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Monte Carlo study of phase separation in critical polymer blends
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Dynamics of phase separation in a polymer blend of critical composition is studied by Monte Carlo
simulation of a microscopic lattice model. We find that dynamical scaling is obeyed by both the correla-
tion function and the structure factor at late enough times, and that the asymptotic domain growth ex-
ponent is given by a modified Lifshitz-Slyozov law. We also compare the shape of the scaling function to
the one previously obtained in a numerical study using a phenomenological Flory —Huggins-de Gennes
free-energy functional.

PACS number{s): 61.41.+e, 64.60.Cn, 64.75.+g

I. INTRODUCTION

Foi = f dr f(P(r))+ —~VP(r)~

where f (P), the Landau free-energy for a homogeneous
system, is assumed to have the form

f (4') = ——0'+ —0" .
2 4

(2)

Here, b and u are phenomenological parameters of the
model. The square-gradient term represents the energy
caused to create an interface between domains and the
parameter ~=EX, , where A, is an effective range of in-
teraction between molecules.

The dynamics of the Cahn-Hilliard-Cook model takes
the form of a Langevin equation. It is derived from the
continuity equation expressing the conservation of mass
and a mass current of the form

Understanding the process of phase separation in poly-
mer blends is important both for its fundamental aspect
[1] and for specific materials applications [2,3]. A simple
case is the binary homopolymer blend which consists of
two types of polymer chains: one composed of a certain
type of subunit, or 3-type monomers, and the other con-
structed from B-type monomers. The kinetics of phase
separation [4] in such a polymer blend can be followed
experimentally [1,5,6] over a long period of time due to
the slow diffusion of the polymer chains constituting the
blend. It appears that a fundamental knowledge of the
phase-separation process can lead to good control over
the dynamics of phase separation through a proper
choice of relevant parameters (such as the chain lengths
and the relative extent of the two components) which, in
turn, can significantly affect physical properties, creating
practical importance in materials applications [7].

The theoretical understanding of phase separation in
polymer blends is based largely on extension of methods
used for small-molecule systems. The Cahn-Hilliard-
Cook [4,8] approach to understanding demixing in the
latter systems starts from the coarse-grained Ginzburg-
Landau free-energy functional, which can be written in
terms of the local concentration variable P(r, t), as

j= Vp(P(r))+ j„(r),A

Here M =A/kB T and g is governed by the fluctuation-
dissipation theorem

(i1(r, t), g(r', t') }= —2k' TMV 5(r r')5(t —t')—.

This dynamical equation and the above free-energy func-
tional form the basis for analytic studies of small-
molecule systems. Both analytical [9,10] and numerical
calculations [11,12] based on this model are found to be
useful in understanding experimental results [13].

The extension of the Cahn-Hilliard-Cook model to po-
lymer systems [14—16] involves two refinements to the
free-energy functional. The first involves the free-energy
f (P) for the homogeneous system. Considering an
ideal-gas form for the free-energy density of mixing, and
an effective interaction parameter y, one writes

f (P) =N '[P in/+(1 —P) ln(1 —P)]+yg(1 —P) (6)

for a symmetric blend (where the length of both A and B
chains is X). The other change in the free-energy func-
tional is the addition of a concentration-dependent
coefficient for the square-gradient term. The resulting
Flory —Huggins —de Gennes free-energy functional is

FFHdo 2

B

where a is the Kuhn length of the polymers. Starting
from this free-energy functional, a Langevin equation,
similar to Eq. (4), can be written for the polymer system
as well. Note that the Onsager coefficient in this case is

where A is the Onsager coefficient, the chemical potential
(p, ) is equal to the functional derivative of the free energy
(p=5F/5P), and j„ is the "thermal noise" mass Sow.
The Onsager coefficient measures the response of the sys-
tem to local fluctuations in the chemical potential and is
taken to be a constant. The resulting dynamical equation
1s

Bp 25F=MV +ri(r, t) .
at
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expected to be a function of the volume fraction and the
position vector. As a consequence of this, the spatial and
tempora1 correlation for the thermal noise is more in-
volved than the expression of Eq. (5). However, numeri-
cal simulations of Langevin equations with a constant
Onsager coefficient [17] (which allows a simple form for
the thermal noise correlation) seem to yield the correct
asymptotic growth-law and scaling functions obtained in
experiments [18] on critical polymer blends.

