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Ferroelectric phases of dipolar hard spheres

J. J. Weis and D. I.evesque

(Received 13 April 1993)

The phase diagram of strongly dipolar hard spheres in the dense fluid and solid regions is investigated

by Monte Carlo simulations. Main emphasis is given to the analysis of the stability of body-centered-
tetragonal, face-centered-cubic, and body-centered-orthorhombic crystal phases. The existence of fer-
roelectric phases is demonstrated in agreement with the endings of previous simulations for dipolar soft
spheres by Wei and Patey [Phys. Rev. A 46, 7783 (1992)].

PACS number(s): 64.70.Md, 77.80.—e, 82.20.Wt

I. INTRODUCTION

Strong dipolar interactions play an important role in
many physical systems of technological interest including
ferroiluids (stable colloidal dispersions of monodomain
magnetic particles) [1],electrorheological fluids (colloidal
suspensions of highly polarizable particles in a solvent
with low dielectric constant) [2], magnetic holes (colloidal
spheres dispersed in a ferrofluid) [3], etc. Yet the phase
diagram of even the simplest model for describing these
systems, namely, dipolar hard spheres, is still imperfectly
known. Part of this gap has been filled recently through
Monte Carlo (MC) and molecular-dynamics simulations
of both the low-density [4] and high-density [5] regions of
the phase diagrams of strongly interacting dipolar hard
spheres and the closely related system of dipolar soft
spheres [6]. The former were directed towards the search
of a liquid-gas transition, the latter towards an investiga-
tion of the orientationally ordered phases at high density.
Quite interestingly, evidence was obtained for the ex-
istence of ferroelectric ordering in the fIuid and solid
phases. The aim of this paper is to present the results of
detailed MC simulations completing those brieAy report-
ed in Ref. [5]. Most of our MC calculations were per-
formed at the fixed reduced temperature T*=1/p",
where

p*=(p ikTo )' =2.5

(p is the dipole moment, T the temperature, o the hard-
sphere diameter, and k the Boltzmann constant), and
cover the density range p*=po. =0.7—1.2, from the
dense fluid to the solid. A few additional calculations
were made for the higher dipole moment p*=3. As al-
ready remarked in Refs. [5,6], the orientational behavior
of the dipole moments will depend sensitively on the
boundary conditions of the system. . This is a consequence
of the well-known fact that, due to the long range of the
dipolar interaction, the local electric Geld includes contri-
butions from the system's surface. Two boundary condi-
tions have been considered: in one case the system is sur-
rounded by a perfectly conducting medium (i.e., of
infinite dielectric constant e'= ~ ), and in the other by
vacuum (e' = 1). Only in the first case will the system ex-

hibit a net polarization; in the latter case there will be
two or more domains polarized in dift'erent directions so
that the global polarization of the system is zero.

The remainder of the paper is organized as follows: In
Sec. II we give technical details of the Monte Carlo calcu-
lations and define correlation functions which are useful
to characterize the orientational order. The results for
the quid and solid phases are given in Sec. III and are dis-
cussed in Sec. IV.
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where v; is the hard-sphere potential satisfying

(2)

and

F(k)=gk p;e (3)

M =+;p; is the total dipole moment of the system.
In Eq. (1), r; denotes the position of dipole moment p;,

e' the dielectric constant of the medium surrounding a
large sphere of cell replica, and erfc the complementary
error function, and the prime in the sum over

II. MONTE CARLO SIMULATIONS

Most of the simulations were performed in the
isobaric-isothermal (NpT) ensemble and, in a few cases,
in the canonical (NVT) ensemble [7), using a paral-
lelepipedic (NpT) or cubic (NVT) simulation cell repeat-
ed periodically in space, and the long-range dipolar in-
teractions were accounted for using the Ewald method
[7,8]. The Hamiltonian of the system is

H= —
—,
' g u;,

—
—,
' g g'(p; V)(p& V)
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n=(n„, n~, n, ), n„,n~, n, integers, indicates that i' for
n =0. The diagonal matrix

L 0 0

0 L 0

0 0 Lz

N
P = gu, .e—

N
(6)

where e denotes a unit vector in the direction of the in-
stantaneous eigenvector associated with the largest eigen-
value of Q (i.e., the director, in the language of liquid-
crystal theory). Information on structural ordering was
obtained by calculating a number of correlation functions
for the centers of mass of the spheres. Useful to identify
crystal or columnar ordering (provided the crystal or
columnar symmetry axes lie along the axes of the simula-
tion cell) are the functions

has elements equal to the lengths of the edges of the
simulation cell. The volume of the simulation cell is
V=L L L, . A vector k in reciprocal space is of the
form k=2m 'h ' n, where 'h ' denotes the transpose of
the inverse of h. The value of the parameter a was
chosen such that aL;„=5.75, where

L;„=min(L„,L,L, ) .

