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Internal distances in short polyelectrolytes: A Monte Carlo study
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The new critical phenomenon of a coil-rod transition that was studied in our previous papers [J.
Chem. Phys. 92, 4468 (1990); 93, 2736 (1990); 94, 3213 (1991);97, 2119 (1992); J. Phys. Chem. 96, 5553
(1992)] is investigated further. The family of physical statistical bonds is expanded. An important addi-

tional bond, the linear statistical bond, is introduced. Parameters based on internal distance investiga-

tions are proposed and these are used to analyze the Monte Carlo data. One of the most important pa-
rameters is the average probability for a linear statistical bond at a site on the chain, P&. Indications are

reported that scaling behavior in polyelectrolyte chains exists only for chain lengths having the same

kink fraction g. An important relation is shown between the average number of kinks, (nk, „k), and

D(2), the mean-square distance between the end beads of three adjacent beads in a cubic lattice:

g = (nz;„„)/Ã —2= 1 —[D (2) —2]/2= 1 P, . In—a previous article [J. Chem. Phys. 97, 2119 (1992)] we

found that for a self-avoiding-walk chain, g is constant and equal to 0.77. This relation leads to new con-

stants, P& =0.23 and D(2)=2.46 squared cell units in addition to the constant mean straight length

(l, ) =1.29 cell units, found in the above reference, to be connected to g. The large size effect that was

found in this reference is also demonstrated here, i.e., segments of a small chain tend to expand less than

segments of a long chain. The blob concept is examined and it is shown that all interior segments of the
chain are stretched by repulsive interactions. This is inconsistent with the basic assumption of the blob
concept. Howver, because the change in short segments of a chain is small when compared to the large
change in long segments, the continued use of the blob concept remains valid for analytic estimations of
the whole chain length. The polyelectrolyte expansion is extended to describe polymer expansion in gen-

eral. An empirical relation is proposed between the mean-square radius of gyration (S ) and the mean-

square internal distance between the ends of a half chain D (N/2), and is expressed by D (X/2) = 3(S').
An additional empirical relation is shown: P& =D(N/3)/(N/3) where D(N/3} is the mean-square
internal distance between the ends of one-third of the chain. Verification is found for the existence of the

physical statistical bonds that vary with internal distance. The existence of these bonds is extended to
various internal distances and to systems with various types of charge.

PACS number(s}: 61.25.Hq, 05.70.Fh, 02.70.Lq, 02.50.Ng

I. INTRODUCTION

The great advantage that computer experimentalists
have over scientists using other methods of analysis is the
ability to obtain the specific coordinates of atoms in a
molecular chain within the model framework. This per-
mits a detailed analysis that was unachievable in the past.
The ability to analyze atomic scales is comparable to
some extent to the impact on biological research of the
introduction of the electron microscope, which enabled
one to see details that could only have been imagined pre-
viously. The closeup view of the polymer chain a6'orded
by a computer analysis brings with it the possibility to
define new parameters that disclose previously unknown
characteristics of the chain.

Owing to these advances and to the availability of
more powerful computers, the field of computer simula-
tion and specifically the simulation of polyelectrolytes has
developed considerably [1—41]. In previous articles
[17,25,33,34], we dealt with the unfolding of a charged
chain caused by physical changes in charge, temperature,
salt concentration, or solvent. The salt concentration has
been shown to diminish the unfolding process. In Refs.
[25,33,34], we examined the extension mechanism of this
intramolecular reaction using various parameters and

found that the procesS exhibits characteristics of a phase
transition. In this article, the analysis is extended using
new parameters which are related to the previous param-
eters and which give new insight into chain behavior.

The model used and the simulation techniques are de-
scribed in Sec. II. In Sec. III, the new parameters and
new relations are introduced and the results are dis-
cussed. A summary follows in Sec. IV.

II. MODEL AND SIMULATION TECHNIQUE

The chain model to be discussed here is the same as in
Ref. [17(a)]. A fully charged chain with equally distribut-
ed charge is represented by le hard spherical beads of di-
ameter d =4 A in a cubic box. The box has a length of
2048 A and satisfies periodic boundary conditions. This
model is based on the Lax-Brender-Windwer (LBW)
model modified by ideas introduced by Carnie et al.
[14(a)]. The Coulomb potential is replaced by the
screened Debye-Hiickel (DH) potential, which mimics an
"added salt. "There are two cases: the bare chain having
concentration C =0M (no added salt) and the DH
screened chain with CROM (added salt). To avoid
lengthiness, we discuss in this article only the bare chain.
The case of added salt will be considered in a separate ar-
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ticle. Monte Carlo (MC) simulations were carried out on
an IBM 3090 computer at Bar-Ilan University for chain
lengths between 8 and 64 beads for various values of an
independent parameter A, , defined [17(a)] as z e /DkT,
where z is the charge on each ion of the chain and D is
the dielectric constant of the solvent. At room tempera-

0
ture for a polyelectrolyte in water solution, A, =7.14 A.
Ensemble averages were collected after rejecting the ini-
tial cycles before relaxation. Subsequent groups of 10000
cycles were averaged separately and then averages and
standard deviations of the means over all groups were
calculated. A total number of 1 800000 cycles were gen-
erated for each set of simulated experimental conditions.
For further description of the computational technique,
see Refs. [17(a),33,34].

