
Ref. [4].

In order to carry out the aforementioned program of
understanding the splitting of the w ~g interface into the
w ~1 and the l ~g interfaces one must study the various in-
gredients by one and the same theory: (i) The bulk prop-
erties of this model have been analyzed in detail in Ref.

[4] and their status with respect to simulations and other
theoretical approaches has been assessed. We were able
to conclude that our method yields quantitatively reliable
results for the bulk. (ii).As the second ingredient it is the
purpose of the present paper to analyze the thermal and
structural properties of the free intrinsic liquid-vapor in-
terface. Whereas the general analytic formulas for the
number density profiles, the profiles of the orientational
order, and the surface tension have been derived in Ref.
[4], here we present the results obtained from their nu-
merical evaluation. (iii) and (iv) The studies of the w~l
and finally of the w ~g interface will follow later.

We want to emphasize that the analysis of the free
liquid-vapor interface of molecular Auids is not only
relevant as an ingredient for wetting phenomena but it is
interesting on its own both theoretically and experimen-
tally. For a full account of the present state of the corre-
sponding literature and for a critical comparison between
our approach and others the reader is referred to Ref. [4].

The paper is organized such that in Sec. II we define
our model and provide the basic analytic formulas. In
Sec. III we present the numerical results for the number
density profiles and for the profiles of the orientational
order whereas Sec. IV is devoted to the surface tension.
Section V contains a detailed discussion of our results
and a critical comparison with the literature. We sum-
marize our results in Sec. VI. Certain technical details
which are important for obtaining reliable numerical re-
sults are given in Appendixes A, 8, and C.

II. DENSITY-FUNCTIONAL THEORY
FOR STOCKMAYER FLUIDS

In a one-component inhomogeneous and anisotropic
fiuid, p(r, co) denotes the number density of particles at
the point r=(x,y, )wzhich have an orientation co=(8,$)
with respect to the space fixed coordinate system (see Fig.
1 in Ref. [4]}. The total number density of particles
without specified orientation is given by

p(r)= f drop(r, co)= f dP f dg(sin8}p(r, 6},&) .
0 0
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This allows us to split p into the total number density p
and a normalized space- and angle-dependent factor n:

Jones potential,
6

p(r, co)=p(r)a(r, co), fdco a(r, co)= 1 . (2.2)
wt J(r,2) =4E

r&2
(2.3)

The Stockmayer Quid, on which we focus, consists of
spherically shaped molecules interacting via a Lennard-

to which an interaction is added due to point dipoles em-
bedded in spheres of diameter o'.

wd; ( r, r', co, co' ) =wd; (r &2
=r —r', co, co' )

r

0, r, 2
&o.

3[m(co ) r, 2 ][m(co') r, 2] —m(co) m(co'), r,2) cr .

(2.4)

m is the absolute value of the dipole moment and m(co) is its unit vector. Thus the total pair potential is given by

w(r, r', co, co') =wLJ(r, 2)+ wd; (r, r', co, co') . (2.5)

By using the bulk pair distribution function in its low-density limit and by choosing the decomposition of m into a
repulsive and an attractive part due to Barker and Henderson, one obtains in the absence of external fields the following
approximate expression for the grand-canonical variational potential (see Ref. [4]):

&[[p(r,co)},T,p ]=9'„&[ pI(r, co) }, T)+ f f d r d r'dcodco'p(r)p(r')a(r, co)a(r', co')e " '
(1—e '" "' '"

)

p f d r d—cop(r)a(r, co)+ f d r lc(r) 1 —f d co(ar, c)o (2.6)

w,„(r,r', co, co') =e(r, 2
—o. )w(r, r', co, co') . (2.7)

The Helmholtz free energy of the reference system has
the form

V„,[ I p(r, co) },T]

= f d r f„c(p(r), T)

+—f d r f dcoa(r, co)ln[4ma(r, co)]

(2.8)

with the free energy density due to Carnahan and Star-
ling [5]

p is the chemical potential, T denotes the temperature
with P=(kzT) ', w„&(r&2)=6(cr —r&2)wLJ(r&2), e(x) is
the Heaviside step function, and the excess interaction is
given by

Q( T p) =min ~, ~Q[ I p(r, co) },T p]

=Q[Ip,q(r, co; T p)},T pj „

obtained by

(2.1 1)

entropy of the reference system due to the fact that, even
without dipolar interactions in the reference system, the
corresponding structureless hard spheres HS are tagged
by their embedded dipole moments. It vanishes in the
case of an isotropic distribution a(r, co) =1/4'. Equation
(2.10) mimics the actually soft repulsive part of the
Lennard-Jones intermolecular potential. In Eq. (2.6) the
equilibrium value of the Lagrange parameter lc(r, T,p)
follows from the normalization condition for the orienta-
tional distribution [see Eq. (2.2)].

The actual grand-canonical free energy is the minimum
of the variational functional and determines the equilibri-
um density configuration:

2fHs(p T) P ln(p/3) —1+
13

&&[IPr,~)},T,V]
6p(r, co ) p(» ~ ] ~eq~ » ~i ~ p

(2.12)

—Pw„c( ))
Id(T)= f dr(1 —e (2.10)

0

The last term in Eq. (2.8) is the extra contribution to the

where X is the thermal de Broglie wavelength and
g=(m/6)d p denotes the packing fraction with a
temperature-dependent hard-sphere diameter as given by
Barker and Henderson [6]

The properties of the homogeneous and isotropic bulk
phases, i.e., p(r) =const and a(r, co) = 1/4n, as well as the.
bulk phase diagrams predicted by Eq. (2.6) are discussed
in Sec. III and Appendix A of Ref. [4], respectively. The
knowledge of the bulk phase diagrams enables us to
choose the chemical potential p=po(T) such that, for a
given temperature, the liquid and vapor phases coexist.
For that choice of the thermodynamic variables we can
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impose vertical boundary conditions such that for
z ~+ oo one encounters the vapor phase and for
z~ —~ the liquid phase. The lateral boundary condi-
tions are chosen such that the mean position of the re-
sulting interface of area A is fixed in the plane z =0. (For
a discussion of the mean position of the free liquid-gas in-
terface, see Ref. [7].) The system is translationally invari-
ant in the x and y directions. Under these circumstances
the total number density p(r) is a function of z and the
orientational profile a(r, co) =a(z, 8)=a(z, 8) /(2~) de-
pends only on z and the angle 0 between the z axis and
the dipole moment m of a particle (see Fig. 1 in Ref. [4]).
The angular dependence of a can be expressed in terms of
Legendre polynomials P& ..

a(z, 8)= g a, (z)P, (cos8)
1=0

p (z) = ——j dz'p(z')[w o(z' —z)

+a2(z')w 2(z' —z)],
m=0, 2. (2.18)

The functions w „are determined by the interaction po-
tential w [see Eq. (2.5)] and the temperature. Their expli-
cit but lengthy integral representations are presented in
Appendix A where we also discuss their analytic proper-
ties [see Eqs. (A22) —(A25)]. Based on these expressions
as well as on Eqs. (2.9), (2.10), (2.17), and (2.18), the equi-
librium number density profiles p, (z; T) and orientation-
al order profiles a2q(z; T) follow from solving Eqs. (2.15)
and (2.16) numerically. [For a more explicit presentation
see Eqs. (A27) —(A31); important details of the numerical
technique we used are presented in Appendix B.]