With this value the sum in the second term of the right-
hand side (rhs) of Eq. (1) can be restricted to the term
n=0. This term was evaluated by summing all interac-
tions inside the simulation box. The sum in reciprocal
space extends over all values of k such that

~ n) ~ n,„=36. The present choice of the parameters
n, „and a guarantees an accurate evaluation of the
dipole-dipole energy [9]. The two diFerent boundary
conditions considered in this work correspond to e'=1
(vacuum) and e'= ao (conducting medium) in Eq. (1), re-
spectively. In the first case the last term in the rhs of Eq.
(1) represents the contribution to the energy from the
depolarizing field due to the surface charges induced on
the spherical boundary; in the second case this term van-
ishes (surface charges are absorbed by the conducting
medium).

In the XpT ensemble, the MC sampling consisted, in
cyclic order, of the displacements of the N hard-sphere
centers and the rotations of the N dipole moments, fol-
lowed by a volume change corresponding to an indepen-
dent scaling of the lengths of the three sides of the simu-
lation cell.

The possible occurrence of an orientational order was
established from the nonvanishing of the order parameter
S [10]defined as the average value of the largest eigenval-
ue of the second-rank tensor:

N
Q= —g —,'(3u;u; —I),

N, .

where u, is a unit vector along the dipole moment. The
polarization of the system is calculated as the average
value of

ru(j6x)u, (((+j)6x,))
f(iAx )= (i %0),

mp A hxPy a

where n (x ) is the number of hard spheres having the x
coordinate (x =x,y, or z) of their centers in the interval
(x,x +b,x ), m =L /bx (recall that L is the length
of the simulation cell in the a direction), A&r =L&L
and Ax =0.02o. . For example, in the presence of a crys-
tal structure, the functions f (x), f (y), and f (z) will os-
cillate with periods corresponding to the lattice spacings
of the crystal.

When the system orients in a preferred direction, the
spatial arrangement can be further analyzed by consider-
ing the longitudinal correlation function g~I defined as
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where r,"=r,"/~r;. ~. In an orientationally isotropic sys-
tem these correlation functions can be identified as the
projections of the pair distribution function g (12) on ro-
tational invariants [11]. In the nematic phase these func-
tions give only an indication of the spatial extension of
the dipolar correlations. In particular, we can note that,
as r~ao [6],

h 110(r) 3~2

(p) 5S

(10a)

(lob)

In the NpT calculations the pressure is an input value. In
the NVT calculations it is most easily obtained from the

(8)
Xp*m (cr /2)

where r~ ]]=~rj. .e~ and r~ 1= ~r. i
—(rj e)e~ are com-

ponents of the interparticle vector r," parallel and perpen-
dicular to the director e. From definition (8) it is ap-
parent that

g~~
involves only particles inside a cylindrical

volume of radius cr/2 and axis parallel to the director.
(Note that this definition diff'ers from that of Ref. [6] in
which all particles of the system are involved. ) It is clear
that

g~~
will be particularly valuable to identify chain for-

mation along the direction of alignment of the dipole mo-
ments. Finally, we calculated the correlation functions
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virial theorem and can be expressed as the sum of a
hard-core term and the dipole-dipole energy according to
the equation

Pvir +HC dU

pkT pkT XkT

In our simulations the hard-core contribution to the pres-
sure was calculated by the method of Perram and
Wertheim [12] (devised for ellipsoids but applying trivial-
ly in the case of hard spheres). In the NpT calculations
comparison between the virial and external pressures has
served as a test of the convergence of the results.

III. RESULTS

It will be convenient to present results obtained for the
two boundary conditions separately. We first consider
the case where the system is surrounded by a conducting
medium; in Sec. III B we will show how these results are
modified when the surrounding medium is replaced by
vacuum.

A. e'= 00

In the fluid region, a series of calculations has been car-
ried out at constant densities p* =0.7, 0.8, 0.86, and 0.9,
arranging the particles (N= 500) initially on a perfect fcc
lattice with random orientations of the dipole moments.
In all cases the crystal structure melted rapidly (vanish-

i k.r,.
ing of the translational order parameter pj, =g,.e

where k is the smallest vector in reciprocal space) and a
preferred orientation of the molecules, indicated by a
nonzero value of the order parameter S, developed slow-

ly, typically within a "time" span of about 40000 to
50000 trial moves per particle. After such a period, the
system was assumed to be equilibrated and thermo-
dynamic and structural data were collected for another
period of 40000—100000 moves per particle. These re-
sults are summarized in Table I. The order parameter in-
creases over the density range p*=0.7—0.9 from 0.08 to
-0.55, its saturation value. More remarkably, the polar-
ization is also found to be nonzero, so that we are in the
presence of a ferroelectric nematic phase (the term
nematic being used to indicate that there is no positional
long-range order). The polarization increases sharply,
reaching saturation (P -0.80) at p* =0.85. These results
are in excellent agreement with the soft-sphere results of
Wei and Patey [6].

The reduced pressure p*=po /e is shown in Fig. l.
The pressure values result from a compensation between
a large hard-core contribution pHc and a large negative
energy value [cf. Table I and Eq. (11)]. Fluid states with
density higher than 0.9 could only be obtained by starting
from a bcc lattice (the fcc lattice transformed into a
mechanically stable orthorhombic structure; see below).
This gives some indication that the high-density
ferroelectric-fluid region might in fact be metastable. In
this respect it is worth recalling that pure hard spheres
freeze at the density p*=0.943 and melt at p =1.04
[13].