Similar to the small-molecule model, analytic studies of
the phase-separation process have been carried out by
linearizing the evolution equations for the order parame-
ter. These theories are applicable only to early times. As
mentioned above, numerical simulations have recently
been performed [17,19,20) to probe the late-time dynam-
ics of the phase-separation process. For critical
quenches, the results of these simulations suggest that the
growth law for the characteristic domain size R (r) is
given by the classical Lifshitz-Slyozov law [21], i.e.,
R (t)-t'~, independent of the final quench temperature.
It was also found that the late times of the evolution pro-
cess can be described by a scaling hypothesis [4,22] and
that both the pair-correlation function and the structure
factor obey dynamical scaling behavior at late times.
Both the t ' growth law and the scaling behavior for the
structure factor have been confirmed in various experi-
mental studies [5,6,23].

Despite this a posteriori support, it is important to note
that the Flory —Huggins-de Gennes free-energy function-
al used in previous numerical studies describes equilibri-
um behavior in an inhomogeneous polymer blend at a
phenomenological level, and it is not clear at all whether
such a free-energy functional can be used in the none-
quilibrium case of phase separation. The free-energy
functional was postulated by de rennes [14] by adding a
square-gradient term to the Flory-Huggins free-energy
for a homogeneous blend, and the prefactor of the
square-gradient term was obtained by a random-phase
approximation [24]. The difficulty of using such a model
in conjunction with phase segregation has already been
pointed out by several authors [25]. Also, the dynamics
of the system postulated in the Cahn-Hilliard-Cook mod-
el does not have any rigorous justification for polymer
blends [26]. Thus the theoretical approach toward phase
separation as described in the previous section is totally
phenomenological, and questions arise whether this is a
satisfactory description of the phase-separation process in
polymer mixtures.

In this paper, we take a totally different approach and
carry out a Monte Carlo simulation of a model of phase
separation in polymer blends which contains explicit
chain structure for the molecules. Pioneering Monte
Carlo simulation work in this model has been carried out
by Sariban and Binder [27,28]. However, their results for
the dynamics of spinodal decomposition are restricted to
the early time regime [28]. On the other hand, we are in-
terested in the large-scale, late-time structure formation
in the model system. For this reason, we have carried out
a Monte Carlo simulation in a reasonably large three-
dimensional system (64 ) to a late time (our latest time is
more than 20—30 times larger than that accessed in the

above simulation). We find that the system enters a
dynamical scaling regime at su%ciently late times. In
this scaling regime, we find that the microscopic model
yields a growth exponent of —,

' as seen in experiments

[5,6,23] and in previous studies [17] of coarse-grained
models. We also find that the time-independent scaling
function for the microscopic model is similar to that ob-
tained in the coarse-grained model [17].

II. MODEL AND NUMERICAL PROCEDURE

Our simulation involves a simple model of polymer
blends of critical composition (same number of A-type
and 8-type chains). Both species in the blend consist of
chains of length N modeled as a self-avoiding walk of X1
bonds of unit length on a cubic lattice with periodic
boundary conditions in all three directions. The chains
obey the excluded-volume criterion so that no two mono-
mers can occupy the same lattice site. The total mono-
mer concentration of the blend is 0.80, which leaves 20%
of the lattice sites vacant for possible movements. A
model with a vacancy concentration of 0.20 behaves
much like a blend, whereas the absence of any vacancies
would imply that all sites are occupied by monomers, and
no translational motion of the monomers is possible.
Also, as discussed by Sariban and Binder [27,28], the ac-
tual ternary system considered here can be mapped onto
the binary one by a suitable rescaling of parameters. The
lattice used in this study has a side of L =64 and chains
of length %=32. We have carried out several simula-
tions for a 32 lattice as well in order to study possible
finite-size effects.

In the most general case, the phase separation into
domains can result both from an attraction between like
monomers (e~„and Ezii ) and a repulsion between unlike
monomers (e,„z). In the limit of small vacancy concen-
tration one expects that only the combination
E~ii —(E„„+eiiii)/2 would matter. For finite vacancy
contributions, however, Sariban and Binder [28] found
that the attractive interaction between like monomers led
to a collapse of chains and a dramatic lengthening of re-
laxation times. Inducing decomposition using only a
repulsive interaction between like monomer s
(E~„=ski&=O, E~ii =s) does not suffer from this draw-
back. Following Sariban and Binder, we also consider
only a repulsive interaction between unlike monomers in
our simulation and assign a repulsive interaction of
strength +c when two monomers of opposite species
( A -8) are nearest neighbors.