1 3 cos20 —1=—+ a (z)+ .
2 2 2 (2.13) III. PROFILES OF THE NUMBER DENSITY

AND OF THE ORIKNTATIONAL ORDER

Due to the normalization of a(r, co) [see Eq. (2.2)]
ao(z)= —,'. In the absence of external fields a&(z)=0 for
odd values of / [4]. Since a2(z) provides the major contri-
bution to the anisotropic orientation of the dipolar parti-
cles at the liquid-vapor interface [8] we constrain our
analysis to terms up to second order in the Legendre po-
lynomials [see Eq. (2.13) and Ref. [4] ]. Since the coexist-
ing liquid (I) and vapor (g) phases in the bulk are isotro-
pic, one has the following boundary conditions for the
liquid-vapor interface:

p(z ~—oo ) =p(, p(z —++ m ) =p

az(z ~—oo ) =0, az(z~+ ~ ) =0 .
(2.14)

Together with Eq. (2.13) the minimization of the varia-
tional grand-canonical functional [see Eq. (2.12)] leads to
the following closed set of integral equations for the two
unknown functions p(z) and a~(z} [see Eqs. (4.25) and
(4.26) in Ref. [4]):

In this section we present a systematic analysis of the
dependence of p(z) and a2(z) on the temperature T and
the strength m of the permanent dipoles. (Here and in
the following we suppress the index eq. ) This analysis is
based on the numerical solutions of Eqs. (2.15) and (2.16)
(see also Appendixes A and B). Since we are inter alia in-
terested in the behavior of these profiles close to the criti-
cal temperature T„ it is suitable to express the tempera-
ture dependence in terms of the reduced temperature
r=(T, —T)/T, . The fact that for T~T, the scaling
properties of the surface tension and of the density profile
are well known due to general arguments allows us to test
successfully for the present model the reliability of our
numerical results in this limit. This enables us to apply
the same kind of analysis to the scaling behavior of the
orientational order and of the anisotropic part of the sur-
face tension which have not yet been studied before.

A. Dependence on the strength of the diyoles

1 —(3/2)Pp2 (z)x——ln dx e
0

(2.15)

While the critical density p, depends only weakly on m

[4], T, (rn) increases significantly for larger values of m;
in Fig. 1 this dependence on m is expressed in terms of
the dimensionless dipole strength m *= [m /(o E)]'
and the dimensionless temperature T =kz T/c. For
small m we corroborate the prediction by Yang et al. [9]:

—(3/2)Ppp(z)x
3 dxx e

a2(z) =—
4 1 —(3/2)Pp2 (z)x

dxe
0

(2.16)

gf H~s( T)
VHs(z}= =pHs[p(z)] .

~p
(2.17)

The coefficients po(z) and pz(z) are functionals of p(z)
and a,(z):

pHs(z) is the local chemical potential of the reference sys-
tern. :

T, (m —+0)—T, (m =0)-m (3.1)

In Fig. 2 we show the dependence of the dimensionless
number density profile p*(z)=p(z)cr on the strength of
the dipoles at a fixed reduced temperature. Its position
z=0 is defined by p(z =0)=(p&+p )/2. A higher resolu-
tion reveals that these curves do not intersect at a single
common point. [p(z) corresponds to a particular mean-
field approximation for the so-called intrinsic liquid-
vapor interface [7].] The main dependence of p(z) on m
is due to the increase of p& and the decrease of pg, respec-
tively, for larger m. Correspondingly the number density
profile sharpens as function of m. For a subset of m
values Fig. 3 shows the corresponding orientational order
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FIG. 5. Dependence of the number density profile on temper-
ature v for a fixed value m *= 1.5. The inset displays the diver-
gence of the width of the interface WG(~~0)-~ " [see Eqs.
(3.3) and (3.4)] for ~~0. The dashed line in the inset indicates

1the mean-field power law v= ~.

dp(z)
~G = (pi ps)— —

Z=Z
G

(3.3)

where z& is the position of the Gibbs dividing surface:

profiles upon approaching criticality, i.e., ~—+0. As be-
fore the position z=0 is defined by p(z=0)=(pi ps)+ )/2
and the profiles actually do not intersect at a single com-
mon point. Following Ref. [10] we define the width of
the interface as

(3.11)

here Z=/3m /r and io(y) is defined in Eq. (A9) of Ap-
pendix A. Below T, Eq. (3.10) leads to two different
correlation lengths gi and g in the liquid and vapor
phase, respectively, which become identical in the limit
~~0. Figure 6 shows how the density profiles reduce to
the above scaling form for v.~0.

Since p —p, is the order parameter, the scaling form in
E . (3.6) is expected on general grounds. On the other
hand, a priori it is unclear whether the orientational or
profile a2(z, ~~O) also takes on a scaling form. In Fig.
we show the broadening and the reduction of the orienta-
tional order at the interface upon increasing the tempera-
ture for a fixed value m*=1.5. A natural measure for
the width W of the orientational profile a2(z) is given

by the distance z,„—z;„between the positions of the
extrema of az(z): max(a2)=a&(z=zm» o)oo
min(az) =a2(z =z;„&0)& 0. According to the upper

f dz'[pi —p(z')]= f dz'[p(z') —p ] . (3.4)

Close to T„R'G diverges as

WG(v~0) -~ (3.5) x=0.30

fd rr G(r)

6 fd rG(r)
(3.8)

w here v is the critical exponent of the diverging bulk
correlation length g(&~0)-r . The inset of Fig. 5 sup-
ports this result with v= —,

' for the mean-field theory used
here. Close to criticality the number density profiles are
expected to exhibit a scaling form governed by a univer-
sal scaling function F (y),

p(z, r~O)=p, +A v E (z/g),

where p, is the critical density and A the nonuniversal
amplitude of the bulk order parameter:

pi(r~0) p, = A v =p, p—s(r~0) . —

Within mean-field theory P= —,
' and F (y) = —tanh(y/2).

Here we used the following definition for the correlation
length g:

0.5

I

-0.5

S 4

-4 -3 -2
t I

0 1 2 3 4

z/

FIG. 6. Number density profiles in scaling form for
m =1.5. gi is the correlation length in the liquid phase [see
Eqs. (3.8) —(3.11)]. A is the nonuniversal amplitude of the bulk
order parameter [Eq. (3.7)]. In the limit ~~0 the scaled profiles
reduce to the universal scahng function I'~(y = — y

~ ~ = —tanh( /2)
[Eq. (3.6)].
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left inset of Fig. 7 we find that 8' is proportional to the
2

bulk correlation length:

~a max min2
(3.12)

with v= —,
' within mean-Geld theory.

The degree of the orientational order at the interface
can be measured by the difference (see the lower right in-
set of Fig. 7)

FIG. 7. Broadening and reduction of the orientational order
o,2(z) upon increasing the temperature ~~0 for m*=1.5. The
upper left inset shows that the width of this profile
F =z „—z;„diverges as ~ ' for ~~0 (the dashed line in-

dicates the slope —
2 ). The lower right inset demonstrates that

the strength of the orientational order D =max(a2) —min(a2)

vanishes as ~' ' for ~—+0 (the dashed line indicates the slope —').

FIG. 8. Decrease of the orientational order
D =max(az) —min(ai) in the limit r~O if g is kept fixed

artificially and Ap —~' (left part) or if Ap is kept fixed
artificially and g diverges —r'~z (right part). In the first case
one finds D (~~0)—~' whereas in the second case

D (~~0)-~. The dashed lines indicate the slopes —' and 1, re-
2

spectively. Note the difference in scale between the left and
right part of the figure.

apart from a nonuniversal amplitude B, the sealing func-
tion F (y) can be expressed in terms of a universal func-

2

tion F (y)=F (y)/B which is independent of, e.g., the
2 2

potential parameters m, c., and o as well as of the form of
the interaction potentials. [The function F (y) is known
to be universal in that sense. ]

The common characteristic feature of all orientational
order profiles az(z) is that they are negative on the liquid
side and positive on the vapor side. This means that in
the region with the higher number density the dipoles are
preferentially orientated parallel to the plane of the mean

D =max(a2) —min(a2) —r, r —+0 . (3.13)

In order to interpret this power law beyond mean-field
theory we minimized the grand-canonical variational
functional in that subspace of profiles for which the
thickness 8'6 of the density profiles and thus the bulk
correlation length g are kept fixed artificially but for
which the density difFerence Ap vanishes as ~' . In this
case we find D (r~0)-r' (see the left part of Fig. 8).