The pair-correlation-function projections at p*=0.90

are shown in Fig. 2. In regard to these, the following
points can be noticed: h" and h" decay to constant
values at large r, as required for a ferroelectrically or-
dered system [Eq. (10)]. As all dipole moments are
aligned (on average) in the same direction, h" is positive
and its structural information content is similar to that of
the angle-averaged pair distribution function g . The
projection h " presents a negative region with minimum
near r =1.16o., indicating average repulsive interactions
at these distances. Evidence for this feature has also been
given for soft dipolar spheres [6]. It is also present in the
solid phase (see below), but not in the isotropic phase, re-
vealing some similarity of the structural properties of the
nematic phase with those of the solid. All projections
show a small cusp at r =2o., typical of dimer formation.
This structure is likely to be due to partial memory of the
chain formation occurring in the solid phase (see below).
Finally, a snapshot of a dipole configuration at p* =0.84
and p'=3 (projection on the yz plane of the simulation
cell) clearly illustrates (Fig. 3) the ferroelectric behavior
of this fluid state.

Let us now turn to the discussion of the solid-phase re-
sults. To our knowledge, the Inost stable structure of di-
polar hard spheres is not known. Ideally, one would thus
like to apply a simulation method in which the preferred
crystal structure can adapt to the interaction potential.
This is only possible if the basic simulation cell can vary
both in volume and in shape. Although such a method is
available (see Ref. [14] for its original derivation and Ref.
[15] for its extensions to MC simulations), its application
to long-range electrostatic potentials causes practical
problems related to an economical evaluation of the
Ewald potential [the need to recalculate the reciprocal-
space contribution in Eq. (1) for each new cell shape].
For this reason we limited ourselves to an isobaric-
isothermal MC sampling method in which the lengths of
the cell edges are varied (independently in the three direc-
tions) but their directions kept mutually orthogonal.

The stability of two lattice structures, body-centered
tetragonal (bct) and face-centered cubic (fcc), has been in-
vestigated. The former has been suggested by the work
of Wei and Patey [6] as well as by theoretical analysis of
structures in electrorheological (ER) fluids [16—19]; the
latter is believed to be the most stable structure of high-
density hard spheres [20] (although the free-energy
diff'erence between fcc ad hexagonal close-packed struc-
tures is extremely small [21]).

bct lattice

As already indicated, a bct crystal structure is believed
to form in ER fluids when subject to an applied electric
field [16]. ER fiuids are colloidal suspensions of highly
polarizable particles in a weakly polarizable solvent of
low dielectric constant. When placed between two planar
electrodes, such systems, for a moderately high electric
field, first form chains which then coalesce to form thick
columns [22, 2]. It has been argued recently [16] that the
resulting solid structure inside these columns might be a
bct lattice structure with convential lattice vectors
a = (&6/2)o. x, b =+6/2o y, and c=o.z. This prediction



FERROELECTRIC PHASES OF DIPOLAR HARD SPHERES 3731

is based on ground-state energy calculations [16] for a
model of perfect, infinitely long chains of dipolar spheres
and seems to be supported by two-dimensional MC calcu-
lations (simulated annealing) [17] as well as laser
diA'raction experiments of small glass spheres in silicone
oil [23].

A series of MC calculations, covering the density range
p* =0.95—1.20, has been performed starting from an ini-
tial perfect bct lattice with lattice vectors a=(&6/2)ox,
b=(&6/2)o. y, and c=crz. A nearly cubic simulation

cell was obtained by taking six lattice planes in the x and
y directions, respectively, and eight planes in the z direc-
tion, resulting in a total of 576 particles. The initial di-
pole moments of' the spheres were chosen randomly. The
cell dimensions were then expanded uniformly in all three
directions to obtain the desired density. Initially, the
hard spheres are thus not in contact along the z direction.
In all cases (summarized in Table I), the system polarized
rapidly in the z direction (typically within 10000—20000
trial moves per particle, and thus much faster than in the

TABLE I. Thermodynamic properties (reduced density p, pressure p*, dipolar energy Ud/NkT)
and order parameters (S, nematic order parameter; P polarization) of dipolar hard spheres at p*=2.5
in the Quid (nematic), face-centered-cubic (fcc), tetragonal I (bct), and orthorhombic I (bco) phases. n
denotes the number of trial moves per particle after equilibration. In the isothermal-isobaric ensemble
(NpT) MC method, p* is the external pressure; in the canonical ensemble (NVT) MC method, p* is the
virial pressure calculated according to Eq. (11). p Hc is the hard-core contribution to the virial pressure.