The energetics are handled by the standard Metropolis
algorithm; if a trial motion of a monomer causes a gain in
system energy (bE), that move is accepted only if a ran-
dom number is less than exp( b,E/k~T). The mo—ve-
ments of the chains are implemented via a dynamic
Monte Carlo method which uses three basic types of
motion for the monomers: a local end relocation, kink
jumps for rniddle monomers, and a crank-shaft motion
[29]. Time is measured in units of Monte Carlo moves
per monomer (MCM). No slithering-snake motions of
the chains are explicitly included in the simulation, since
this involves a movement of the whole chain and might
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correspond to a different time scale than the monomer
movements. However, it is possible that the e+ectiue
motion of the chains in this dense system is reptationlike.

Although the dynamics of the Monte Carlo procedure
is somewhat artificial, we expect that the large-scale,
late-time behavior of the model will be similar to the dy-
namics of real, experimental polymer blends at intermedi-
ate times. We note that the model introduced here does
not contain any hydrodynamic interactions, and thus the
late-time behavior seen in experiments [5,6,23] on poly-
mer blends [where the average domain size increases
linearly with time, i.e., R (t) —t ] cannot be obtained from
the present model.

The polymer blend is initially generated by self-
avoiding and mutually avoiding random walks alternat-
ing between A and B chains. The sample is then relaxed
for 10000 MCM in the absence of any repulsive interac-
tions, i.e., at an infinite temperature. At a time denoted
t =0 the system is quenched to a point deep inside the
phase diagram [30] corresponding to a=1.0k~T. The
phase separation then progresses and measurements of
different probes are carried out every 1000 MCM until a
final time of 100000 MCM. The measurements are final-

ly averaged over ten different realizations of the initial
infinite temperature configurations (five of these initial
conditions were carried beyond 50000 MCM). We note
that performing a Monte Carlo simulation of spinodal
decomposition on a 64 lattice is a computationally
demanding task. It took us about 3700 CPU hours of
workstation computing, more than 22 CPU weeks, to
produce these results. Execution would have been only
about five times faster had the code been run on a Cray-
YMP supercomputer since the Monte Carlo method for
lattice chains is not strictly vectorizable.

Measurements of both blend and individual chain
properties are made. For individual chains the radius of
gyration and end-to-end distance are measured. The
probability distribution of the radii of gyration for the
chains at several times is presented in Fig. 1. Note that
the chains undergo a slight but noticeable contraction im-
mediately after the interaction is turned on, but this con-
traction does not progress with time. Thus, the chains do
not collapse in the presence of the repulsive interactions
considered here between unlike monomers. This result is
in agreement with previous simulations of Sariban and
Binder [28], where a chain collapse was seen only in the
presence of attractive interactions between like mono-
mers.

The structure formation in the binary blend is usually
measured by the time-dependent structure factor S(k, t),
which we define to be

0.20
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FIG. 1. Probability distribution of individual chain radii of
gyration, RG, at several times during the phase-separation pro-
cess. The solid line is the distribution before the interaction is
turned on. There is a slight contraction of chains after the
quench.

process to be isotropic and compute the spherically aver-
aged structure factor S(k, t)

Although the location of the structure factor's max-
imum, k, is used experimentally to find the characteris-
tic domain size at some time t, the discrete nature of the
lattice in this model makes it dif6cult to precisely deter-
mine k . Previous work demonstrates that R~, the first
zero in the real-space correlation function, is a good mea-
sure for the average domain size [31,32]. In the present
simulation also, we have found that R is statistically re-
liable, and for an average over ten runs, the statistical er-
ror in R is about 5%. In a discretized lattice the corre-
lation function is the Fourier transformation of S(k, t)
defined by

6 (r, t) = g e'"'S(k, t) .
k

Again a spherical average is taken since the system is iso-
tropic. The correlation function is finally adjusted by
normalizing the function to unity at r =0,

(10)g(r, t)=G(r, t)IG(0, t) .

The length R is then computed by fitting a cubic polyno-
mial to the four points closest to the first sign change in

g (r, t) and finding the polynomial's root with a simple
search.

