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Dynamics of near-critical polymer gels
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We report the viscosity and the modulus of near-critical polyester gels. Previous work has shown that
these gels lie in the middle of the static crossover between mean-field and critical percolation. Above the
gel point, the modulus data are well described by the scaling law attributing kT of stored elastic energy
per unentangled network strand. Below the gel point, the viscosity data disagree with both the de
Gennes conductivity analogy and the Rouse model, possibly due to a subtle effect of chain entanglement.
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INTRODUCTION

Polymerization involving monomers with functionality
larger than 2 leads to the formation of branched poly-
mers and ultimately gels. The problem of polymer gela-
tion has been recognized as a phase transition in connec-
tivity, and percolation ideas have been used to interpret
both static [1,2] and dynamic [2] data. While the static
properties of branched polymers and gels near the gel
point are apparently well understood in terms of critical
percolation and the crossover to the mean field [3,4], our
understanding of dynamics lags far behind. Here we
present a complete set of data for the dynamics of near-
critical polymer gels that have been extensively charac-
terized in terms of static properties [4]. The crucial ad-
vantages of this study over previous ones are that (i) the
reaction is stopped and samples are fully characterized in
terms of molecular weight distribution both above and
below the gel point (and gel fraction beyond the gel
point), (ii) the gelation reaction proceeds at elevated tem-
perature by an interchange reaction that maintains ergo-
dicity in the gels [4], and (iii) there is a range of tempera-
tures between the glass transition (Ts—=60'C) and the
temperature below which the reaction is effectively
stopped (-130'C) that allows for viscoelastic measure-
ments to be made.

BACKGROUND THEORY

A random step-growth branching process initially
creates small randomly branched polymers. As the reac-

The characteristic largest molecular weight diverges with
exponent 1/rr, as the gel point is approached from either
side:

M,„.,—/p
—p, /

(2)

The extent of reaction p ranges from zero initially to uni-
ty for complete reaction, and p, is the critical extent of
reaction (the gel point).

The measurable static quantities of interest are defined
as moments of the molecular weight distribution. The

tion proceeds, the viscosity of the liquid builds as the po-
lymers link together to form larger randomly branched
polymers. At the gel point, the viscosity diverges and an
incipient macroscopic gel is formed. The presence of the
gel makes the sample a solid, with a steady-state modulus
that grows as the reaction continues.

Both the mean-field and critical percolation theories
predict similar power-law forms for the divergence and
growth of various measurable quantities near the gel
point. The main distinction between the two theories is
in the values of the scaling exponents, summarized in
Table I and defined below. The static quantities [1] we
are concerned with are all connected to the distribution
of molecular weights, defined as n(M), the number densi-
ty of molecules with mass M. This distribution is a
power law (with Fisher exponent r) near the gel point,
truncated by a cutoff function f at the characteristic larg-
est molecular weight Mchar'

n(M)=M 'f(M/M, h„) .

Theory

TABLE I. Static-exponent predictions [1].
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kth moment of the distribution is defined as an I-
weighted sum:

m„= y M "n(M) —fp
—p, f'-'-"' .

K
(3)

P,.)-(p —p, » p&p, . (4)

The order parameter for the phase transition is the gel
fraction P,j, which is related to the first moment m&

(P,i is zero below the gel point, and grows beyond the
gel point with exponent P):

G =nk—Tg (15)

where n is the number of overlapping network strands in
the volume g". In general, n is determined [11]as the ra-
tio of the gel fraction and the density of a single network
strand inside the volume g, hence

case [3] (mean-field) and the crossover between mean-field
and critical behaviors, network strands overlap. Rubber
elasticity [10] predicts the modulus of gels to be kT per
elastically active network strand. If network strands are
not entangled with each other, one expects

The weight-average molecular weight M is the ratio
of the first and second moments of the distribution, and
diverges with exponent y as the gel point is approached
from either side:

p gd D( —
)P

—v(d D)—
( )(T i )/cr —dv

C (16)

M —
fp

—p f (5)

Scaling relations among the static exponents [1] can be
obtained from the k = 1 and 2 cases of Eq. (3):

)8=(r—2) /o,
y=(3 r)/—cr .