500
500
500
500
500
432
500
500
500
500

MC
method

NVT
NVT
NVT
NVT
NVT
NpT
NpT
NVT
NVT
NVT

1.0
1.0

1.0

40000
100000
100000
80 000
80000

200000
60000
40 000

100000
120000

Fluid
0.70
0.80
0.86
0.90
0.90
0.974
0.916
1.00
0.84
0.84

1.13
1.96
2.87
3.66
3 ~ 52
6.4
4.2
7.85
1.10
1.68

12.4
13.9
15.1
16.1
16.1
18.9
16.8
20.2
20.3
20.6

—11.80
—12.47
—12.97
—13.07
—13.13
—)3.31
—12.99
—13.35
—20.03
—19.60

0.08
0.38
0.42
0.52
0.56
0.56
0.30
0.10
0.65
0.20

P

0.17
0.70
0.78
0.80'
O.82b

0.82'
0.O
0.0
o.86'
o.o'

576
576
576
576
S76

NpT
NpT
NpT
NpT
NpT 1.0

20 000
90 000

140000
60000
40 000

bct
1.18
1.077
1.005
0.96
1.181

10.6
4.5
2.4
1.5

10.6

22.2
18.2
16.2
15.1
21.6

—15.39
—15.15
—14.74
—14.40
—15.00

0.80
0.81
0.80
0.81
0.72

0.93
0.93
0.93
0.93
0.0

500
500
500
500
500
500
500

NVT
NpT
NpT
NpT
NVT
NpT
NpT

1.0
1.0
1.0

40 000
60000

100000
60 000
40000
40000
60000

1.20
1.138
1.084
1.024
1.20
1.143
1.069

10.7
6.5
4.2
3.1

10.2
6.4
4.2

23.0
19.5
17.6
16.0
22.0
18.7
17.1

—15.10
—14.81
—14.50
—14.10
—14.50
—14.10
—13.73

0.50
0.44
0.43
0.42
0.06
0.05
0.13

0.75
0.78
0.77
0.76
0.0
0.0
0.0

500
500
500
500
500

NpT
NpT
NVT
NpT
NVT

40 000
40 000
50 000
SO 000
60 000

bco
1.066
1.01
0.95
0.947
0.92

4.2
2.0
0.38
0.38
0.18

17.7
15.4
13.2
13.4
12.6

—14.99
—14.50
—13.83
—13.89
—13.45

0.81
0.80
0.78
0.78
0.74

0.93
0.93
0 92'
O.92'
0.90

'Run started from a fcc lattice.
Run started from the final configuration of the bco structure at p* =0.92.

'Run started from a body-centered-cubic (bcc) lattice at p* = 1.05.
Results for p*=3.

'Run started from a fcc lattice at p* =0.95 (NVT).
Run started from the final configuration of the preceding run at p =0.95 but using NpT MC sampling.
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FIG. 1. The reduced pressure p as a function of density for
dipolar hard spheres at p*=2.5. The Quid-state results are
represented by diamonds. The solid-state results are shown as
circles (fcc lattice), triangles (bct lattice), or squares (bco lattice).
The open and solid symbols denote results obtained with e' = ~
and e'= 1, respectively.

Quid phase), and the simulation cell contracted in this
direction to yield a lattice spacing c = ~c~ —1.O25cr, prac-
tically independent of density. The structure can thus be
interpreted as resulting from formation of chains in the z
direction. The lattice spacings a and b in the x and y
directions are equal at high density (a =b = 1.283o, for
p*=1.18) but get slightly different on lowering the densi-
ty (for example, a/b = 1.07 at p*= 1.005).

A typical angle-averaged pair distribution function g
(at p*= 1.077), demonstrating the bct structure, is shown
in Fig. 4. The orientational structure of the dipoles at
p*=1.077 is illustrated in Fig. 5 by the projections of an
instantaneous configuration of the dipole moments on the
xy, xz, and yz planes of the simulation cell. The polariza-
tion of the system in the (minus) z direction is manifest.
To show more clearly the chain formation, projections on
the xz plane of the particles in one lattice plane (chosen
parallel to the projection plane) are shown as well. The
result is striking (Fig. 6). The order parameters in the bct
phase are quite high, S=0.80 and P =0.93, independent
of density (cf. Table I).

0.0
1.0

I

2.0 3.0

a . P n

FICs. 2. Projections of the pair distribution function of dipo-
lar hard spheres at p*=2.5. Solid line: p*=0.9, e'= ~ (fluid);
contact values are g =8.4, h" =10.3, h" =19.0, and
h = 18.5. Dotted line: p* = 1.01, e' = ~ (bco); contact values

h "2=9 7 h "o=18.7, and h22o=23. 7. Dashed
line: p*=1.005, e'= tx) (bct); contact values are g =7.5,
h" =9.6, h" =19.6, and h =25. 1. Dot-dashed line:
p* =0.916, e' = 1 (fluid); contact values are g =8.8,
h" =10.8 h" =17.4 and h =14 8

2. fcc lattice

Next we investigated the stability of the fcc phase. A
first simulation was made for a system of 500 hard
spheres, at density p*=1.2 (p*=10.7), with centers lo-
cated initia11y on a perfect fcc lattice and orientations of
the dipole moments chosen randomly. Again, it took a
relatively short "time" ( —lo000 trial moves per particle)
for the system to polarize in the direction of one of the

FIG. 3. Snapshot of a configuration of 500 dipolar hard
spheres at p =0.84, p*=3, and e'= ~ (Quid) (projection of the
dipole moments on the xy plane of the periodic box). The di-
pole moments are represented by thin lines of length 0.6O. The
hard-sphere centers are in the middle of the lines. The circles
indicate the head of the dipole moments. The dimensions of the
simulation cell are L„Ly L 8 41o..
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cell axes. Subsequent runs at pressures p* =6.5, 4.2, and
3.1 were made using as a starting configuration the final
configuration (possibly randomizing the orientations) of
the previous run at a higher pressure and scaling uni-
formly the cell dimensions and particle positions to ob-
tain approximately the expected density.