2

On the other hand, if bp is kept fixed artificially, but g
diverges as r ', we find D (r~0)-r-g (see the

right part of Fig. 8). This leads us to the conjecture
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D (r~0) —r + (3.14) -0.75 m*=1.5

Equations (3.12) and (3.14) can be combined to the fol-
lowing scaling form for a2(z, r):

-2
I

0 2 4 6 8

z/

ai(z, r~0)=r + F (z/g) . (3.15)

Figure 9 shows that for m fixed indeed
lim o[r az(z/g, r) j reduces to a limiting function
F (y). Future investigations should reveal whether,

FIG. 9. In the limit ~—+0 and m* fixed the orientational
profile reduces to a scaling form a, (z, r~O) =r' F lz/g) [see

Eq. (3.15)]. Here z is measured in units of the correlation
lengths gl of the bulk liquid phase. The symbols of the various
curves correspond to those used in Figs. 5 —7.
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interface whereas in the region with the lower number
density the dipoles are preferentially orientated orthogo-
nal to it. (Of course there is no net polarization on either
side, i.e., a, —=0 [compare Eq. (4.24) in Ref. [4]]). Qualita-
tively this preference can be understood by considering
two homogeneous half-spaces z )0 and z &0 which are
filled by dielectrics with permittivity e+ and t, respec-
tively [11]. The energy E required to place a dipole m
with a fixed angle 0 between the z axis and m at a dis-
tance z )0 from the sharp interface at z =0 is given by

1.5

0.5

m ~— ~+ 1+cos 9
16 e+(e +@+) z3

(3.16)
k

0 05 1 15 2
At a fixed distance z, E attains its minimum value for
0=0 and ~ if e+ & e and for 0=m/2 if e+ )e . Thus
the preferred orientation of the dipole is either parallel or
antiparallel to the normal of the interface if it is located
in the medium with the smaller permittivity and parallel
to the interface if the dipole is located in the medium
with the larger permittivity. Since the permittivity in-
creases as a function of the number density this observa-
tion is in accordance with the signs of az(z) on both sides
of the interface.

IV. SURFACE TENSION

The knowledge of the profiles of the number density
and of the orientational order enables one to compute the
surface tension y& of the liquid-vapor interface of Stock-
mayer fluids. According to Eqs. (4.34)—(4.37) in Ref. [4]
one obtains three distinct contributions,

y, =y r,'+y', '+
P t' Q(QQQ) j

(4.1)

which are given by the density profile alone, by a purely
entropic contribution 4, and by the deviation from isot-
ropy, where A=(l, l2l) HN, respectively. In the follow-
ing yl*g=y&scr /E denotes the dimensionless total sur-
face tension and

FIG. 10. Dimensionless total surface tension y&*g =y&ger /E
as a function of the dimensionless strength of the dipoles
m *=m u c ' for various reduced temperatures
~=(T, —T)/T, . Note that T, increases as function of rn (see
Fig. 1).

[Note that an increase of m and r=const correspond to
an increase in temperature T=(1—r)T, (m) because
T, (m) increases as function of m (see Fig. 1).] In Fig. 11
we show the dependence on r of the ratio of y&g(m) and
its value y&s(m =0) for the corresponding pure
Lennard-Jones system. We find that this ratio deviates
significantly from 1, but varies only slightly as function of

This means that the dipolar interaction can increase
the absolute value of the surface tension substantially, but
the temperature dependence is still mainly governed by
the equivalent Lennard-Jones system, i.e., one with the
same critical temperature as the Stockmayer fluid. Note
that the ratio shown in Fig. 11 compares either the sur-
face tensions of two systems with the same Lennard-
Jones contribution to the interaction but at different tem-

(4.2)

the so-called anisotropic contribution to the total surface
tension. We want to emphasize that 'y&*g is only due to
the missing isotropy at the interface so that yP'cr /E also
depends on the strength of the dipoles: y'II')WO even for
v=0, i.e., for a Quid with purely dipolar interactions.
The explicit expressions for these three contributions are
given in Appendix C.

A. Total surface tension

3.5

3

25

2

15--

m*=0.0
m*=0.5
m*=1.0
m*=1.5
m*=2.0

Based on the profiles of the number density and of the
orientational order the formulas in Appendix C lead to
the temperature and m dependence of the total surface
tension as shown in Fig. 10. For small dipole moments
the surface tension increases only slightly as a function of
m whereas for m * & 1 this increase is much stronger. For
m*«0. 5, yI is roughly proportional to m . The sur-
face tension increases for temperatures further apart
from T, (m ) stronger as a function of m than closer to T, .

0.1 0.2 0.3

FICi. 11. The ratio of y*[m*,T=(1 r)T, (m *)] and—
y*[m*=0,T=(1—w)T, (0)] as a function of r for various
values of m *. Although this ratio divers significantly from 1, it
varies only slightly as a function of ~.
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FIG. 12. Temperature dependence of the total surface ten-
sion for various strengths of the dipoles. According to the inset

y&~ vanishes -~' for ~~0 (dashed line).

FIG. 13. Dependence of the dimensionless anisotropic con-
tribution to the surface tension on the dimensionless strength of
the dipole moments for four different reduced temperatures.
The inset shows that 'y&~(m~O, v. ) —m' (dashed line). One
should compare Fig. 10.

peratures, y*[m ",T=(1 r)T, (m—*)]/y*[m *=0,T=(1
—r)T, (0)], or two systems at the same temperature T
but with difFerent Lennard-Jones contributions such that
T, (m, e, ) = T, (O, Ez). In Ref. [4] we showed that the bulk
properties of a Stockmayer ffuid follow (within our model
exactly) from an eff'ective temperature-dependent and iso-
tropic potential (see Sec. III A in Ref. [4]), which at large
distances behaves like a Lennard-Jones potential. Figure
11 suggests that approximately the temperature depen-
dence of the surface tension of a Stockmayer ffuid is that
of an equivalent pure Lennard-Jones system.

In d spatial dimensions the surface tension vanishes as
for ~~0. Mean-field theory corresponds to d =4

and v= —,
' so that y& (r~0)=yor (1+ . ). Figure

12 is in accordance with this power law. The inset of Fig.
12 shows that the correction terms to the leading
behavior are very small even far away from T, (m). The
amplitude yo increases as function of m.

B. Anisotropic contribution to the surface tension

'yt s(m —+O, r)-m (4.3)

The comparison with Fig. 10 shows that 'yt~(m) van-
ishes much more rapidly for m ~0 than y&z(m) —y(0).
The same is true for the dependence of 'y& on the re-
duced temperature ~, which is shown in Fig. .4 for vari-

0

-0.005

-0.01

and of their profile through the interface, but not due to
preferential orientations at the interface. The absolute
value of the anisotropic contribution to the surface ten-
sion is largest at low temperatures. As shown by the in-
set in Fig. 13 we find

According to Eq. (4.2) and Appendix C the anisotropic
contribution 'yI to the total surface tension describes all
those terms of the total surface tension which vanish if
the explicit dependence on az(z) is neglected. (Note that
this is not equivalent to the limit m~0. ) Figure 13
displays the dependence of 'yt* ='yt o. /E on the
strength of the dipoles for four reduced temperatures.
We find that 'y& is negative. However, its absolute
value is drastically smaller than the total surface tension:
~'ytz~/yts ———,'o, —,'o, and, ~ for &=0.2, 0.15, and 0.1,
respectively (see Fig. 10). This means that the main
inAuence of an additional dipolar interaction potential on
the surface tension is due to the change of the bulk phase
diagram, of the number densities of the coexisting phases,

-0.015

-0.02
0 0.1 0.2 0.3

FIG-. 14. Dependence of the dimensionless anisotropic con-
tribution to the surface tension on the reduced temperature ~
for four different strengths of the dipole moments. As indicated
by the dashed straight line in the inset one finds
'y& g C,

'~~0)-~' . One should compare these data with those in
Fig. 12.
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-12

mation schemes have been applied for difFerent interac-
tion potentials, a coherent picture has hardly emerged
with which we could compare our results. Therefore our
comparisons with the literature are mostly limited to be
qualitative ones. Since the virtues and drawbacks of pre-
vious analytical and numerical methods as compared to
our approach have been discussed in detail in Sec. II A
and Sec. VI of Ref. [4], we confine the following discus-
sion to explicit numerical results.

-12
-5 -4 -3 -2

~ ~ ~ ~

I ~ I ~
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In x

-14

FIG. 15. Vanishing of the anisotropic contribution to the
surface tension in the limit ~~0 if g is kept fixed artificially and
bp-i'~ (left part) or if hp is kept fixed artificially and g
diverges —~ ' (right part). In the first case one finds
'y&g(~~0)-~ whereas in the second case 'y&~(~~0)-~'
The dashed lines indicate the slopes 1 and —', respectively.

ous dipole moments. We find 'y& (&~0)—w
~ com-I,g

pared with y& (i.~0)-~ ~ (see Fig. 12). These power
laws ensure that y&g remains positive although 'y&~ is
negative. One should note that the temperature depen-
dence of 'y& is enhanced significantly by strong dipole
moments.