(6)

(7)

4'-fp —p, f

'. (8)

The size of the largest branched polymer is the correla-
tion length [1],which diverges with exponent v as the gel
point is approached from either side:

For the critical percolation, hyperscaling [1] requires
(r —I )/cr =0v, so n is a constant of order unity indepen-
dent of the extent of the reaction, leading to (14), while in
the mean field, n ~ 1 and increases with fp

—p, f. Com-
bining Eqs. (15) and (16) we get

t =(r—I )/o, (17)

obtained previously for the critical percolation [12] but
valid for the mean field as well, if entanglernents are not
important. In the critical percolation limit, hyperscaling
[1] equates (14) and (17). Using the general result (17), a
simple relation between modulus and experimentally
measured quantities emerges for unentangled gels:

The fractal dimension D is defined in the usual way,
i.e., M,h„-g, resulting in another useful scaling rela-
tion:

G-(p —p )' "/ -(p —p )r+'~

-P,&/M, p &p, . (18)

D = 1/( cr v ) . (9)

(p p) M /r —
M p( (10)

The equilibrium modulus 6 grows beyond the gel point
with exponent t:

G —(p —p )'-M '/r-M ' -P'/~ p )p
At the critical point, the frequency dependence of visco-
elastic response obeys a power law [5]:

G*(co)-(ice)", p =p, . (12)

From a simple self-consistency argument [6], based on
earlier work on dielectric properties of percolation clus-
ters [7], it has been suggested that there are only two in-
dependent dynamic exponents:

u =t/(s+t) . (13)

One idea [8,9] for the equilibrium modulus of percolation
networks is that it is proportional to kT per correlation
volume g, leading to

t=dv, (14)

where d =3 (space dimension). For the vulcanization

Dynamic critical exponents are defined as follows [2].
The viscosity g diverges below the gel point with ex-
ponent s:

g2 (p p )
—(1/o +2v) (19)

The viscosity is determined as the product of the longest
relaxation time and the inodulus at that time [14]. Since
the Rouse model effectively assigns kT per mode, this
modulus scales in the same way as the modulus above the

Much earlier, de Gennes [13] suggested a difFerent idea
for the modulus, based on an analogy with the conduc-
tivity of a percolating system of resistors, predicting
t =—1.9.

The Rouse model [14] describes polymer dynamics
when hydrodynamic interactions are negligible and
chains are unentangled. For critical percolation, hyper-
scaling dictates that branched polymers of a given size
only overlap with smaller ones [15], so entanglement
effects are not expected to be important in the critical re-
gime. In fact, above the gel point we have shown [16]
that permanent entanglements do not become important
until far into the mean-field regime, so it is relevant to
discuss unentangled dynamics for the mean-field regime
as well.

As discussed previously [12], since Rouse dynamics
predicts a friction coefficient g proportional to mass m,
the diffusion coefficient D =kT/g-m . The relaxation
time T of a branched polymer is the time it takes to
diffuse a distance equal to its size r, so T= r /D -mr-
For the longest relaxation time T we apply this reasoning
to the largest branched polymer:
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gel point, Eq. (18):

(20)

u =D(r 1)/(2—+D) . (21)

Martin, Adolf, and Wilcoxon [9] arrived at a Rouse
prediction for the exponent s =(D —4+2)v, where D is
the fractal dimension. This prediction is related to Eq.
(20) by using hyperscaling, which is only valid in the per-
colation limit [1]. Thus we believe Eq. (20), originally de-
rived by de Gennes [17], to be the general result for the
Rouse model, in that it is valid for both the critical per-
colation and the mean field as long as entanglements and
hydrodynamic interactions are negligible.

The Rouse model predicts the power-law viscoelastic
response of Eq. (12) with [12]

could be measured in all geometries. The equilibrium
modulus was taken as the limiting value of 6' at low fre-
quencies. For the sample closest to the gel point, 6' had
not quite leveled off at the lowest frequency, and the re-
ported modulus is based on an extrapolation that is cer-
tainly accurate to within a factor of 1.5.

RESULTS

As discussed in Ref. [4], we were not able to determine
the extent of the reaction p with adequate precision to
evaluate critical exponents. We therefore plot quantities
determined with better precision against one another and
evaluate ratios of critical exponents. In Fig. 1, we plot
the modulus above the gel point against the weight-
average molecular weight and the characteristic largest
molecular weight of the sol fraction. The apparent power
law for 6 vs M determines

An alternate idea about the viscosity exponent s was
suggested by de Gennes [18] through an analogy with the
divergence of conductance in a percolating system of su-
perconductors and resistors. This superconductivity ex-
ponent has been suggested to be [19]

s =v —13/2=[(D —d )/2+1]v,
exactly half the Rouse value.