The fcc lattice structure is found to be mechanically
stable until a density p*=1.02. An angle-averaged pair
distribution function (PDF) g, typical of a fcc struc-
ture, is shown in Fig. 4(a) for p*=1.084. For all states
considered, the simulation cell remained practically cu-
bic; in particular, no contraction in the direction of the
average polarization was observed. However, the hard-
sphere centers are more strongly localized in the direc-
tion of polarization than in the perpendicular directions,
as is apparent from Fig. 7 which shows the functions
f (x), f (y), and f (z) [Eq. (7)] for p = 1.138. Here, f (z)
(the polarization is along the z axis) is seen to have higher
and sharper peaks than f (x) or f (y). How the dipole
moments orient in the fcc phase can be inferred from a
snapshot of the system at density 1.138 (Fig. 8). We note
that, in lattice planes perpendicular to the direction of
polarization (z axis), the dipole moments orient nearly
parallel, making an angle of -40' with the z axis. More-
over, the direction of orientation of the dipole moments
varies helically from one lattice plane to the other (spaced
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0.0
1.0

5.0—

I

2.0 3.0

2.5—

0.0
1.0
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2.0 3.0
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2.0—

2.0
I

3.0
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0.0
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I

2.0 3.0
, QIIP

@7
FIG. 4. Projections of the pair distribution function of dipo-

lar hard spheres at p =2.5. Solid line: p*=1.084, e'= oo (fcc);
contact values are g~=7.6, h =8 5, h = 19.]., and
h =22.2. Dashed line: p*=1.069, e'=1 (fcc); contact values

220

are g~=8.0, h" =9.2, h" =21.2, and h ~ =27.6. Dotted
line: p = 1.077, e' = ~ (bct); contact values are g =7.6,
h 112 7 6 h 110 15 8, and h 220 15 3

FICi. 5. Snapshot of a configuration of 576 dipolar hard
spheres at p*=1.077, p*=2.5, and e'= ~ (bct phase). Projec-
tions of the dipole moments on the (a) xy, (b) xz, and (c) yz
planes of the periodic simulation cell. The symbols are as in
Fig. 3. The dimensions of the simulation cell are L„=8.24o.,
L~ =7.90', and L, =8.22o. .
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FIG. 6. Same as Fig. 5 but for hard spheres in one lattice
plane parallel to the xy plane of the simulation box only. This
snapshot clearly demonstrates the formation of chains along the
z axis of the bct lattice. The dimensions of the simulation cell
are L„=8.24o. , L~ =7.90o., and L, =8.22o. .

(a) tPf QQNQg'
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by c/2} with one full turn of the helix over the cell length
L„as required by the periodic boundary conditions.
This pattern is observed in the whole density range over
which the fcc is stable.

For this peculiar orientational order we can expect the
order parameters to be smaller than for the bct structure.
This is indeed the case: in the fcc phase one has, typical-
ly, S=0.5 and P=0.75 (cf. Table I}. In contrast, the
pressure does not differ from that of the bct phase, al-

though the hard-core and energy contributions to the
pressure differ individually in both phases. En the fcc
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FIG. 7. Correlation functions f (z), f (x), and f (y) [Eq. (7)j
for dipolar hard spheres at p*=1.138, p*=2.5, and e'= ~
(fcc).

FIG. 8. Snapshot of a configuration of 500 dipolar hard
spheres at p*=1.138, p*=2.5, and e'= ~ (fcc phase). Projec-
tions of the dipole moments on the (a) xy, (b) xz, and (c) yz
planes of the periodic simulation cell. The symbols are as in
Fig. 3. The snapshot reveals helical ordering of the dipole mo-
ments along the z axis. The dimensions of the simulation cell
are L„=7.61o-, L~ =7.59o., and L, =7.59o.
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phase the energy is higher, but the hard core pressure
lower, than corresponding values in the bct phase at the
same density (cf. Table I).

When the fcc solid at p =1.084 was expanded to a
lower density, a transition to a different stable lattice
structure was observed. This structure will be shown
below to bear close similarity with the bct structure con-
sidered above but is body-centered orthorhombic I (bco)
rather than tetragonal I (bct) [24]. Upon further expan-
sion, this bco structure remains stable to a density
p*=0.9, at which the system makes a transition to the
fluid phase. However, it was noted that, depending on in-
itial conditions, the fcc crystal could also be stabilized at
densities lower than 1.08. For example, an XpT calcula-
tion at p*=3.1 gave, after 60000 moves per particle, a
final density p* = 1.024 and thermodynamic and structur-
al properties compatible with those of the fcc phase (pos-
sibly metastable), indicating appreciable overlap of the
density ranges of the fcc and bco phases.