It is well accepted now that the late stages of many
growth processes can be described in terms of a dynami-
cal scaling [4] with a time-dependent length. The scaling
hypothesis states that at late times R is the only dom-
inant length scale in the blend. If all distances can be
scaled by this length scale, the rescaled pair correlation
function can be written as

g (r, t) =Q[r/R~(t) ]

s(Ir., t)= —z pe'"'(rr(r'+r, )rr(r', () (a()']) . (8)—1

r r

Here, cr(r) is the local difference in concentration and
takes the value + 1 ( —1), if the location r is occupied by
an A (8) type monomer; or zero, if the location r is unoc-
cupied. Note that both sums in the above equation run
over the lattice of linear size L, and n =L is the total
number of points in the lattice. We expect the evolution

and the rescaled structure factor can be written as

(12)

If the scaling hypothesis is satisfied, then Q[p] and @[X]
should be time-independent functions.
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III. RKSUI.TS

After the critical quench, domains rich in either 3- or
8-type monomers form and grow. A typical
configuration of the system at late times (t =100000) is
shown in Fig. 2. The growth of domain size with time
can be seen in the movement of the first zero (which is a
measure of the average domain size R ) to longer lengths
in the normalized correlation functions plotted in Fig. 3.
The exponent of the growth rate of the domains is an im-
portant clue about the dominant growth mechanism. We
present a log-log plot of R in Fig. 4. The linear depen-
dence at late times suggests a power-law relation between
R and t in this regime. A least-squares fit gives an
effective exponent [31] of 0.30+0.03, although the ex-
ponent still seems to be increasing at late times. This ex-
ponent is close to the value of —,

' given by the Lifshitz-
Slyozov evaporation-condensation mechanism. We note
that the exponent found from the slope of the log-log plot
is probably an effective exponent, since one expects that,
at late times, the growth law is given by the form
R (t)=a +br'~ [31], and the additive term affects the
slope of the log-log plot. In order to compute the asymp-
totic exponent we fit our data of R (t) to a form
R (t)=a+br", treating a, b, and n as free parameters.
This yields a value of n =0.35+0.05 for the asymptotic
exponent, which is consistent with the Lifshitz-Slyozov
type growth. A similar growth-law exponent has been
seen in previous numerical work on coarse-grained mod-
els [17] as well as in experiments on polymer blends
[5,6,23] at intermediate times before hydrodynamic
efFects become important.

The dynamical scaling ansatz asserts that in an isotro-
pic phase separation [33] such as this one, there should be
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FIG. 3. Normalized pair correlation function g(r, t) vs dis-
tance r for the Monte Carlo model at different times. The
movement of the first zero of the function to the right rejects
the growth in domain size as phase-separation proceeds.
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only one important, time-dependent length scale in the
system at late times. For the polymer blend, it is expect-
ed that once R~ becomes much larger than the interface
thickness it will become the dominant length scale. In
Fig. 5 the normalized, scaled pair-correlation function is
plotted against rescaled distance r/Rg(t) for several late
times. Clearly the Monte Carlo model shows good scal-
ing behavior at late times (t )20000 MCM), with the
rescaled correlation function for the several times all fal-
ling on the same curve.

The dynamical scaling ansatz for the structure factor
[Eq. (12)) is tested in Fig. 6. We note that due to the lat-
tice discretization, obtaining a clean scaling form for the
structure factor is usually more difticult in numerical
studies. However, as shown in Fig. 6, scaling seems to
work reasonably well at late times as deviation from scal-
ing is most apparent at earlier times. Data shown in Fig.
6 are replotted in Fig. 7 in a log-log form in order to com-
pute the functional form of the structure factor for large
values of the rescaled wave vector. We point out that
there is a weak shoulder in the structure factor around
k=2k, „(t), which has also been observed in experi-

FIG. 2. A two-dimensional cross section (planar view) of a
realization of the Monte Carlo model at t =100000 MCM. The
domains of 3(+) and B(~) are quite distinct and inter-
penetrating. Note that the vacancies are often found at inter-
face but are also found inside domains.

FIG. 4. Log-log plot of growth in the location of the first
zero of the pair-correlation function R~ vs time. The straight
line is a least-squares fit at late times (between t =20000 and
t = 100000), which gives an effective growth exponent of
0.30+0.03.
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FIG. 5. Pair-correlation function g(r, t) vs rescaled distance
r/Rg(t) for the Monte Carlo model at different times. The data

symbols corresponding to different times fall on a single master
curve suggesting dynamica1 scaling behavior at late times.

FIG. 8. Comparison of the time-independent scaling form of
the pair-correlation functions for the Monte Carlo model and
the coarse-grained Flory —Huggins —de Gennes model (taken
from Ref. [17]).
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FIG. 6. Structure factor S(k, t) rescaled with Rg(t), the first
zero of the pair-correlation function, as the characteristic length
scale. The data points from different times fall onto the same
curve.

ments [5,6] and on previous simulations on coarse-
grained Langevin models [17]. For large k, one expects
that the functional form of the structure factor is given
by Porod's law [4,34]: S(k)-k . The straight-line fit
to the data in Fig. 7 for the latest time yields an exponent
of —3.85, which is close to the expected Porod law ex-
ponent of —4. Thus we conclude that our results are
consistent with Porod's law, although we do not have
data over a large range of k.