III. PARAMETER DEFINITIONS, RESULTS,
AND DISCUSSION

A commonly used parameter in polymer physics is the
mean-square end-to-end distance R . A similar parame-
ter is the mean-square distances between any of the poly-
mer chain beads. We denote by D(n) the mean-square
end-to-end distance of all subchains consisting of n links
in a chain of N beads. For example, D(2) is the mean-
square distance of two links, or, in other words, the end-
to-end distance of three adjacent beads in a chain of X
beads. We denote it also as an internal end-to-end dis-
tance to distinguish it from the external end-to-end dis-
tance. After averaging over all possibilities in a single po-
lymer configuration, an average was calculated in a way
similar to the other averaged parameters as described in
Sec. II and in Ref. [17(a)]. An average of D(n) over a
group of 10000 configurations was obtained, after which
an average over 180 groups was calculated.

Values were calculated of the vectors D(n), where n is
varied from 2 to X —1. Listed in Tables I and II are the
values of D (2), which describe the mean-square distances
between bead i and bead i +2, and the values of D(3),
which describe the mean-square distances between bead i
and l +3.

In this article, we emphasize the internal square dis-
tances D (2), and also discuss D (3) and distances where
n &'4. Also, from a chemical point of view D(2) and
D(3) are of great significance because neighboring beads
may participate in a mutual chemical reaction. The
mean-square distance between beads 1 and N, D (N —1),
is usually denoted as the mean-square end-to-end distance
of a chain of X beads. It is of interest to compare the
behavior of the internal distances with that of the end-
to-end distance. Therefore, in Fig. 6, we have plotted
several of the internal and end-to-end square distances on
the same graph for comparison.

We first consider D (2), the mean-square distance be-
tween beads i and i +2 in a polymeric chain. The con-
nectivity of three beads in a self-avoiding-walk (SAW)
chain on a cubic lattice is possible in two configurations:
(i) a bend configuration (kink), which is shown in Fig.
1(a), and (ii) a straight connection, which we denote as a
linear statistical bond and which is shown in Fig. 1(b).
The mean-square distance between bead i and bead i +2

TABLE I. Values of D(2), the mean-square distance between
bead i and bead i +2 (in cell units), for various polyelectrolyte
chain lengths N, and various A, at C =OM.

2.42
2.50
2.58
2.66
2.74
2.82
2.89
2.97
3.04

N =16

2.44
2.58
2.70
2.83
2.97
3.08
3.21
3.35
3.47

N =32

2.44
2.64
2.83
3.04
3.25
3.40
3.60
3.70
3.73

N =48

2.45
2.69
2.90
3.20
3.40
3.60
3.70
3.80
3.83

2.46
2.72
2.96
3.26
3.50
3.64
3.76
3.83
3.88

equals two square units for a kink and four square units
for the straight connection. Four square units is there-
fore, by definition, the maximum theoretical value of
D (2) in a cubic chain and two square units is the
minimum theoretical value. The calculated values of
D(2) must lie between these two limiting values. This is
indeed what we observe from our MC calculations of
D (2) for polyelectrolyte chains and is summarized in
Table I. The following paragraphs discuss what has been
learned from the study of the values of the internal dis-
tances using the D (n) parameter.

A. Local size eÃect

TABLE II. Values of D(3), the mean-square distance be-
tween bead i and bead i +3 (in cell units) for various polyelec-
trolyte chain lengths N, and various A, at C =OM.

N=8 N =16 N =32 N =48 N =64

4.1

4.3
4.6
4.8
5.1

5.3
5.6
5.8
6.0

4.1

4.6
5.0
5.4
5.8
6.3
6.6
7.0
7.4

4.1

4.8
5.4
6.0
6.7
7.2
7.7
8.0
8.3

4.2
5.0
5.6
6.5
7.1

7.7
8.1

8.3
8.5

4.2
5.1

5.8
6.8
7.4
7.9
8.3
8.5
8.7

From Table I, it is seen that for A, =O, the values of
D (2) are almost identical for all values of N, being slight-
ly greater for higher N, in the range N ~ 64. In Sec. III H
we discuss this phenomenon, which occurs for all D (n).
As A, increases, values of D(2) increase. This is con-
sistent with the extension of the chain discussed in Ref.
[17(a)]. Moreover, as A, increases, there is an increase in
the differences between values of D(2) for various chain
lengths. For example, there is a difference of 0.04 be-
tween the values of D(2) for N =64 and N =8 at A, =O.
At A, =7, the difference is 0.86. It follows that the local
expansion with increasing A, is greater at high N. The ex-
pansion is denoted as local because it describes the
minimum possible square distance between unconnected
beads. This local size effect, which is quite pronounced at
high A, , is consistent with the global size effects described
in Ref. [34], according to which a small chain tends to ex-
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pand less than a long chain. This tendency of the small
chains is attributed mainly to the proximity of all the
beads of the small chain to the end beads [34,26]. In their
recently published article, Lai and Binder [42] found that
under the same shear Aow, longer grafted polymer chains
are more stretched than short chains (Fig. 5 in Ref. [42]).
This shows that there is a generalized characteristic
which is the same whether attributed to charge, shear
fiow, or other causes. A connection between D(2) and
the kink fraction g was found (see Sec. III C 1) and there-
fore it is to be expected that the size effects that were
found through the kink fraction [34] appear here as well.