The fcc-bco transition results from a change in direc-
tion of the preferential ordering of the dipole moments
from the [001] to the [110]direction which induces a con-
traction of the system along the [110]direction until near
contact of the hard spheres is obtained. The resulting lat-
tice structure is shown schematically in Fig. 9 for an ideal
lattice with lattice vectors (a', b', c') (b' and c' are paral-
lel to the y and z axes of the simulation cell, respectively).
The simulation cell dimensions I. and I. adjust in such
a way that the lattice spacings ~a'~ and b'~ are equal
( =L~I5), and the angle a of a' with the x axis is —11'5
(i.e., sina= —,'; recall that 5 is the number of repetitions of
the unit cells along each direction of the original fcc lat-
tice). It is readily verified that with the latter conditions
the periodic boundary conditions imposed on the simula-
tion cell are preserved. Furthermore, with the choice of
lattice vectors a", b", c", as shown in Fig. 9 (b" parallel
to the z axis), it is easily recognized that the lattice can
eS'ectively be viewed as an orthorhombic I structure (we
will show below that a tetragonal structure is impeded by
the chosen boundary conditions).

A snapshot corroborating the preceding description is
shown in Fig. 10 for the density p*= 1.01. The polariza-
tion of the spheres is parallel to the xy plane and chain
formation occurs along the c" direction. These chains
are made more clearly visible by projecting on the xy
plane the spheres of a single lattice plane (parallel to the
xy plane) (cf. Fig. 11). Chain formation is also apparent
from the longitudinal distribution function g~~(r~~ ) which
consists of a series of sharp peaks separated by approxi-
mately one hard-sphere diameter (Fig. 12). The position-
al disorder observed parallel to the y axis [cf. Fig. 10(c)] is
only apparent and does not reveal formation of columns
in the y direction, as was prematurely suggested in Ref.
[5]. Rather, it results from overlap of the particle posi-
tions (in projection on the yz plane) due to the displace-
ments of the particles from their lattice sites.

The average distance between spheres in the chains has
been found to be equal to 1.025cr and independent of den-
sity, similar to the bct result. Furthermore, the angle be-
tween a' and a" is also independent of density in order
that the chain arrangement satisfies the periodic bound-

ary conditions along the x direction. This fixes the value
of a" at 1.260.. These two constraints imply that the
density of the system depends only on the value of the
lattice spacing b" along the z direction. The value of b"
should be inversely proportional to the density and this is
what indeed is observed. The ratio b" la" increases from
1.14 to 1.28 when the density varies from 1.066 to 0.947.

The energy of the bco lattice is slightly higher than the
energy of the bct lattice, the pressure is somewhat lower,
and the order parameters S and P are identical (cf. Table
I). We recall that the bco phase destabilizes near p' =0.9
in favor of the nematic phase.

The pair-distribution-function projections h ", h

and h " are compared in Fig. 4 for the fcc and bct struc-
tures (p'=1.08) and in Fig. 2 for the bct and bco struc-
tures (p*=1.01). As far as b" and h are concerned,
the differences reflect mainly the differences in the under-
lying lattice structures. These are quite small for the bct
and bco lattices; in fact, the only significant differences
(including h" ) occur in the region 2o ~ r ~2.6o as a re-
sult of slightly different 1attice neighbor distances. The
structural behavior in the fcc and bct lattices is similar
only at short distances (r ~ 1.25o ). In particular, in both
cases, a negative minimum is found in h" at r =1.160..
The negative we11 is narrower for the fcc lattice.

B. e'=I

We now turn to the results obtained when surrounding
an infinitely large spherical volume of periodic replica of
the simulation cell by vacuum (e'=1). The difFerence

FIG. 9. Schematic representation (in the xy plane of the
simulation cell) of the orthorhombic I (bco) lattice structure re-
sulting from a deformation of the fcc lat tice at densities
p* ~ 1.06. The lattice vectors a' and b' have equal length and
the angle between them is such that the periodic boundary con-
ditions imposed on the simulation cell are satisfied (see text).
This lattice structure allows formation of chains along the c"
direction, where a", b", c" is a suitable set of convential lattice
vectors characterizing the orthorhombic structure of the lattice
(1"parallel to the z axis). The lattice positions marked by open
and solid circles belong to lattice planes separated by a distance
b" /2, respectively.
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(a)

FIG. 11. Same as Fig. 10 but for hard spheres in one lattice
plane parallel to the xy plane of the simulation box only. This
snapshot demonstrates the formation of chains along the c" axis
of the bco lattice (cf. Fig. 9 and text). The dimensions of the
simulation cell are L =7.99o., L„=8. 15o., and L, =7.67o..