In order to interpret this power law of 'y& g(7~0) we
have proceeded as in Sec. III B, leading to Eq. (3.14).
There we have produced profiles of both the number den-
sity and the orientational order either for bp(~~0)-~'~
under the constraint (=const or for g(~~0)-v ' un-
der the constraint a=const. In the first case the corre-
sponding anisotropic contribution to the surface tension
vanishes proportional to ~ whereas in the second case it
vanishes -r ~ (see Fig. 15). This leads us to the conjec-
ture

a
( 0) PP+(d —i )v

yl, g

compared with y &
(~~0)-i'"

(4 4)

V. DISCUSSION

In this section we discuss our results by comparing
them with those obtained in the literature previously. As
already emphasized in the Introduction the status of the
bulk properties of Stockmayer fluids has been analyzed in
detail in Ref. [4]. Therefore in the following we focus on
the structural and thermal properties of their liquid-
vapor interface.

Due to the complexity of this problem there are only
few numerical results available [12]. They indicate that
the interfacial properties of molecular liquids depend sen-
sitively on both the details of the intermolecular interac-
tion potential and on the various applied approximation
schemes for solving the corresponding statistical mechan-
ics problem. Since in previous studies difFerent approxi-

A. Density and orientational profiles

By applying the so-called "f expansion" (see Sec. II A
in Ref. [4]) to the Stockmayer model Gubbins and
Thompson [13] have computed p&(z) =a&(z)p(z) for 1 =0,
2, 4, 6, 8 at a fixed temperature T'=1.3 and for m*=1,
1.5, arid 2.0. (The authors doubt that their technique is
reliable for m*~2.) For m*=1.5 their resulting orienta-
tional profile a2(z) agrees qualitatively with ours present-
ed in Figs. 3 and 7. Surprisingly, however, Gubbins and
Thompson find that for the smaller value m*=1.0 the
functions pz(z) and, due to p(z) )0, therefore also az(z)
exhibit three zeros: one at z =0 and two on the liquid side
of the interface at z/a = —l. 5 and —2.1, respectively, so
that a2(z) turns positive between the latter ones (see Fig.
4 in Ref. [13]). This is in qualitative disagreement with
our findings according to which for all m and ~, az(z)
turns negative below z =0 and approaches 0 monotoni-
cally from below for z ~—~ after passing its minimum
on the liquid side. [We would like to add that in many
publications a precise definition of the position z=0 is
missing. Throughout the present paper z=O is defined
by p(z=0)=(p&+p~)/2 (see Sec. III A).] On the other
hand, results obtained by a different perturbation expan-
sion in the frame-work of the density-functional theory
[14] are again in qualitative agreement with our present
result. However, these authors consider systems
governed by the sum of dispersion, overlap, quadrupole-
quadrupole, dipole-dipole, dipole-quadrupole, and isotro-
pic forces. Since their first-order perturbation theory
does not predict any orientational order at the interface
for, e.g. , pure dipole-dipole interactions, their results can-
not be compared with ours. Furthermore, these authors
confine their analysis to a small subspace of allowed dis-
tribution functions (see also below).

Eggebrecht, Gubbins and Thompson [15] have extend-
ed the f expansion technique for a Stockmayer fiuid men-
tioned above [13] to a wider range of temperatures and
dipole moments and in addition they applied an Yvon-
Born-Green (YBG) type of integral equation for describ-
ing the liquid-vapor interface. Their f expansion
yields lower values for T„(m *,T,*)=(0, 1.26),(0.5, 1.29),
(1, 1.41),(1.5, 1.73),(2, 2.26), as compared to our approach
[4] which leads to (m *,T,* ) =(0, 1.343),(0.5, 1.352),
(1, 1.472), (1.5, 1.862), (2, 2.560). In order to enable a
reasonable quantitative comparison in the following we
consider always reduced temperatures ~= 1 —T/T, .
The overall features of the number density profiles
are similar to those shown in Figs. 2 and 5. However,
there are important differences. First, Eggebrecht,
Gubbins, and Thompson [15] consider only density
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profiles of the form of the hyperbolic tangent, i.e.,
p(z) =(p~e '+ps)(e '+ 1) ', where a is the only
remaining free variational parameter. Figure 6 shows
that away from T, this represents only a poor approxima-
tion to the actual shape of the profile. Inter alia the hy-
perbolic tangent ansatz misses the van der Waals tails of
the density profile (see, e.g. , Ref. [7]). Furthermore, this
ansatz means that the shape of the profile is the same for
all temperatures and dipole moments. If one takes the
numerical data in Fig. 9 of Ref. [15] for their width
D =4/a and evaluates them at a fixed reduced tempera-
ture ~=0.2478 one obtains the following results for the
four dipole strengths considered:
(m*,D/cr)=(0, 2.55),(1,2.3),(1.5, 2.3),(2,3.0). Thus their
results imply that, for ~ fixed, an increase of the dipole
strength first leads to a sharpening of the density profiles,
to a minimum value of the thickness at m*=1.25, and
finally to a broadening for even larger values of m '. This
behavior must be contrasted with our results in Fig. 2
from which one can infer that for a fixed value of ~ the
density profiles monotonically sharpen upon an increase
of the dipole strengths. According to Figs. 12—14 in Ref.
[15] the orientational profiles az(z) for
(m*, T*)=(1,0.75), (1.5, 1.0), and (2, 1.5) as obtained by
the f-expansion technique are in qualitative agreement
with those shown in our Figs. 3 and 7. A fortiori it is
surprising that according to Refs. [13]and [15] within the
same technique only the system with m*=1.0 at the
temperature T*= 1.3 exhibits a qualitatively different
behavior (see above and Fig. 4 in Ref. [13]). The predic-
tions for az(z) of the angular YBG equation [15] are at
variance both with those of the f expansion and ours.
They yield always a positive maximum of az(z) on the
liquid side at z/o = —1.5 and either two or even three
zeros. For (m *,T* ) = (1.0,0.75) and (2.0, 1.5),
az(z~ —~ ) approaches zero from above in contrast to
our findings az(z (0) (0.

In a second paper the same authors have published
molecular-dynamics data for the liquid-vapor interface of
Stockmayer fiuids [16]. These simulations provided the
profiles p(z) and pz(z) for (m, T*)=(1,1.01) and
(2, 1.52). Since in this work T,* has not been determined,
the above two values of T' cannot be expressed reliably
in terms of r. Whereas the number density profiles p(z)
are smooth and in qualitative agreement with our results,
the function pz(z) for (m *,T* ) = (2, 1.52) [for the other
system pz(z) was not detectable due to the smallness of
the effect [16]]exhibits many rapid changes within the in-
vestigated interval —4o. &z & 3o.. Since for these data no
error bars are given, it is unclear to which extent these
rapid changes are due to numerical noise or due to real
intrinsic structures of the profile. The main feature of the
simulated data for pz(z) is that it is negative for
~z/cr

~

(2. For z ( —2cr, pz(z) seems to oscillate around
zero with a preference for negative values whereas for
z ~2o. it is practically zero. The expected positive max-
imum on the vapor side does not show up. In view of the
long range of the intermolecular potential and the small-
ness of az(z) further simulation data with an increased
size of the simulation cell (Ref. [16],20 X 18 cr ) and with

a large number of particles (Ref. [16], 144) would be high-
ly welcome.