FIG. 1. Three connected beads i, i + 1, and i +2 (a) in a bend
configuration and (b) in a linear configuration. The distance be-

tween the extreme beads is denoted by dotted lines. (c) A short
chain of three beads. The four dashed circles are alternative
sites for bead number 3 on the cubic lattice.

for a linear statistical bond at a site on the chain for vari-
ous A, and different values of N, were calculated using Eq.
(2), and are shown in Fig. 2. It is interesting to note that
at A, =O, all N have almost a constant value of P& =0.23.

As A, increases, the values of Pl for various N increase
in different manners. For large N they increase "faster"
than for small N. N =8 and N =16 are separated while
N =32, 48, and 64 are close together. The large size
effects found for g in Fig. 8 of Ref. [34] appear for P& as
well. This points to a possible connection between the
two parameters. In Sec. III C we discuss this connection.
It is important to add that in contrast to contacts and
kinks, the linear statistical bonds increase with k. This
increase is described in Fig. 2 and is caused by the de-
crease in the number of kinks. Owing to chain connec-
tivity, the disappearance of a kink in a chain causes the
creation of a linear bond. This is the reason that we
denote PI also as the unkink probability.

It is easy to see from Fig. 1(c) that in a cubic lattice for
N =3, bead 3 has five possible configurations (four kinked
and one linear). The unkink probability PI for this short
chain of N =3 beads is 1 in 5, or PI =0.2. At larger N, P&

should be a bit higher because of excluded volume, i.e., at
higher N there is a slightly greater tendency of each bead
to distance itself from the others. This explains the value
of PI =0.23 found by the MC numerical method shown
above. Similar arguments were given as explanation for
the mean straight length ( l, ) larger than 1.2 in Ref. [33].
The existence of a fixed value of PI =0.23 (for a SAW
chain) above a certain N means that when the only limita-
tions are excluded volume, the polymer chain finds its
own ratio of kinks to linear bonds and these proportions
are maintained for any chain length.

B. New parameter I'I. The average probability for a linear
statistical bond at a site on the chain

The parameter D (2) can be used to calculate other im-
portant parameters, for example, PI, the average probabil-
ity for the existence of a linear bond. The average square
distance D(2) between bead i and bead i +2 is actually
the sum of the square distance, 4, of the linear bond mul-
tiplied by its probability PI and the square distance, 2, of
a kink multiplied by its probability 1 —PI. Thus

4P, +2(1 P, )=D(2) . —
t

Solving this equation for PI, we obtain

Pi = [D (2)—2]/2 .

Substituting D (2) =2.46 for N =64 at A, =0, we find

PI =0.23

I.O-

0.8

0.6

0.4

0
I

4

C=O

lO

N

~ 8
+ I6

52
48
64

This means that 23% of the three connected beads, i,
i +1, and i +2, in a SAW chain of N =64 beads (at
A, =O) are arranged linearly, as shown in Fig. 1(b). The
remaining 77% are bent as shown in Fig. 1(a). In a cubic
lattice, of course, the only possibilities are a straight line
or one bend by 90 . Values of PI, the average probability

FIG. 2. P&, the average probability for a linear statistical

bond at a site on the chain (also denoted as the unkink probabil-

ity), vs A. (A) for a bare polyelectrolyte (C =OM), for chains of
various ¹ The horizontal line at PI =0.61 intersects the curves

at a A, denoted as A, , &2 [48], which is observed to vary at difFerent

chain lengths (in the investigated range). The curves have been

drawn to guide the eye.
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C. Kink probability

1. Xew relations

1 Pt =(n—k;„i, ) l(N —2),
which is the definition of the kink fraction g, defined in
Ref. [34] as

Thus

1 PI g (6)

Equation (6) adds new meaning to the kink fraction g
defined in Ref. [34], namely, the probability for the ex-
istence of a kink at a site along the chain. The kink prob-
ability 1 P& is der—ived from D(2) [Eq. (2)], while the
kink fraction g is derived from the average number of
kinks (nk;„k) divided by N —2. Table III gives a com-
parison of the calculated values of 1 —PI at various A, , for
various N and values of g, where (nk;„„) was measured
directly. The similarity of the results calculated by two
different methods gives support to the self-consistency of
our calculations. Identifying 1 —PI as g helps to clarify
the connection between ( nk;„i, ) and D (2). This implies a
connection between local [D(2)] and overall [(nk;„k )]
parameters:

(nk;„i, ) l(N —2) =1—[D (2)—2]/2 . (7)

Equation (7) is actually a combination of Eqs. (2) and
(4). From (7), it follows that in the straight rod, when
D (2)=4, the average number of kinks is 0, and in the
case of a coil, for N =64 where D (2)=2.46 square units,
g =0.77. The same result was reported in Ref. [34], us-

The probability P& for a linear statistical bond at a site
on the chain is complementary to the probability for a
kink, which is therefore 1 —PI. Multiplying the probabil-
ity to find a kink, 1 P&, b—y N —2 (the maximum number
of kinks available in a chain of N beads [34]) gives the
average number of kinks, ( nk;„k ), i.e.,