with the conducting boundary conditions lies in an extra,
positive term 2~( M ) /3 V in the Hamiltonian which
represents the contribution to the energy from the depo-
larization field. For a perfectly polarized system, this en-
ergetically unfavorable term would be very large (in our
case, —13N, N being the number of particles) and would
tend to destroy the ferroelectric order. From solid-state
physics it is well known [24,25] that a possibility for the
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FIG. 10. Snapshot of a configuration of 500 dipolar hard
spheres at p =1.01, p*=2.5, and e'= Do (bco phase). Projec-
tions of the dipole moments on the (a) xy, (b) xz, and (c) yz
planes of the periodic simulation cell. The symbols are as in
Fig. 3. The dipole moments orient parallel to the xy plane. The
bco lattice structure represented schexnatically in Fig. 9 is clear-
ly visible in the xy projection. The dimensions of the simulation
cell are L =7.99o., L~ =8. 15o., and L, =7.67o..
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FIG. 12. Longitudinal correlation function g~~(r~~ ) [Eq. (8)]
for dipolar hard spheres at p*=1.01, p =2.5, and e'= ~ (bco
phase).
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(macroscopic} system to reduce the effect of the depolari-
zation field is to form domains, each domain being com-
pletely polarized but the directions of polarization of
different domains not necessarily parallel.

A similar picture seems to emerge from the present cal-
culations on a microscopic scale. We find that a 500—576
particle system splits into two (Quid and bct solid) or four
(fcc solid) polarized "micro"-domains such that the total
polarization of the system is zero. The calculations
(NpT) performed for e'=1 are summarized in Table I.
They were generally started from the final configuration
(positions and orientations) of a previous run with e'= ~,
with the pressure fixed at the value obtained for e'= ~.
For densities p*~1.08, both the fcc and bct lattices
remained stable when e' was changed from ~ to 1. The
polarization dropped rapidly to zero (after a few
thousand trial moves per particle}. The energy per parti-
cle increased slightly, but the pressure remained practi-
cally unchanged (due to a decrease of the hard-core con-
tribution}. A snapshot of the dipole moment arrange-
ment in the fcc structure at p* = 1.143 is shown in Fig.
13. From this one can conclude (taking into account the
periodic boundary conditions) that the system splits into
four domains with polarizations parallel to the xy plane
but pointing into different directions (roughly, the [110],
[1—10], [—1 —10], and [ —110]directions of the simula-
tion cell). In fact, due to the small system size the bulk
parts of these domains have very lim. ited extent in the y
and z directions, and most particles of the system enter
the formation of the domain walls which are quite gradu-
al and easily recognizable by the vortex pattern of Fig.
13(c).

The angle-averaged PDF g is not much affected by
the value of e' (cf. Fig. 4). In contrast, for e'= I, h"
shows a tendency towards local dipolar alignment only
over a range of r values of the order of the size of the fer-
roelectric domains, beyond which it decays to zero. This
range is, of course, expected to depend greatly on system
size [6].

The dipolar arrangement in the bct structure for e'=1
is shown in Fig. 14. A possible structure for the system
to lower its polarization would have been to split into two
domains with opposite polarizations along the chain axes.
This is, however, not observed. Instead, one distin-
guishes two domains with polarizations parallel to a diag-
onal of the xy plane and thus perpendicular to the chain
axes (Fig. 15). The chains are less well defined than in the
system with e'= ~. In the absence of strong attractive
interactions along the z axis, the system has expanded in
this direction (compared to the case e'= ao ), the average
distance between sphere centers being now —1.06o.. The
order parameter S is rather high (-0.73), indicating a
sharp domain interface.

For densities lower than 1.08, both the bct and bco lat-
tices destabilized when e' was changed from ~ to 1

(maintaining, in the XpT calculations, the pressure fixed
at the value found for e' = ~ ). The system eventually
melted and made a transition to a globally unpolarized
state consisting of two ferroelectric domains with oppo-
site polarizations. This process was generally very slow
(a large pressure or density gap had to be bridged) and in

(a)

(0

FICx. 13. Snapshot of a configuration of 500 dipolar hard
spheres at p =1.143, @*=2.5, and e'=1 (fcc phase). One
clearly distinguishes four domains, denoted A, 8, C, and D, re-
spectively (taking into account the periodic boundary condi-
tions), with diferent directions of the polarization (see text).
The dimensions of the simulation cell are L =7.68o.,
L~ =7.52o., and L, =7.56o..
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(a) most cases several hundred thousand trial moves per par-
ticle were necessary to reach equilibrium. For this reason
we attempted to obtain fully converged results only in a
few eases. Figure 16 provides a snapshot of the orienta-
tional order at p*=0.916. This state was obtained start-
ing from a bco configuration at p = 1.06 and relaxing the
system for 500000 moves per particle. Two domains of
roughly equ. al size are easily identified. In one domain,
characterized by 1o. ~y ~ 5o., the polarization is parallel
to the xy plane and points in the [001] direction. The
other domain is polarized in the opposite direction. Be-
cause of the orientational disorder in the interfacial re-
gion separating the two domains, the order parameter
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FIG. 14. Snapshot of a configuration of 576 dipolar hard
spheres at p* = 1.181,p* =2.5, and e' = 1 (bct phase). One easi-
ly distinguishes two domains polarized in opposite directions
along a diagonal of the xy plane. The dimensions of the simula-
tion cell are L =7.81', Ly =7.34a, and L, =8.49a.