(22)

EXPERIMENT

The preparation and molecular characterization of all
samples have been discussed previously [20,4]. The five
samples below the gel point were 91B—F of Ref. [20] (also
discussed elsewhere [12]). The 12 samples above the gel
point were C and E—0 of Ref. [4]. Experimentally [4]
the Fisher exponent r=2. 35+0.03 (95%), and hence the
samples are roughly in the middle of the crossover be-
tween the critical percolation (r=2.2) and the mean field
(r=2. 5).

Viscosity was measured for samples below the gel point
at a temperature 41 K above the glass transition [12] by
two methods. The viscosity of samples far below the gel
point was determined from the low-frequency response in
a Rheometrics System Four rheometer using oscillatory
shear between parallel circular plates. Closer to the gel
point torsional creep in a magnetic elevation creep ap-
paratus (Time-Temperature Instruments) was used due to
the long relaxation times involved (also in parallel plate
geometry). Agreement between the two techniques was
excellent.

Beyond the gel point, serrated parallel plates were
used, due to problems experienced with sample slippage
at the sample/plate interface in the smooth parallel plate
geometry. This slip is presumably caused by a small layer
of col being squeezed out of the gel to wet the plates. For
the linear viscoelastic response studied here, the only
effect of the serrations is a constant apparent shift in the
modulus scale of 1.49 due to the irregular geometry, as
evidenced by identical frequency dependences of the ratio
6'/6" for different serration depths. The shift was cali-
brated with linear polymers, whose viscoelastic response

t /y =2. 16+0.55 (95% ) .

The power law for 6 vs M,h„yields

ta=1.44+0'. 27 (95%%uo ) .
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FIG. 1. Modulus as functions of M (filled symbols) and
M,h„(open symbols). Lines are linear regression.

The conductivity analogy grossly underpredicts both t/y
(= 1.06) and to (=0.87). However, the experimental
values for both t /y and to are between the predictions of
the critical percolation (t/y=1. 48 and ter =1.23) and
the mean field (t/@ =3 and ter =3/2) based on Eq. (17).
Our system is known from static measurements [4,20] to
be roughly in the middle of the crossover between the
two limits. Since 0.46 ~ o. ~ 0.50, we conclude

t =3.0+0.7 (95%),
inconsistent with the conductivity analog [13] (r =1.9)
and strongly supporting the prediction of Eq. (18)
(r =2.6) for the critical percolation and t =3 for the mean
field).



48 DYNAMICS OF NEAR-CRITICAL POLYMER GELS 3715

We previously reported [12] the exponent u =0.69+0.02
for our polyester system. Since we have measured s/y,
t/y, and u for the same system, we can test Eq. (13), and

105-

Q
o 104—
Z3

103

107
I I I I I I I I

i

106
I I I I I I I

)

10-5
2

gel

I I I I I I lli
10-4

FICx. 2. Modulus as a function of gel fraction squared divided

by weight-average molecular weight of the sol. Line is linear re-
gression.

A plot of modulus vs gel fraction (not shown) yields a
slope

t //3=4. 02+0. 82 (95%),
which agrees with the conductivity analogy (t/P=4. 4).
However, this apparent agreement is actually fortuitous
based on the serious underpredictions of the conduc-
tivity model for t/y and ta noted above. Using the
scaling relation [1] p= (r—2)/I7, Eq. (17) predicts
t /P=(r —1)/(r —2), so the experimental value of t/P is
between the mean field (t/P=3) and critical (t/@=6. 2)
limits of Eq. (17), once again consistent with the cross-
over. The apparent ~=2. 35 leads to the prediction
t/jr=3. 9, in good agreement with experiment.

The physics embodied in Eqs. (15) and (18) should be
valid for unentangled gels, irrespective of the static
universality class. We test Eq. (18) in Fig. 2, where we
plot the modulus as a function of the square of the gel
fraction divided by the weight-average molecular weight
of the sol. Clearly, Fig. 2 has the expected slope of unity
within experimental error [the slope is 1.06+0.21 (95%)].
We conclude from Fig. 2 that Eqs. (15) and (18) describe
the modulus of our gels.

In Fig. 3 we plot viscosity data below the gel point
against weight-average molecular weight and characteris-
tic largest molecular weight. From the power law of g vs
M, we conclude

s /y = 1.02+0. 17 (95% ) .