(3)

ing a different method of calculation. The connection be-
tween D(2) and g explains the appearance of the large
size effects described in Sec. III A, and first described for
g in Ref. [34]. Because g is connected to the mean
straight length (1, ) through Eqs. (2) and (4) of Ref. [34],
it follows that for a cubic lattice SAW chain, the univer-

sal values of (l, ) =1.29 cell units, the constant value of
g =0.77 [34], the constant value of P& =0.23, and also the
value of D (2)=2.46 square units, that are found in this
section, are all connected to each other. Thus, from Eq.
(7), a constant value of g at A, =O [34] implies a new con-
stant value for D (2). The mean-square distance D (2) be-
tween bead i and bead i +2 of a SAW chain thus seems to
equal 2.46 square units. For the simple case of N =3 of
Fig. 1(c), where there exist four kinks and one linear
bond, D (2) can be calculated exactly and is given by
(4X2+4)/5=2. 4 square units. For chains with higher
X due to excluded volume, the proportions between
linear bond and the total number of possible
configurations has been shown (Sec. IIIA) to be 0.23,
which is larger than 1:5. Therefore D(2) should be a bit
greater than 2.4, as we indeed found.

2. Remarks on the blob assumptr'on

The new relation between D (2) and g [Eq. (7)] is valid
not only when g is constant but also when g varies with X.
In Fig. 8 of Ref. [34], we showed how g varies with A, .
Equation (7) clearly shows that changing g is equivalent
to varying D (2). These results allow us to question, in
such systems, the basic assumption behind the blob con-
cept. According to this concept, inside a blob the chain is
nearly ideal and between blobs there are strong repulsions
[44—46]. Table I and Fig. 3 show that even the values of
D(2), the shortest mean-square internal distance, do not
maintain a constant value for changes in A, . Changes in

(l, ) were recorded (see Table VI and the discussion in

Ref. [33]) even for 0~ A, » 1, the range where the blobs
would be most likely to exist according to Ref. [46].
Since g and ( l, ) are connected through Eqs. (2) and (4) of
Ref. [34], changes in (I, ) imply changes in g when A, in-

creases.
Our results show no evidence that the changes in aver-

age values of square distance are caused only by changes

TABLE III. Comparison of g and 1 —PI. Values of 1 —PI calculated from values of D(2) using Eq.
(2). Values of g, the kink fraction, are calculated from the expression (n„;„k)/((nk;„k)+(n|;„„,)),
where (n„;„„)is the average number of kinks in a polyelectrolyte chain directly measured [43] and

( n~;„„,) is the average number of linear bonds.

%=8
1—P

X =16 X =32 N =48
1 —P( g

X=64

0.79
0.75
0.71
0.67
0.63
0.59
0.56
0.52

0.79
0.75
0.71
0.67
0.63
0.59
0.56
0.52
0.48

0.78
0.71
0.65
0.59
0.52
0.45
0.40
0.32

0.78
0.72
0.65
0.58
0.52
0.45
0.38
0.32
0.27

0.78
0.68
0.59
0.48
0.38
0.30
0.20
0.15

0.78
0.68
0.58
0.49
0.39
0.30
0.22
0.17
0.12

0.78
0.66
0.55
0.40
0.30
0.20
0.15
0.10

0.78
0.66
0.54
0.41
0.31
0.22
0.17
0.11
0.08

0.77
0.64
0.52
0.37
0.25
0.18
0.12
0.08

0.77
0.64
0.51
0.37
0.26
0.18
0.12
0.09
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FICi. 3. Values of normalized mean-squared internal dis-
tances (in cell units) D(2)/2 vs A, (A) for a bare polyelectrolyte
chain (C =OM), for various number Xof chain beads.

between blobs and are not distributed over the entire
chain. The Monte Carlo results support our belief that in
polymers all beads are equally free to move. As the chain
expands, the blob assumption implies that the expansion
occurs only between the blobs, but inside a blob the chain
remains unchanged in its SAW configuration. The as-
sumption that the expansion is not distributed among all
beads but only between blobs is equivalent to discrimina-
tion between beads, which we feel is against the inherent
justice embedded in scientific laws.

3. P&;, the unkink probability for each group of three beads

To verify that expansion is distributed along the entire
chain, we calculated P„, the unkink pr. obability for each

group of three beads in a chain of N =16 for various
values of A, . This was done by counting the average num-
ber of linear statistical bonds in each configuration for
each three-bead segment of the chain using the same pro-
cedure described for the other configurational properties.
The results are shown in Table IV and Fig. 4. The table
clearly shows that as I, is varied, there are changes in PI,
for every three adjacent beads in the chain. The amount
of extension varies along the length of the chain, with
beads near the ends extending less than beads near the
center. The markers in Fig. 4 show that for X=O all
chain beads have the same value of Pi; (except for the end
beads, which have slightly lower values of P&, ). As . A, in-
creases, for low A, , the extension is close to linear, while at
higher A, the extension of the center of the chain is much
greater than near the ends. The result, that the ends
remain relatively bent while the rniddle tends to straight-
en out, was mentioned in Refs. [25,34] and is in agree-
ment with Rabin's conclusions [47] for polymer confor-
mation in elongational Row. Note that there exists a
large difFerence between the middle of the chain and the
ends at high k. For N =32 the middle of the chain is
higher and Aatter and the average P& is higher (less
influenced by the end beads). Note also that the column
of PI in Table IV has values that correspond to the values
of the 1 —

P& column for N =16 in Table III, which sup-
ports the consistency of our calculations. Note also that
all values of the P& column in Table IV resemble the 3—5
column of PI; as if the linear probability of bead no. 4 in
the chain of 16 beads is representative of the whole chain
(bead no. 1 is located at one of the chain ends). The same
occurs to the chain of N =32 beads, but the representa-
tive bead of the chain is bead no. 7. For N=48 the
representative is bead no. 8; for N =64 it is bead no. 11
for A, & 5; and for X ~ 5 bead no. 9; and for N = 8 it is bead
no. 3. These bead numbers reAect the inhuence of the
chain ends, which is higher for lower N.