FICx. 15. Same as Fig. 14 but for hard spheres in one lattice
plane parallel to (a) the xy plane and (b) the zy plane of the
simulation ceH. The dimensions of the simulation ce11 are
L~ 7 8 10'y Ly 7 340 y and Lz 8 490
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S ( -0.3}is much reduced with respect to its value in the
ferroelectric state (S=0.5). More realistic values would
be obtained by calculating an order parameter in the bulk
part of each domain. Finally, we remark that a qualita-
tively similar picture arises when starting from a fer-
roelectric nematic state and changing e' from ~ to 1.

IV. SUMMARY

M n

OO Q ))OQ

FIG. 16. Snapshot of a configuration of 500 dipolar hard
spheres at p* =0.916,p* =2.5, and e' = 1 (Quid phase). The sys-
tern is seen to split into two domains with opposite polarizations
along the z axis. Dipole moments pointing into the positive z
direction are represented by an open circle, those pointing in
the negative z direction by a solid circle. The dimensions of the
simulation cell are L„=8.15o, L~ =9.96o., and L, =6.71o.

Monte Carlo simulations performed along the isotherm
T*=0.16 reveal that strongly interacting dipolar hard
spheres can form orientationally ordered Quid and solid
phases which, moreover, show ferroelectric behavior.
Depending on the absence (conducting boundary condi-
tions e'= oo ) or presence (vacuum e'= 1) of a depolariza-
tion field, the system is uniformly polarized or splits into
domains polarized in different directions with vanishing
total polarization.

For the 500 particle system considered in this work,
the transition from the isotropic to the nematic (fer-
roelectric} phase occurs at a density approximately equal
to p'=0. 7, though this transition (system size depen-
dence, order, etc.) has not been investigated in any detail.
The Quid nematic phase is found to be stable up to a den-
sity —1.0, possibly metastable at the highest densities, as
suggested by appreciable overlap of the pressure curves
of the Quid and solid phases. At higher density we inves-
tigated the stability of both the fcc and bct lattices.
When e'= ao, the bct lattice is characterized by fully po-
larized chains directed along the c axis and is stable over
the whole density range 0.95—1.20 considered. A small
asymmetry of the lattice spacings in the directions per-
pendicular to the c axis occurs nevertheless at the lowest
densities. The fcc lattice is mechanically stable in the
density range 1.02—1.20. The polarization is along a
[001] direction, and in this direction the dipole moment
orientations vary with helical order in going from one lat-
tice plane to the other separated by one-half lattice spac-
ing. Below p* = 1.06 (although, depending on initial con-
ditions, a mechanically stable fcc phase was still found at
p* = 1.024), the fcc lattice deforms in a way that enables
chain formation along the [110]direction of the initial fcc
lattice. From this perspective the new lattice structure is
quite similar to the bct lattice mentioned above. Howev-
er, it is orthorhombic rather than tetragonal, likely a
consequence of the imposed parallelepipedic simulation
cell and the periodic boundary conditions. At a density
lower than p =0.9, the orthorhombic structure melts
and the system forms a ferroelectric nematic phase.

At the present stage of investigation we are not able to
tell which among these lattice structures is the most
stable one, nor are we able to give a precise location of
the ferroelectric nematic-solid transition. Answers to
these questions must await detailed free-energy calcula-
tions which are, however, quite involved and beyond the
scope of this work.

Gn turning e' into 1, starting from a stable ferroelectric
state at e' = ~ and keeping p

* fixed, both the bct and fcc
crystals remain stable for p* ~ 1.06. The ferroelectric or-
dering splits into domains with different polarizations.
For p' ( 1.06, the depolarization field destabilizes the lat-
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tice structure which melts and, at constant p ', the system
eventually goes towards an unpolarized Quid phase con-
sisting of two roughly equal domains with opposite polar-
izations.

A study of the system size dependence of the domain
formation, although of undeniable interest, has not been
attempted here because of the substantial amount of corn-
puting time it would require. In Ref. [6] the view has
been expressed that for sufticiently large samples the local
orientational order in the ferroelectric domains would be
quite similar to that obtained with small samples and
e'= oo. A result by Griffiths [26] supports this view. Ac-
cording to this result, the bulk free energy of a lattice of
permanent dipole moments should be independent of
sample shape in the thermodynamic limit (in the absence
of an external electric field). In particular, needle-shaped
(no depolarization field) and spherical specimens (depo-
larization field) in vacuum should have the same limit.
Provided these results can be extended to off-lattice di-

poles embedded into a hard core with periodic boundary
conditions, both our results with e'= ae (no depolariza-
tion field) and e'=1 (depolarization field) should be simi-
lar in the thermodynamic limit.

It is quite remarkable that both this work and the work
of Wei and Patey, based on different short-range poten-
tials and different simulation methods, lead, whenever
comparable, to quantitatively similar results for the
orientational structure of strongly interacting dipolar sys-
tems. Both works should be helpful in analyzing and un-
derstanding the structural properties of systems where di-
polar forces play a dominant role.
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