More recently Teixeira and Telo da Gama [17] em-
ployed a density-functional theory for Stockmayer fluids
which they compared with the simulation results in Ref.
[16]. Their approach is similar to ours but differs in two
respects: (i) In Eq. (2.6) Teixeira and Telo da Gama ex-

~ expand the exponential e " and they keep only the term
quadratic in to,„(the term linear in to,„gives 0). (ii) For
the isotropic part of the interaction potential Teixeira
and Telo da Gama do not use a Lennard-Jones potential
[Eq. (2.3)] but a potential which is infinitely repulsive for
r(o and equals 4E(—o/r) for r)o.. Note that the
depth of this potential is 4c instead of c as for a full
Lennard- Jones potential. Nevertheless Teixeira and Telo
da Gama use m*=(m /o c, )' as the reduced strength
of the dipole moment and the reliability of their truncat-
ed expansion depends on the value of this quantity.
While (ii) represents only a quantitative but no conceptu-
al difference to our approach, (i) amounts to a much more
relevant difference. The aforementioned expansion of the
exponential is equivalent to a perturbation theory in
powers of the dipole strength truncated after the lowest
nontrivial term. This truncation limits the applicability
of that approach to small values of m *. In a later exten-
sion of their work to experimentally relevant binary
liquid mixtures [18] (CH~I+ CC1~ and CH&CN+ CC1~)
the authors realized that the experimental value m =4.7
D (1D=1 Debye=10 ' erg' cm ) for CH~CN is too
large in order to be treated by their truncated expansion;
together with o.=4.499 A and —depending on their two
choices as a model parameter (see Table IV in Ref.
[18])—E =3.04 X 10 ' or 5.92 X 10 ' erg this corre-
sponds to m*=2. 83 or 2.02, respectively. (Instead the
authors decided to model CH&CN by m =2.41 D,
o. =4.499 A, and a=3.04X 10 ' erg leading to
m*=1.45, which is still rather large. ) The situation is
more favorable for the truncated expansion in the case of
CH&I, which corresponds to m *=0.69 or 0.93 for
m = 1.62 D, o. =4.499 A, and c.=6.05 X 10 ' or
3.32 X 10 ' erg, respectively (see Table IV in Ref. [18]).
In order to pinpoint the relevance of the truncation ap-
proximation in Refs. [17] and [18] without having the ad-
ditional disturbing influence of using different interaction
potentials [see (ii) above] we have repeated our approach
for the model potential used in Refs. [17] and [18]. We
have found that the truncated version underestimates the
value of T, by 10%%uo in the absence of dipolar interactions;
this discrepancy increases to 18% for m =2. A detailed
comparison between the two approaches is given in Ap-
pendix A of Ref. [4]. Putting aside these quantitative
differences the profiles of the number density and of the
orientational order as obtained in Ref. [17] agree qualita-
tively with those given in Figs. 2, 3, 5, and 7. In addition,
our present study goes beyond those in Refs. [17] and [18]
as far as the systematic analysis of the dependences of the
profiles on m and ~ are concerned which lead to power
laws and scaling properties.

Yang et al. [9,19] used the same kind of perturbation
theory for the density functional as Teixeira and Telo da
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Gama in order to study carefully the water liquid-vapor
interface. Their approach differs from Ref. [17] in that
the contribution to the density functional, which is quad-
ratic in the anisotropic interaction, contains one addi-
tional term. Therefore also the approach by Yang et al.
contains no terms in the density functional which are of
higher order in the dipole strength but quadratic. Hence
one must assume that their conclusions are also only reli-
able for small values of m'I+T* (see below). As far as
the isotropic part of the interaction potential is con-
cerned Yang et al. use the same potential as Teixeira and
Telo da Gama (see above), which differs from the
Lennard-Jones potential which we use. In their effort to
describe water Yang et aI. include not only the dipole-
dipole interaction, but, in addition, dipole-quadrupole
and quadrupole-quadrupole interactions. This inclusion
reduces the symmetry of the Hamiltonian and allows the
authors to address the question, which part of the HzO
molecule at the interface points preferentially towards,
e.g. , the vapor phase. For a Stockmayer potential both
directions have the same statistical weight. The isotropic
and dipole part of the interactions are modeled by
m =2. 1733 D [9] and m =2. 1773 D [19], respectively,
E=1.0777X10' erg, and cr =2.95 A [9,19]. This corre-
sponds to m*=4. 14. In view of our above discussion
this is an extremely large value of the reduced dipole
strength for which we would expect the higher-order
terms to be important. [Along the liquid-vapor coex-
istence line the temperature varies between T, =273 K
and T, =605 K, which corresponds to T,*=3.50 and
T,*=7.75, respectively, so that m *I+T' (see below)
varies between 1.50 at T, and 2.2 at the triple point T, .
In both cases m*l+T* is larger than 1 so that higher-
order terms are important (see Sec. V C).] Therefore the
comparison with experiments in Ref. [19] should be re-
garded with caution. Again, qualitatively the profiles of
the number density and of the orientational order agree
with those presented in Figs. 2, 3, 5 and 7.

At the end of this subsection we would like to mention
that both p(z) and a2(z) approach their bulk values
—

~z~ . Badiali and co-workers [20—23] were able to
derive rigorous expressions for the prefactors of these
tails in p(z) which are expressed in terms of the dielectric
constant of the bulk phases. Similar results have also
been derived by Lebovka, Ovcharenko, and Mank [24].
We leave it to a future study to compare these predictions
with our model calculations.

B. Surface tension

As an excess quantity the surface tension is experimen-
tally more easily accessible than local quantities such as
the profiles of the number density or the orientational or-
der. Therefore the question how the molecular structure
of the interacting particles inAuences the surface tension
has attracted considerable interest for many years [12].
In particular one would like to know how the surface ten-
sion changes if the anisotropic dipole-dipole interaction is
added to an isotropic Lennard-Jones potential. Within
the Fowler approximation, i.e., by assuming
p(z) =p&6( —z) and az(z) =0, Gray and Gubbins [25] and

Haile, Gray, and Gubbins [26] found that at T*=1.273,
y increases by about 110%%uo for m*=1.5. This is in fair
agreement with our findings which in this case predict an
increase between 100% and 125% depending on the tem-
perature. [In Refs. [25] and [26] the value of T,* is not
given so that a quantitative comparison of the absolute
values for y is difficult. For our model
T,*(m =0)=1.343 (see Ref. [4]) so that T"=1.273 would
correspond to ~=0.05, which is very small for the
Fowler approximation. In this case we get
y*(m'=0)=0. 05 compared with y'=0. 45 in the
Fowler approximation of Refs. [25] and [26].]

Eggebrecht, Gubbins, and Thompson [15] have calcu-
lated the liquid-vapor surface tension of a Stockmayer
fluid beyond the Fowler approximation. (In fact, these
authors neglected what we call the anisotropic contribu-
tion to the surface tension; according to Sec. IV B the re-
sulting error is indeed small. ) If one translates the results
of Fig. 15 in Ref. [15] in our language, one finds the fol-
lowing dependence of y* on m*: for ~=0.3 one has
(m", y )=(1.0,0.65),(1.5,0.75),(2.0,0.62), and for v=0. 2
one has (m*,y*)=(1.5, 0.35), (2.0, 0.3). Thus Egge-
brecht, Gubbins, and Thompson find that for a fixed
value of the reduced temperature ~ the surface tension
does not vary monotonically as function of m*; for
~=0.3 y* reaches a maximum at around m *= 1.5
whereas it decreases for ~=0.2 as function of m*. This
is a qualitative difference to the behavior we find in Fig.
10, which states that for any ~, y* is a monotonically in-
creasing function of m *. As far as the absolute values
are concerned we obtain larger values for y*:
(~, m*, y*)=(0.3, 1.0, 1.17), (0.3,1.5,2.0), (0.2, 1.5, 1.0),
(0.2,2.0,1.72). In a molecular-dynamics simulation for a
Stockmayer quid Eggebrecht, Thompson, and Gubbins
[16] found y*(T =1.01,m*=1.0)=0.551 whereas our
corresponding results is y (v=0.28,m = 1 ) = 1.05.
This difference calls for two remarks. First, Eggebrecht,
Thompson, and Gubbins finds for this system as coexist-
ing bulk densities pI* =0.702 and p* =0.0023, which
differ from the corresponding values pI* =0.75 and

p =0. 1 obtained by Monte Carlo methods for the same
system by Smit et al. [27]. Second, as shown in Fig. 6 of
Ref. [4] T*=1 is such a low temperature that there our
density-functional theory starts to deteriorate yielding a
too high density of p&*=0.88. Thus both in the simula-
tions and in the density-functional theory the bulk prop-
erties of this thermodynamic state suffer from significant
uncertainties so that the corresponding surface tension
y* of this state carries a large error bar.

The surface tensions calculated by Teixeira and Telo de
Gama [17] are in qualitative agreement with our results.
A quantitative comparison is, however, only of limited
use since, as described above, Teixeira and Telo da Gama
use a different pair potential as we do. Generally speak-
ing one finds that our surface tensions are larger,
e.g. , y*(T*=2,m*=1.5)=0.21 according to Ref. [17]
whereas in our case the corresponding value is
y*(&=0.l,m *= 1.5)=0.34.