4. Further remarks on the b1ob assumption

Simulations on the atomic scale can check assumptions
on which analytical models are based. In this context it

TABLE IV. Values of PI;, the unkink probability, for each group of three beads in a polyelectrolyte chain of 16 beads, at various A, .
For example, the column titled 7—9 gives the probability for a linear statistical bond between beads 7, 8, and 9. The column titled PI
gives the average unkink probability calculated from the values of PI; of the groups of the chain in each row.

PI;

PI 3—5 4—6 5 —7 6—8 7-9 8-10 9-11 10-12 11-13 12- 14 13-15 14- 16

0
0.5
1

1.5
2
2.5
3

5
6
7
8

0.225
0.258
0.291
0.325
0.356
0.390
0.424
0.490
0.549
0.600
0.680
0.747

0.209
0.224
0.232
0.251
0.260
0.278
0.286
0.316
0.345
0.377
0.395
0.433

0.222
0.241
0.269
0.293
0.318
0.352
0.368
0.413
0.464
0.521
0.567
0.608

0.223
0.260
0.289
0.329
0.352
0.382
0.420
0.477
0.544
0.614
0.664
0.738

0.224
0.260
0.297
0.341
0.376
0.412
0.446
0.523
0.596
0.678
0.737
0.812

0.236
0.266
0.309
0.349
0.390
0.429
0.468
0.549
0.625
0.709
0.779
0.853

0.227
0.275
0.315
0.360
0.402
0.432
0.487
0.567
0.639
0.746
0.805
0.877

0.234
0.276
0.313
0.357
0.406
0.443
0.492
0.586
0.649
0.766
0.805
0.900

0.230
0.279
0.321
0.361
0.400
0.442
0.487
0.588
0.643
0.770
0.809
0.894

0.232
0.275
0.318
0.358
0.390
0.434
0.485
0.570
0.626
0.751
0.808
0.879

0.231
0.273
0.312
0.353
0.386
0.427
0.468
0.554
0.609
0.722
0.789
0.862

0.226
0.267
0.303
0.341
0.373
0.415
0.450
0.521
0.582
0.668
0.752
0.819

0.225
0.257
0.288
0.323
0.355
0.388
0.416
0.470
0.542
0.609
0.687
0.740

0.217
0.243
0.266
0.289
0.317
0.346
0.370
0.414
0.467
0.511
0.580
0.608

0.211
0.220
0.239
0.251
0.257
0.278
0.293
0.319
0.351
0.366
0.404
0.434
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condition for a SAW chain.
Barrat and Boyer base their Eq. (23) on the assumption

that the chain is a linear string of blobs, as in Fig. 1 of
Ref. [46]. In view of our results [25,48], which are limit-
ed to X ~ 64, this assumption cannot be confirmed for the
description of such a weakly charged molecule. Even in
terms of the results listed in their Table I, the significance
of the blob concept appears dubious. For the SAW limit,
u~O, the blob is the size of the entire chain. For
u~O. S the blob approaches the size of the monomer.
Thus the possible values of u for blob use are severely
limited and, even in this limited range, the assumption of
a linear string of blobs is not justified enough.

D. 1Vormalized internal squared distances
Q0 o 0

~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~

0.1—

I

8
Bead No.

10
l

14 16

FIG. 4. Values of P&, , the unkink probability, at various
0

values of A, (A) for each three-bead segment of a polyelectrolyte
chain of 16 beads. The bead numbers indicate the middle bead
of the segment. (E.g., segment 3—5 is denoted as bead no. 4).
The values are taken from Table IV.

is important to note that our numerical simulations do
not assume the existence of blobs as a basis for calcula-
tions. The justification for the argument that the mono-
mers inside a blob remain unchanged may possibly be
found by considering a long chain relative to its short
segments. Because each blob contains several monomers,
naturally the mean-square distance over a group of blobs
is D(n), where n is large. The MC results of D(n) for
low n and high n are compared in Fig. 6 and discussed in
Sec. III D. We note here that for higher values of n, the
markers of D(n)/n have higher slopes. Therefore the
change in D (2), the smallest possible blob, may be negli-
gible when compared to the change in D (10), for exam-
ple. This is similar to the assumption made in the blob
hypothesis. When there is a need for greater accuracy in
analytic estimates, the results may be improved by substi-
tuting a slightly larger value for the length of each blob
calculated numerically. When examining a short seg-
ment of the chain, the blob hypothesis is not applicable
and numerical methods are preferable.

In their recent article, Barrat and Boyer [37] discuss
internal distances and blobs in a clear manner. In com-
paring our model with theirs, it should be noted that, as
they mention, their model does not take into account the
short-range excluded-volume effects. This is especially
important in comparing internal distances of short seg-
ments. The value of their coupling parameter u =0. 1 is
equivalent to our A, =0.4 A, since u =A, /d and our d =4
A. The condition 1=0.4 A is close to A, =O, which is the

I.O

0.9—

0.8—

8 ~
l6 o
32
48 o
64

C=O

n =3

0.7—

0,6-

ci c: 05—

O. I—

FIG. 5. Values of normalized mean-squared internal dis-
tances (in cell units) D (3)/3 vs A, (A) for a bare polyelectrolyte
chain (C =OM), for various number N of chain beads.