Finally, we have compared the scaling function for the
pair-correlation function obtained from the Monte Carlo
simulation to the one obtained from a numerical study of
the coarse-grained Flory —Hug gins —de Gennes model.
The result is shown in Fig. 8. In this figure we find that
the two scaling functions are similar. Although there are
some differences between the two scaling functions, a
careful scrutiny of this figure reveals that the scaling
function for the Monte Carlo model is still slowly con-
verging to the scaling function for the coarse-grained
model even at the latest times accessible in this sirnula-
tion. We point out that numerically it is easier to enter
the true, asymptotic scaling regime in coarse-grained
models, whereas in a lattice model, it is extremely time-
consuming to get into the asymptotic scaling regime.
However, from the general grounds of universality and
renormalization-group arguments [9], one would expect
the two models to have the same large-scale, late-time
behavior and that the asymptotic scaling functions in
these two models would be the same.

-6

-7

00000
IV. SUMMARY AND DISCUSSION

-8
-1

ln [kR (t)]

FIG. 7. Log-log plot of the rescaled structure factor for the
Monte Carlo model. The solid line is a least-squares fit to the
data as a test of Porod's law. The slope of this line yields an ex-
ponent of —3.85. Note the weak shoulder at about twice the
wave vector of the maximum.

We have carried out a detailed Monte Carlo simulation
of a lattice model of phase separation in polymer blends
where the long chain structure of the polymer molecules
is explicitly present in the model computations. We find
that the asymptotic growth-law exponent of this model is
given by the Lifshitz-Slyozov result. We also find that
dynamical scaling is satisfied at late times. Comparing
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these results to those obtained from numerical studies of
a phenomenological coarse-grained model using the
Flory —Huggins —de Gennes free-energy functional and
the Langevin dynamica1 equation we find that both the
asymptotic growth-law exponent and the asymptotic scal-
ing functions are similar in these two models.

We point out that the phase diagram for the lattice
model has recently been computed accurately [27], and
this allows one to perform quenches to various off-critical
locations inside the phase boundary. We expect that the
Monte Carlo model calculations will be important for
off-critical quenches as well, since the entropic effects
may lead to a formation of new and unexpected struc-
tures for such quenches. For example, it has been argued
by Kotnis and Muthukumar [20] that the entropic contri-
bution to the Flory —Huggins —de Gennes free-energy
functional (as manifested by the P-dependent gradient
term in this functional) plays an important role for off-
critical quenches even in the unstable region of the phase
diagram, if the equilibrium volume fraction of one of the
components is smaller than the percolation threshold in
three dimensions. In this case the situation becomes
difFerent (nonuniversal) from the small-molecule case be-
cause of the claimed entropic barrier [20] associated with
chain transport between the separated domains of the
minority phase. This arguably destroys the evaporation-
condensation mechanism of Lifshitz-Slyozov growth, and
domains "freeze'* after a short-lived initial growth. A
sharp "transnodal line" [20] would then exist which
separates arrested growth and unarrested growth. The
above picture is drawn form results of computer simula-
tions of a coarse-grained model similar to the one de-
scribed previously. In their model calculation, Kotnis
and Muthukumar use a P-dependent mobility. Since the

fluctuation-dissipation theorem is prohibitively compli-
cated to work out for such a P-dependent mobility, they
did not include thermal Auctuations in their calculations.
On the other hand, our recent study [19]with a constant
mobility (in which case the thermal Auctuations can be
taken into account relatively easily) shows that the freez-
ing of domain growth is actually unstable against thermal
fiuctuations, even when the volume fraction of the minor-
ity phase is below the percolation threshold. Thus, it is
not totally clear whether the entropic barriers suggested
by Kotnis and Muthukumar actually survive in the pres-
ence of thermal noise. This fundamental question of
whether there is an entropic barrier against domain
growth which manifests into a possible transnodal line
separating arrested and unarrested growth can be ad-
dressed in a Monte Carlo study by carrying out several
different quenches at various temperatures and volume
fractions. Since the chain structure of the polymer mole-
cules will remain intact in this model study, definitive
answers about entropic barriers can be answered in this
simulation, The simulation results will be very important
in understanding the mechanism behind the freezing
behavior observed in some recent experiments [35,36].
Such studies are currently underway and the results will
be presented elsewhere.
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