The above discussion shows that up to now absolute
values for the surface tension of dipolar liquids suffer
from considerable uncertainties. Experimental results are
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also of limited value in gauging the accuracy of the vari-
ous theoretical approaches: first, it is difFicult to assign re-
liable potential parameters o., c, and m to a given system;
second, higher multipole moments contribute also to y;
and third, many-body forces have to be taken into ac-
count. For that reason Fig. 16 compares various results
for the surface tension of a Lennard-Jones liquid with
those of argon and xenon. DFT 1 denotes a simplified
version of our density-functional approach which differs
from it only insofar that the pair distribution function
g' ' equals 1 (see, e.g. , Ref. [28]). DFT 2 is the density-
functional theory used in this paper. Ebner, Saam, and
Stroud et al. [29] used the pair distribution function ob-
tained from the Percus- Yevick theory (DFT 3). PT
denotes the perturbation theory of Toxvaerd [30]. SIM 1

and SIM 2 correspond to Monte Carlo simulations by Liu
[31] and to Monte Carlo and molecular-dynamics calcu-
lations by Salomons and Mareschal [32], respectively.
These theoretical results are compared with experimental
results (EXPT) for argon [33] with Elk& =119.8 K and
o =3.405 A as well as for xenon [34] with Elks =229 K
and o =4.055 A; in reduced units y& s =yo /E as a func-
tion of T/T, the experimental data are —in accordance
with the principle of corresponding states —very close
(see Fig. 3 in Ref. [31]). Since the theoretical results lead
to different values for T, we have plotted yi* as a func-
tion of ~= 1 —T/T, in order to suppress these
differences. Note that this way of plotting the surface
tension has a drawback for theories which predict inaccu-
rate critical temperatures as, e.g., density-functional
theories may do. Reducing the data by T, will propagate
this error into the noncritical region where these theories
may actually be more accurate. This can lead to a shift
of these theoretical data compared with the correspond-
ing experimental ones. Nonetheless we adopt this kind of
plot because it yields a convenient common temperature
scale for different theoretical and experimental data. Al-
though we did not try to collect all available theoretical
and experimental data, Fig. 16 already tells that the abso-
lute values for yi* differ significantly for various methods
and with respect to the experimental data. These
differences are larger for low temperatures. The density-
functional theory used in this paper (DFT 2) has a ten-
dency to overestimate the surface tension; this is in accor-
dance with our previous observations for m *%0 (see
above). The performance of the crude density-functional
approach DFT 1 is surprisingly good. Nonetheless, one
should keep in mind that all displayed results from ana-
lytic theories predict a wrong power law y& s(r~0)-r'
instead of ~' . We conclude by stating that the
confidence level for the values of the surface tension of
Stockmayer Quids is at most as "good" as that for the
case m =0 shown in Fig. 16.

C. Principle of corresponding states

The grand canonical potential 0 of a Stockmayer Quid
at liquid-vapor coexistence within a volume V and with
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an interface area A depends on V, 3, T, c, o., and m. In
general it has the following form:

0= v ~*(r*,m*)+ A y*(T*,m*) . (5.1)

Thus the thermodynamic properties of the bulk and the
interface, respectively, for all Stockmayer Quids are deter-
mined by the dimensionless functions m* and y'
of the two dimensionless variables T*=k~ T/c and
m*=ml(o E)' This im. plies that various Lennard-
Jones Quids, i.e., m*=0, can be described by a single
function co (tTJ*)=co"(T",m *=0) of one argument.
Traditionally this has been called the principle of corre-
sponding states (see, e.g. , Ref. [35]). In this sense the ad-
ditional dependence on m ' for dipolar Quids represents a
deviation from the principle of corresponding states
[35]. However, in the bulk and at high temperatures
these deviations approximately can be expressed in
terms of mLJ(T*) after replacing E and o by effective,
temperature-dependent quantities c,, and o, For small
m * the Stockmayer Quid can be described by an effective
pair potential [see Ref. [35] and Eqs. (3.12) and (3.13) in
Ref. [4]]:

FIG. 16. Comparison of the reduced surface tension
yl*~=yl go /c as obtained by various theoretical methods for
Lennard-Jones Auids with experimental data (EXPT) for argon
(c/k& =119.8 K, o =3.405 A) an xenon (c,/k' =.229 K,

0
o.=4.055 A), which practically coincide as a function of
~=1—T/T, . DFT 1 corresponds to a density-functional theory
based on g' '=1 (see the main text), DFT 2 is the density-
functional theory used in this paper for m *=0, and DFT 3 the
one employed by Ebner, Saam, and Stroud [29]. PT denotes the
perturbation theory of Toxvaerd [30]. The simulation data stem
from Liu [31] (SIM 1) and Salomons and Mareschal [32] (SIM
2). The experimental data are taken from Refs. [33]and [34].
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with
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and for T,*=k~ T/c. ,
' =1-

T )}c 6

4
m

T'2 7T*
48

+
1800

8

+O(m"' ) .
T*

(5.5)

0/V= co*(T*,m *)
~3

* (T,*)+0( *'2)
ae

(5.6)

Note that Cook and Rowlinson [35] have called this gen-
eralized form a deviation from the principle of corre-
sponding states (as compared with Lennard-Jones
liquids). However, we would like to reserve the expres-
sion of deviation from the principle of corresponding
states to strongly dipolar liquids for which the higher-
order terms in Eqs. (5.2) —(5.6) become important. In
those cases the effective isotropic interaction of a Stock-
mayer Quid has no longer the form of an effective
Lennard-Jones potential so that a mapping onto a corre-
sponding effective Lennard-Jones Auid is no longer possi-
ble.

Whereas our approach keeps terms of all orders

This implies that for small m */')/ T* the grand-
canonical potential of a Stockmayer Quid at liquid-gas
coexistence can be expressed in terms of the correspond-
ing function of pure Lennard-Jones Auids:

in m, the analyses of both Teixeira and Telo da Gama
[17] and Yang et al. [9,19] keep only —albeit dif-
ferent —terms proportional to m * . Both groups of
authors use as the isotropic part of their pair po-
tential w(r) = —4 eE(r —o )(o'/r) with a temperature-
independent hard-core diameter o.. Therefore their cor-
responding effective interaction has the identical form as
w (r) with the only difference that c, is replaced by E, .
Consequently, within their model all bulk properties of
various Stockmayer Auids can be mapped onto those of a
corresponding pure Lennard-Jones Quid by simply rescal-
ing the temperature; the latter can be accomplished by in-
troducing the reduced temperature ~= 1 —T/T, . The in-
clusion of higher-order terms spoils this property. We
test their relevance for the water model studied by Yang
et al. [9,19]. With o =2.95 A, v=1.0777X10 ' erg,
m =2. 1773X 10 ' &dyn cm, T, =604.97 K, and
T, =273. 15 K one finds at T„E,/e= 1+6.31+9.24,
o, /o =1—0.53+1.09, and T, /T*= 1 —6.31+30.61
whereas at T, one has c, /c = 1+13.99+41.11,
cr, /o =1—1.17+6.06, and T,*/T*= 1 —13.99+154.64;
the order of the various terms corresponds to the one in
Eqs. (5.3)—(5.5). Although Yang et al. used different and
probably more accurate first-order terms, we take the
above numbers as indications that for a quantitative
description of the water interface the inhuence of the
higher-order terms can be important.

The construction of an effective isotropic pair potential
for Stockmayer Auids requires a homogeneous and isotro-
pic liquid. Therefore one cannot expect that the above
principle of corresponding states can be generalized to in-
terfacial properties: e.g. , such a potential would not lead
to an orientational profile. Nonetheless Teixeira and Telo
da Gama [17] observed that within their approach the
surface tension y &* as a function of r = 1 —T/T, ( m ) is
nearly independent of m, which would indicate a princi-
ple of corresponding states even for the surface tension
and not only for the bulk. However, Fig. 12 shows that
this is only the case for small m* and at high tempera-
tures. In general we could not find a principle of corre-
sponding states for interfacial properties. However, an
indication for a different kind of correspondence princi-
ple is provided by Fig. 11.

VI. SUMMARY

Based on the density-functional theory developed in
Ref. [4], which implemented a technique put forward by
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Blum and Torruella [36], we have obtained the following
main results concerning the thermal and structural prop-
erties of the intrinsic liquid-vapor interface of a Stock-
mayer fluid consisting of particles with Lennard-Jones
and dipolar interactions.