It is diKcult to compare values of D(n) for various n

on the same plot. This difticulty can be overcome by us-
ing the normalized values ofD (n), i.e., D (n) values divid-
ed by the maximum possible expansion n . In Figs. 3 and
5, respectively, we plot D(2)/4 and D(3)/9, the "nor-
malized internal distances" of D (2) and D (3) for various
chain lengths. The values of D(n)/n fall naturally be-
tween zero and unity. A value close to unity denotes al-
most a straight line configuration and a low value denotes
high coiling. This implies that the parameter D(n)/n
may be considered as an inverse measure of the flexibility.
It is seen from Figs. 3 and S that as A. increases, the
values of D(n)/n increase. That is, the Ilexibility de-
creases when the chain straightens out into a rod.

It is interesting to note that over the investigated range
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of A, , D(2)/4 (Fig. 3) varies from -0.6 to —1, while
D (3)/9 (Fig. 5) varies from -0.4 to —1. The difference
in this range of values reflects the difference in flexibility
caused by a single additional bead being involved in the
internal segments of the chain whose end-to-end distance
is investigated. The flexibility parameter (for A, =O) clear-
ly stresses the advantage of a long chain over a short
chain, namely, that long chains can be arranged in more
geometrical configurations than short chains, thus gain-
ing higher entropies. This is true for the entire chain as
well as for its internal segments.

The large size effect, pointed out in Ref. [34] and in the
discussion of the data of Tables I and II, is also seen in
Figs. 3 and 5. The values of D (n)/n are close together
for various N at A, =O, while at A.AO the values of
D(n)/n for long chains are higher than those for short
chains. Because n is the same in these figures for all N,
the differences in D(n)/n stem from the values of D(n),
which was found in Tables I and II to have large size
effects. This indicates that long chains at A, WO are less
flexible than short chains, as was already shown in Ref.
[34], using the parameter g. These differences in flexibili-
ty with chain length at A.AO may be the reason for the
failure of the scaling theory to yield the same value for
the exponent with different chain lengths in this regime
of N [21,49].

This idea, together with the idea that at A, =0 scaling is
known to be valid, implies that g (or P&) has a unique
value. Values of ln(S ) vs lnN for chains with PI =0.61
were plotted. The values for (S } were taken at points
of A, for which PI =0.61 intersects the curves in Fig. 2,
and similarly for P& =0.50 and 0.40. The plots are not in-
cluded in this article since the data is incomplete, but it is
important to report here that straight lines were formed.

This indicates that for identical g or PI, scaling is valid,
and polymer chains with different g's have different ex-
ponents. Further investigation of this issue is planned.

Note that D (3) at A, =O (SAW chain) seems to attain a
constant value of 4.2 (see Table II and Fig. 8). The
significance of D (3) will be discussed in a future article.

The differences between the values of D ( n ) /n for
various values of n in a chain of N beads become clearer
from Fig. 6 where values of D (n)/n for various internal
segments n are depicted for a chain of X =32 beads. One
observes that the "starting" values at A, =O are smaller
for longer segments, i.e., larger flexibilities for long SAW
subchains, and that all D (n)/n values increase as A. in-
creases. It is easy to compare from Fig. 6 the normalized
values of D(2),D(3), . . . , D(n). Small n have higher
normalized values for the whole range of A, , which im-
plies lower flexibilities. The variance in these norma1ized
values with A, is also interesting. It seems that the higher
values of n have larger slopes, indicating that large values
of n are more sensitive to changes in A, than small values of
n. The idea that changes due to physical conditions (A, )
are small for short segments and large for long segments
is reminiscent of the butterfly effect in chaos.

It is also clear from Fig. 6 that all D ( n ) /n increase
gradually as A, increases. There exists no normalized
internal square distance for any value of n that is not
affected by A,.

I.O—

C=0
N =52

0.7

0.6
C

Cl
0.5

0.4

0.3
i

29
50, 31 0

FIG. 6. Values of various normalized mean-squared internal
distances (in cell units) D (n) /n vs A, (A) for a chain of N =32
beads, for a bare polyelectrolyte chain (C =OM). The half-filled
triangles denote values of the uncontact probability P„, calcu-
lated from values of the average number of contacts ( n, ) [25],
using Eq. (9). X denotes values of (S )/ —,

' (X—1) . A dashed
line has been drawn to guide the eye. + denotes values of P&

[calculated from the values of D (2) using Eq. (2)]. A solid line
has been drawn to guide the eye.