The power law of g vs M,h„determines

so'=0. 72+0. 10 (95%) .
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FIG. 3. Viscosity as functions of M (filled symbols) and

M,h„c',open symbols). Lines are linear regression.

we find that it works perfectly. Therefore, there are only
two independent dynamic exponents.

DISCUSSION

Both s/y and so. are clearly higher than any of the
available theoretical predictions. The superconductivity
analogy [18,19] predicts s /y =0.37 and s o =0.31. The
Rouse model [9,12] in the mean-field limit predicts
s =s /y =scr =0 (logarithmic divergence of viscosity).
For critical percolation, the Rouse model predicts
s/y=0. 74 and so =0.61. In the crossover we expect
values of s/y and so between zero and the critical per-
colation values. We conclude that neither the Rouse
model nor the superconductivity analogy describes the
viscosity of our branched polyesters. We know that far
into the mean-field regime dynamics will be strongly
influenced by temporary interchain entanglement con-
straints [21]. Both modulus and swelling data [4] indicate
that entanglement effects are unimportant in our poly-
mers above the gel point, so it is surprising that the
Rouse model does not describe the viscosity of our pregel
branched polymers. However, only permanent (trapped)
entanglements affect modulus and swelling beyond the gel
point [16], whereas temporary entanglements may play a
role in viscosity below the gel point [21].

The result for s /y being roughly unity agrees well with
some literature data [22], while other data yield even
higher values [23]. This nonuniversal behavior might be
explained by the samples corresponding to different areas
of the static crossover between the mean field and the
critical percolation, as we suspect that all three systems
lie in the crossover. Of the three, the one that should be
closest to the critical percolation limit, a polyester system
starting with difunctional and trifunctional monomers
[22], has the lowest exponent value, s/y =1.0. The other
two systems were made by end-linking polydimethylsilox-
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anes [23] of molecular weight M =26000. Using a
tetrafunctional crosslinker led to an exponent s/y=1. 5,
while a trifunctional cr os slinker gave an exponent
s/y=2. 6. The reaction rate of a crosslinker's last bond
is typically slower than the others [9]. Therefore, the tri-
functional crosslinker should make for a longer average
chain length between crosslinks at the gel point than the
tetrafunctional one. The chain length between crosslinks
is the control parameter for the crossover [3,4]—the
longer the chain length the closer to the mean-field limit
one gets. Thus all literature data for s/y seem to be con-
sistent with the idea of s/y increasing as chain length be-
tween crosslinks increases (and the mean field is ap-
proached). Clearly, a systematic study of the crossover is
warranted, and such a study is currently being made in
our research group.

CONCLUSIONS

The modulus of our gels beyond the gel point is well
understood in terms of a simple model assigning kT of
stored energy per network strand. This suggests that en-
tanglements are not trapped in our gels, as expected for
gels close enough to the gel point [16]. The exponent
describing the modulus growth just beyond the gel point
is completely determined by static exponents [see Eq.
(17)]. Thus the exponent t is really static in nature, and
there is only one dynamic exponent.

Below the gel point, viscosity is the product of
modulus and relaxation time [see Eq. (20)]. Thus, in anal-

ogy with other phase transitions [24] we define the sole
dynamic exponent in terms of the correlation length g
and its relaxation time T=g/G:

s =vz t =v—z —(r—I)/o,
u =t/(vz) =D(r 1)/z —.

(24)

(25)

Since the measured viscosity exponent is not consistent
with currently available theories, neither is the
relaxation-time exponent. Our best estimate of vz for our
polyester gels comes from Eqs. (9) and (25), since r and u
are measured with high precision and o. is nearly the
same for critical and mean-field percolation:

vz = ( 7.—1 ) /( u cr ) =4. 1+0.4 ( 95% )

Another estimate [25] indicates that vz-=4. 8+0.5 for
end-linking polydimethylsiloxanes of various chain
lengths.

In summary, static exponents (including t) are con-
sistent with percolation ideas, but more theoretical work
is needed to understand the dynamic exponent.

(23)

We expect both modulus and relaxation time to be
characterized by the same scaling exponents above and
below the gel point. We can then write the conventional-
ly defined [2] dynamic exponents for polymer gelation in
terms of this single dynamic exponent and static ex-
ponents [with t given by Eq. (17)]:
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