(i) For small dipole moments m the value of T, in-
creases proportional to m [Eq. (3.1) and Fig. 1].

(ii) Figures 2 and 3 show the dependence of the density
profile p(z) and of the profile of the orientational order
a2(z), respectively, on the dipole strength; the latter is
proportional to m [Eq. (3.2) and Fig. 4].

(iii) Figures 5 and 6 document the temperature depen-
dence of p(z) and its scaling behavior [Eq. (3.6)].

(iv) For v = 1 —T/T, ~0 the width of the orientational
profile diverges -r [Eq. (3.12)] whereas the degree of
the orientational order vanishes -r + ' [Eq. (3.14)]; see
Figs. 7 and 8.

{v) For r~0, a2{z) also attains a scaling form [Eq.
(3.15) and Fig. 9]. The main qualitative feature of az(z)
has a simple physical interpretation [Eq. (3.16)].

(vi) The dependence of the total surface tension y& on
the strength of the dipoles and on temperature is shown
in Figs. 10 and 12; for small dipole moments there is an
approximate correspondence principle (Fig. 11).

(vii) Whereas the total surface tension vanishes as
y& s(&~0)—r'" " (Fig. 12), the anisotropic contribu-
tion to the surface tension vanishes -r ~ ' " [Eq.
(4.4) and Figs. 14 and 15)] and —m [Eq. (4.3) and Fig.
13]. The anisotropic contribution is negative, but much
smaller than y I

(viii) Section V contains a detailed discussion of our re-
sults for the density and orientational profiles (Sec. V A)
as well as for the surface tension (Sec. V B) and compares
them critically with previous results in the literature.
There are experimental systems with strong dipole mo-
ments for which our approach is quantitatively well suit-
ed because it is not a truncated perturbation theory in
powers of m .

(ix) The principle of corresponding states for dipolar
systems is discussed in Sec. V C.
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APPENDIX A: ANALYTIC STRUCTURE
OF THE EULER-LAGRANGE EQUATIONS

The Euler-Lagrange equations given in Eqs. (2.15) and
(2.16) lead to the equilibrium distributions p(z) and az(z).
Up to the temperature-dependent hard-sphere diameter
[Eq. (2.10)] the function pHs(z) is known analytically [see
Eq. (2.9)]. The value po(T) of the chemical potential at
liquid-vapor coexistence is determined numerically by
studying the bulk free energy [4]. Thus the only remain-
ing problem consists in deriving explicit expressions for
the coefficients po(z) and pz(z). From Eqs. (4.28) —(4.30),
(B27), and (B48)—(B52) in Ref. [4] we have

pz(z) = f dz'p(z') I —,'w2o2(z' —z)

+a2(z )[w2~o(z z)+w~22(z z)

with

+w224( z)] I (A2)

(2l, +1)(2l+1)
C ( l, l ~1,000)

2+
oo Z

dr)2r)zH(r)z a)f) ) &(r)2)+)
Izl 1 2 "iz

(A3)

The values of the Clebsch-Gordon coefticients
C(lilzl, 000) are given in Sec. IV B of Ref. [4]. The ex-
pansion coefficients of the Mayer functions are

po(z) = f dz'p(z')[ —,'wooo(z' —z)+a2(z')wo2z(z' —z)]

(A 1)

fooo(r)2)=(4m. ) —1+e ' ' f dx io[Zh (x)] (A4)

pIULJ(~» ) & 9x + 12x —1
fo22(")2) =f2o2("i2) =2')r&ir e ' " f dx 2 7(Zh (x))1+3x

—f dx io(Zh (x))—3x i, (Zh (x))
0 Zh x (A5)

10~f222{ "i2)=4~
7

1+3x
1/2 —I)~„,i~„)f id

—18x +9x +1 ~(Zh( ))1+3x

(A6)

(A7)
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and

f224(r, z) =10m
70

1/2
~~I.J'l2 )

e

Izzz= dx( —18x +9x +1}(1+3x}"1

I2(k24) = dx(23x4+6xz+3)(1+3xz)k-).1

(A20}

(A21)

1+3x
(A8)

oo Zk

0 (2k+1)! (A9)

The strength m of the dipole moment enters via the di-
mensionless parameter Z =pm lr, z T.he function h (x)
is defined as h (x)=(1+3x )' . The modified spherical
Bessel functions i()(y) and i, (y) and 'T(y) =ip(y)
—(3/y)i, (y) have the following series expansions:

woo(z) =— wooo(z)2'
=2J dr)zr)26(r)2 —o }

lzl

they have been determined for k ~ 15 by using the com-
puter program MATHEMATICA. In the next step Eq.
(A12) is inserted into Eq. (A3), which in turn is used in
Eqs. (Al) and (A2). This leads directly to Eq. (2.18) with
the following expressions for the functions w „(z):

and

QO

(2k)!k=0
2k —1

(2k+ 1)!
(A 10)

woz(z) = ——u pzz(z)

a(k) Z 2ka 000
k=0

(A22)

00
1

(2k+ 1)!
2k

(2k+2)! (2k+3)!
QO pMLJ(f &2 )

dr)zr)26(r)2 cr )e-
lzl

(Al 1)

If these expansions are inserted into Eqs. (A4) —(A8) one
obtains

X g azozP2 Z ",
k=1 ~12

Wzp(Z) = Wzpz(Z)2'

(A23)

k=1
3/2(4~} ~0, I)+)&+)3 (A12)

where Foop =(4n } Fzpz =Fpzz =2rr&77 Fzzp =477&577,
Fzzz =4m(10m/7)'', and Fzz4=10vr(+170)' . The num-
bers a&' I' I are determined by

and

(X) ~ LJ~"l2)
dr)zr)z6(r)2 —o )e

lzl

X y —(k) P z Z2k
I"12

(A24)

k k 3j
(2k+1)! . 0 J 2j+1

1

(2k+1)!

Xg . 3ij 2j+1
4k (k+ 1) (k)
(2k+3))

(k) 4k(k+ 1) (k)
202 (2k+3)) 220

(k) 4k (k+ 1) (k)
222 (2k + 3 ))

222

(k)—
a202 =

(A13)

9
(2k+ 3)(2j+3)

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(k) 4k (k+ 1) (k)
224 (2k +3 )) 224

The numbers I& "I'
I are defined as

I" =I dx(9x +12x —1)(1+3x )"

I(k) —I dx (27x 4 21x2+ 2)( 1+3x 2)k —)

wzz(z) = ——g u 22((z)
1=0,2,4

dr, zr)26(r, z cr)e-
lzl

) 20 (k) z
X g 2cz 22()

— (2 222 P2
k=1 7 ~&2

9 (k) z+
7 &224&4 Z2k (A25)

In practice the sums in Eqs. (A22) —(A25) have been trun-
cated for k ) 15, which causes an error of less than 10
for Z(4. Together with Eqs. (Al) and (A2) one finally
obtains Eq. (2.18).

Equations (A3) and (A22) —(A25) show that the pres-
ence of the Heaviside function in the integrand of Eq.
(A3) leads to a discontinuity of the derivative of w „(z)at
z=o. . This cusplike singularity of the functions w „ is
displayed in Fig. 17. In order to avoid numerical
difhculties induced by this cusp the integration over z' in
Eq. (2.18) is split into three parts: one for
—oo (z' z —o., one for z —a z'+z+o. , and one for
z+ o. (z' ( ~. The accuracy of the integration pro-
cedure has been tested successfully by studying to which
extent the relation
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that Eqs. (2.15) and (2.16) are solved by the bulk solution
p(z)=const and a2(z)—:0. According to Eq. (2.16) this
implies pz(z):—0 in that case and thus f o dz w202(z)=0
[see Eqs. (A2) and (A24)].