E. Contact fraction and the uncontact probability

P„,=1—(n, ) /(N —3) . (9)

In Fig. 6, we plot P„, calculated using Eq. (9) from the
values of ( n, } for a chain of N =32 beads [25], for vari-
ous values of A, . From the figure one can observe that the
values of PI and (S }/—,', (N —1) are close to each other
(especially for A. ~ 1). The values of P„, located at the top
of the figure are very different from the values of PI,
which indicates that (S )/ —,', (N —1) is very different
from P„,. (Note that the values of P„, are closer to unity
than any of the PI values. )

This difference in the values between these parameters

Similarly to the kink fraction g, we can define the con-
tact fraction g, :

g, =(n, ) /(N —3),
where ( n, ) is the average number of all types of contacts
in a polymer chain [25] and N —3 is the maximum num-

ber of contacts in the chain.
Similarly, regarding the relation between PI and g, we

can define P„„the uncontact probability, i.e., the proba-
bility of not having a contact in a chain.
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also suggests that (S ) is influenced by P, (or g), which
is connected to the average number of linear bonds (or
their complementary quantity, (nz;„k) ), and not by the
average number of contacts. This result supports the
similar result obtained by a different method (salt sensi-
tivity) in Ref. [34j. In fact, we have already proved this
numerically arid plan to discuss it in a future article.

F. New relation between D (N/2) and (S )

D(N/2) =3(S'(N)) . (10)

It is interesting to note that the average value of the ra-
tio (S )/(R ) decreases from —,

' to —,', with increasing A,

(as can be seen in Table III of Ref. [17(a)]). This is in
contrast to the ratio D (N/2)/(S ), which remains con-
stant with increase of X, as observed from Fig. 7.

N

8
l6

52
o 48

64

e=o

nd
(A 4 L k

I p, g ~ ~ I I I
Z(e

FIG. 7. Values of mean-squared internal distance of half-
chain divided by the mean-square radius of gyration of the

0
chain, vs A, (A) for various N chain beads, for a bare polyelec-
trolyte (C =0M).

Figure 6 shows values for normalized parameters
D (N/2) and (S ). It is surprising to find that the mark-
ers of the two parameters are close to each other. (S )
is normalized by dividing (S ) by the maximum mean-
square radius of gyration of a rod, i.e., for X =32 by di-
viding (S ) by —,', (31) . The normalized (S ) values are
close to the markers of D(16)/16 . We found the same
phenomenon for a charged chain of N =48 (not shown).
This indicates proportionality between the values of (S )
and D(n) when n equals half the number of beads
(n =N/2). This interesting relation is described further
in Fig. 7.

Values of the ratio D (N/2)/(S ) are shown in Fig. 7
for various chain lengths N at various A, . It is clearly seen
that for the given range of X and A, , there is an almost
fixed ratio of 3:1 between the two parameters. Thus,
from the Monte Carlo simulations of polyelectrolytes, it
is found empirically that for 0 ~ A, ~ 8, X ~ 64,

G. Proportionality between I'~ and D (X/3)

Values of P& calculated from Eq. (2) are also plotted for
X =32 in Fig. 6. These values are close to the values of
D (10)/100 also shown in Fig. 6. The same calculations
were made for X =48 and N =64 and values of PI were
found to be close to the values of D ( n ) /n, where
n =X/3.

An additional empirical relation is thus derived from
the simulations.

Pi =D (N/3)/(N/3)

for 0~ A, + 8 and X + 64.
It must also be added that the values for D(2)/4 for

X =32 in Fig. 6 lie on a straight line for values of A, be-
tween 0 and 5. All the D(n)/n values for n )2 have a
higher slope from A, =O to A, = 1. For 1 ~ A, ~ 5 and
2(n ~20, straight lines are observed. (Note that these
results may be changed when NA32). It is also observed
from this figure that the values of D(n)/n for n other
than the extreme values (i.e., n&2, 29, 30, 31) converge
around A, = 8 and the ratio D (n )/n takes an almost fixed
value at this A, .

H. Values of D ( n ) at A, =0 (neutral chain)

Although this article deals with charged chains, it is
interesting to look at the plot of the mean-squared dis-
tance D(n) for various chain lengths N for uncharged
chains (SAW chains, A, =O) shown in Fig. 8. Because the
values of D(n) here are not normalized, it is possible to
show only a few members of the family of D(n) on the
same scale. The D (n) of a specific n may be an internal
distance in one case, and an end-to-end distance in anoth-
er case. For the case of D (7) in a chain of N = 8 beads, it
is exactly the mean-squared end-to-end distance. For
N =32 beads, D (7) is an internal mean-squared distance.
The two cases have different values for D(7) because the
excluded volume is di6'erent in each case. The excluded
volume, when D(7) is an internal distance, is greater
than when it is an end-to-end distance, because near the
end there is less steric hindrance. The value of D (7) in a
chain of N = 8 chain beads is therefore smaller than for
X = 16 chain beads, and this is smaller than for X=32,
as can be seen from Fig. 8.

The transition from an internal distance to an end-to-
end distance causes a sharp decrease in the value of D (7)
when X is decreased to %=8. Despite the fact that for
N = 8, D (6) is internal, we can observe the same behavior
described above for D (7): a sharp decrease when N is de-
creased to N=8. The reason is similar, because D(6)
constitutes most of the chain and for such distances, the
chain already is close to the ends. It is probable that
when N is three or four times larger than n, the D(n)
may be considered as an internal distance. This may be
the cause for the difference in the values of D (8), D (9),
and D (10) between N =32 and N =48.