Finally we want to mention that the numerical pro-
cedure for solving Eqs. (2.15) and (2.16) can be facilitated
since the explicit integral displayed in these two equa-
tions can be expressed in terms of the error function
erf(x) = (2/&rr) f"dt e ' and Dawson's integral
F(x)=e " fodr e' [37]:

z/a

1-
pHs(z) =po( T) +—[Po(z) —

—,'P2(z) + ln e (z) ) (A27)

FIG. 17. The functions w „defined by Eqs. (A22) —(A25) in
units of cr for T*=k sT/ =E1.3 and m "=m /+Ecr = 1.5.
These functions have a cusplike singularity at z =o.. Note that

f dz wzo(z} =0 [see Eq. (A26)].

f dz wzo(z) =0 (A26)

is fulfilled. Equation (A26) follows from the observation

a2(z) =— — —f (z) —1
5 }
4 p2(z)

where

(A28)

6Ip, (z) )

'
j. /2

erf[+ —,
' ~P2(z) ~ ], P2(z) & 0

e(z) = 1, P2(z) =0
1/2

e ' F(Q —,'P2(z)), Pz(z) &0
3p2(z)

(A29)

and

&6e ' [Qm. /P2(z)/ere+ —,'/P2(z)/]] ', P~(z) &0

f(z)=. —1—,P2(z)~01

p2(z)

—3[+6Pz(z)F(Q —,'P2(z))] ', P2(z)&0.

(A30)

Here we have introduced the dimensionless quantities

P (z)= —Pp (z), m =0,2 . (A31)

APPENDIX B:NUMERICAL SOLUTION
OF THE EULER-LAGRANGE EQUATIONS

Since standard approaches for solving Eqs. (A27) and
(A28) lead either to a poor numerical accuracy or to un-
physical oscillatory structures in a2(z), in the following
we describe our numerical method for obtaining reliable
results for p(z) and az(z).

For the size L. of the system we have chosen

L=60o., i.e., —30~z/o. ~30 and a grid of %=2401
mesh points, i.e., Az =z, + &

—z, =0.025o. . Outside
~z

~

& L /2 we adopt the bulk properties for both p(z) and
a2(z): p(z & L /2) =pi, p(z &—L /2) =ps, and a2( ~z

~

& L/2) =0. Nonetheless, these latter values lead to
asymptotic contributions to the coefficients p (z) [see
Eqs. (2.18) and (A31)],

—L/2p""(z)=carpi dz'w o(z' —z)

+~p J dz'w o(z' —z), (131)I /2

while for ~z~ L/2, Eq. (2.18) is applied with the z' in-
tegration confined to

~
z

~

& L /2.
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The discretized versions of Eqs. (2.15) and (2.16) have
the form (i,j = 1, . . . , X)

(B2)

a',"+"(z; ) =+( I p'"'(z, ) ], t a,'"'(z, ) ],z; ) .

Here we have already implemented the following itera-
tion procedure: on the right-hand sides of Eqs. (2.15) and
(2.16) initial guesses p' '(z) and aP'(z) are inserted which,
according to these equations, lead to certain expressions
on the left-hand sides which are denoted by pHs[p"'(z)]
and az"(z), respectively. Since pHs(p) is a monotonous
function of p [see Eqs. (2.9) and (2.17)], p"'(z) follows

uniquely from pHs[p"'(z)]. p'"(z) and a'"(z) are now
reinserted into the right-hand side leading to p' '(z)
and az' '(z) etc. We repeated this procedure until
we found ~hp'"'(z)

~

= ~p'"'(z) —p'" "(z)
~

( 10 G and
(ha@"'(z)

(

= (a2"'(z) —a2" "(z)
(

( 10 for each value
z=z;, i Et 1, . . . , IVI.

However, in order to achieve a regular convergence of
the above procedure we had to modify it by using a
method of underrelaxation, which can be applied easily
because both Po(z) and P2(z) are linear in p(z) and a2(z)
[see Eqs. (2.18) and (A31)]. According to that method
the variations hp'"'(z) and ha&"'(z) from one iteration
step to the next are controlled by two relaxation parame-
ters g')"' and g~"'.

P'"'(z)=m. f dz'p'" "(z')[w o(z' —z)+a&" "(z')w z(z' —z)]—L/2

+ f dz'hp'"'(z')[w o(z' —z)+a~&" "(z')w 2(z' —z)]1+1/g)"'

+ dz'p'"'(z')ha&'"'(z')w 2(z' —z) + P""(z) .
1+1/g~"'

(B4)

P~"'( ), m =0, 2, are used on the right-hand side of Eqs. (2.15) and (2.16) in order to obtain p'"+"(z) and az'"+"(z) from
the corresponding left-hand side. The original iteration procedure is recovered for g',"'=gz"'= ~. We decreased g',"'
and gz"' from 100 to 1 with increasing index n of the iteration. With this method we obtained a regular and stable con-
vergence of the iteration which also turned out to be very robust with respect to various choices for the initial guesses.

APPENDIX C: EXPLICIT EXPRESSIONS FOR THE SURFACE TENSION

The surface tension consists of three distinct contributions [see Eq. (4.1)] whose general formulas are given by Eqs.
(4.34)—(4.37) in Ref. [4]. By taking into account that in our present approach the angular dependence of a is truncated
after /=2 [see Eq. (2.13)] these three contributions can be expressed explicitly in terms of the functions w „(z) defined
in Eqs. (A22) —(A25), a~(z), and 5p(z)=p(z) —ps~(z), where psK(z) =pi —hpe(z) with hp=pi —

pg is the sharp-kink
(SK) density profile. (Note that in order to avoid confusion with the hard-core diameter cr, in this paper the surface ten-
sion is denoted by yi s instead of o i s as in Ref. [4].) For y'f ' one finds [see Eq. (4.35) in Ref. [4] and Eq. (A22)]:

)'ig"= »m f '" dz[ f"„f[p(z) T] frer I ps+(z) T]+[wopsK(z) Vo(T)]&p(z)]L~ oo —L/2

1 L L L—mk T —J —+h~ J ——,0'— L L L L+J —~ ——' ——J 0 ——2'2 '2'2 L LJ GO3 2' '2
T

1 2 L L L L L——(hp) J ——,0;—+2J —~, —;—+2 oo, —
2 2' '2 '2'2 '2 (C 1)

with

wo= 2~k@ Tf dy woo(y)
0

L/2 L/2J, —= f dz 5p(z) f dz'5p(z')woo(z —z'),
2 —L/2 —L/2

(C2)

(C3)

b L/2
a, b; —= f dz f dz'5p(z')woo(z —z'),

a 0
(C4)

0
a, b; —= f dz f dz'5p(z')woo(z —z'),

2 a —L/2
(C5)
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b L/2
a, b; —= f dz f dz'wpp(z —z'),

a 0
(C6)

and

—L/2= f dz f dz'w (z —z') .
2 —00 L/2

(C7)

In the limit L ~ ao the asymptotic terms Jz( —Oo, L /2;L—/2), 23(L /2, ao;L /2), J4( —ao, L /2;L—/2), and
J&( ac, L /2) vanish and thus they are redundant in Eq. (Cl). However, since the limit L —+ 00 has to be performed by
extrapolating numerical data obtained from finite system sizes, the particular representation given by Eq. (C 1) has prov-
en to be efficient for that purpose.

For the purely entropic contribution to the surface tension we obtain from Eq. (4.36) in Ref. [4]:

yi '= —lim f dz p(z)[ln[1+2az(z)]+ —,'[ctz(z) —2]+—', [1—az(z)]& a(z)~f+ [~a(z)t (C8)

with

1
a(z) =— —1

3 az(z)
(C9)

and

f+ (y) =arctanhy, ctz(z) )0, (C 10)

f (y) =
—,'ln =arctanhy, az(z) ~ 0 .1++ (Cl 1)

Finally the explicit expression for the anisotropic contribution to the surface tension follows from Eq. (4.37) in Ref. [4]
[see Eqs. (A23) and (A25)]:

yI '=
hark~ T lim —f dz p(z) f dz'p(z")az(z')wpz(z —z')

A [W(000)] L —+ 00 —L/2 —L/2

L/2 L/2+ —,
' f dz p(z)az(z) f dz'p(z')az(z')wzz(z —z')

—L/2 —L/2—L/2 L/2
+pi f dz f dz'p(z')az(z')wpz(z —z')

L/2
+ps f dz f dz'p(z')az(z')wpz(z z )

L/2 —L/2
(C12)

The last two terms in Eq. (C12) arise due to p(z ( L/2) =pi and—p(z )L/2) =p (see Appendix B); they play a role
similar to the asymptotic terms in Eq. (Cl). Equations (Cl), (C8), and (C12) are the basis for the numerical calculation
of the liquid-vapor surface tension.
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