It is interesting to note that D(2) is less sensitive to
changes in X. This can be seen from the Rat curve of
D (2) in Fig. 8. This may be caused by the fact that this
three-bead square distances plays the role of an internal
distance even for N =6, the lowest X considered in this
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in the Brookhaven Protein Data Bank. The idea that
there exist various potentials for various internal dis-
tances of the chain supports our claim that in the charged
macromolecular system there exist a new type of physical
statistical bonds (see the beginning of Sec. III and Refs.
[25,34]). It also supports the main idea of this article that
these statistical bonds vary with different internal dis-
tances. In this context, based also on results not yet pub-
lished, we extend the existence of the new type of bonds
to macromolecular systems of various types of charges.

IV. SUMMARY
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FIG. 8. Values of various mean-squared internal distances

(squared cell units) from D(2) to D(10) vs N (the number of
chain beads), for a self-avoiding-walk chain (or for a polyelec-

trolyte chain at A, =O).

subsection. But from the slight increase with Xof the first
row of Table I, it can be observed that the inhuence of
the excluded volume is larger when X gets larger, at this
region of X.

It is important to stress that this investigation was car-
ried out for N ~64. However, the general picture may
look different for higher %.

The fiuctuations of D (n) increase with the increase of
n. The subject of deviations is also interesting and re-
quires further investigations.

I. Recent verification of the existence of physical
statistical bonds in charged chains

Verification of the results of a computer model may be
done in several ways: (a) comparison with real experi-
ments; (b) comparison with analytic calculations; (c) self-
consistency; (d) comparison with other computer model-
ing; and (e) changing physical conditions of the measured
system and obtaining reasonable or meaningful results.

We therefore consider it of importance to compare
ideas derived through our charged model to the ideas
behind Table I and Eq. (3) in Kolinski and Skolnick s ar-
ticle [50], derived from a statistical analysis of a set of
high-resolution three-dimensional (3D) structures present

One of the most important results of this study is the
expansion of the new family of physical statistical bonds
by the addition of another bond, the linear statistical
bond. Various internal distances have different behavior
when A, increases. That contacts and kinks are reduced
was shown in previous articles. That linear bonds are in-
creased is demonstrated in this article. The behavior of
other bonds will be reported in the future.

Surprisingly, the kink fraction g, which was defined
previously, has been found in this article [Eq. (7)] to be
related to D(2), the mean-square distance between the
end beads of three adjacent beads. Local and global
properties are therefore found to be connected. From the
global size effect for g, detected previously, here we
derive a local size effect in D (2).

Additional meaning has been given to the kink fraction
g in terms of the kink probability, defined as 1 —P„where
PI is the probability for a linear statistical bond. The
average number of linear statistical bonds has been found
to increase with increasing A, (Fig. 2), i.e., with tempera-
ture or dielectric constant decrease, or with increase of
bead charge. The increase in the number of linear bonds
with the increase of A, corresponds to the decrease of
kinks with increasing A, . The increase stems from the
connectivity of the polymer chain where disappearance of
a kink must cause an increase in the number of linear
bonds. The increase in the number of linear bonds along
the chain has been examined. A new parameter PI;, the
unkink probability for each group of three adjacent
beads, has been defined. At A, =O (SAW chain) all chain
beads have been found to have the same value of PI;, ex-
cept the ends, which have been found to be slightly more
bent. At high A, , a vast difference has been found between
the bent beads near the chain ends and the almost Hat
part in the middle of the chain (Sec. III C 3).

D (3) has been also found to have a constant value at
X=0. More details about this will be reported in a future
article.

The normalized internal mean-squared distance
D (n)/n at large values of n has been found to be more
sensitive to changes in A, than at small values of n (Fig. 6).
Thus, when the chain is free to choose its own shape as
determined by the charge on its backbone, the changes
due to physical conditions (expressed by A, ) are small for
short segments but very large for long segments.
D(n)/n has been suggested to be used as an inverse
measure of segment Aexibility.

The value of P& and (S ) / —,', (Ã —l ) has been found
to be nearly equal, whereas P„„the probability of not
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having a contact (defined in Sec. III E), has been found to
have much higher values (Fig. 6). This means that (S )
appears to be influenced by the average number of linear
bonds or of their complement, the average number of
kinks ((n„;„„)+ (n„„„., ) =X—2), and not by the aver-
age number of contacts. A suggestion that a unique g is
connected to the scaling has been raised. Empirical rela-
tions that connect the new parameters and the previously
defined parameters have been found [Eqs. (10) and (11)].

End-to-end and internal mean-squared distances have
been examined and the effect of the closeness of an inter-
nal distance to the chain end has been discussed (Sec.
III H). In future work we will use internal distances to
define additional new parameters that will increase the
understanding of the unfolding mechanism.

Heuristic as well as numerical arguments have been
given regarding the limitations on the applicability the
blob concept (Secs. III C2 and III C4). The feeling that
the blob picture is insufficient to explain chain expansion
and that there must be some rules that describe the ex-
pansion was behind our new approach in polymer simula-
tions. This approach, to describe the mechanism through

which the macromolecule changes from a coil to a rod,
was reported by one of us through the contact matrices
but was considered even earlier in a nonmatrix form that
will be reported in the future.

The expanding polyelectrolyte is a specific case of poly-
mer expansion in general. The results of its investigation
may be applicable to other cases. In future articles we
plan to describe the preferred configurations in greater
detail. We note here that the chain gets rid of those
configurations with higher energy, yet tries to retain bend
configurations since it costs entropy to lose them. The
maneuvers made by the chain as A, increases is one of the
subjects of our planned future articles.
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