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Phase and amplitude instabilities for Benard-Marangoni convection in fluid layers
with large aspect ratio
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Pattern formation in fluids heated from below is examined in the presence of a free flat surface. On
that surface, the Marangoni effect is taken into account as a second instability mechanism. It is shown
that phase instabilities already known from Rayleigh-Benard convection confine the region of stable hex-
agons and shrink the band of stable wavelengths considerably. The problem is attacked from two sides:
amplitude equations are derived explicitly from the basic hydrodynamic equations and are analyzed with
regard to secondary instabilities. This results in stability diagrams analogous to earlier calculations ob-
tained for parallel rolls in simple Rayleigh-Benard convection. On the other hand, we developed a nu-

merical scheme that allows for a direct integration of the fully-three-dimensional hydrodynamic equa-
tions. This method is described in detail and time series for pattern evolution are presented, showing
phase and amplitude instabilities as expected from the formalism of amplitude equations. Finally we
show the connection between amplitude equations and two-dimensional generalized Ginzburg-Landau
equations. These models may reproduce pattern formation near convective threshold in a quantitative
way. They have the advantage of being more general than the basic equations and they can be treated
numerically in a much easier way. This allows the computation of pattern evolution in very-large-
aspect-ratio systems.

PACS number(s): 47.20.Dr, 47.20.Ky, 47.11.+j

I. INTRODUCTION

Spatial and temporal pattern formation in the field of
hydrodynamic instabilities has attracted great experimen-
tal and theoretical interest since the experimental work of
Benard [1] on thermal convection in fluids at the begin-
ning of the century (for a review see, e.g. , [2—5] and refer-
ences therein). Most of the experimental and theoretical
research is done for Quid vessels with a closed upper sur-
face. A uniform vertical temperature gradient is applied
on a Quid located between two horizontal plates, usually
good thermal conductors, as copper or sapphire. The
external heating, which drives the system away from
thermal equilibrium, induces an unstable density distribu-
tion of the Quid. At a certain critical temperature gra-
dient, convection sets in, in various forms of ordered reg-
ular patterns. In this simple case, pattern formation is
controlled only by the temperature gradient [6].

In the case of Benard-Marangoni (BM) convection, a
second instability mechanism occurs [7]. The fiuid has an
open upper surface and is in contact with the ambient air.
The temperature dependence of the surface tension on
that free surface can destabilize the motionless Quid state,
the liquid starts to move and one very often obtains regu-
lar hexagonal Quid cells with diameter of about the same
size as the depth of the fiuid layer [8—10] (see Fig. 1).
First quantitatively evaluated experiments were per-
formed by Koschmieder [11].

Actually, the patterns first reported by Benard were
caused by this so-called Marangoni effect. Surface-driven
convection gained again actuality due to the possibility of
doing microgravity experiments in space. Without buoy-
ancy forces, the only possible mechanism for the destabil-

ization of a pure Quid layer caused by an externally ap-
plied temperature gradient remains the Marangoni effect.

The purpose of this paper is to compute spatial and
temporal evolution of patterns in BM convection and to
explore the region of stability of hexagons and rolls with
respect to spatially homogeneous amplitude instabilities
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FIG. 1. The Benard-Marangoni instability. A fluid in a rec-
tangular container having the side lengths I „,I ~, 1 with a free

upper surface is heated from below. The motionless heat con-
ducting state becomes unstable at a certain temperature gra-
dient due to buoyancy effects and a temperature-dependent sur-
face tension. A quite regular pattern of fluid motion occurs,
usually in form of hexagonal patterns. In the center of each
hexagon the fluid rises to the top and goes down on the side
walls. The figure shows a stable state found by numerical in-
tegration of the 3D Navier-Stokes and temperature equations
(see Sec. IV). The initial pattern was a randomly distributed
temperature field. The vertical scale of the picture is increased
by a factor of 7.5.
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as well as spatially nonuniform phase instabilities. We
approach this goal on three ways: (i) Investigation of am-
plitude equations for perfect patterns (see, e.g., [12,13]),
(ii) direct numerical integration of the basic hydrodynam-
ic equations, (iii) derivation and integration of two-
dimensional (2D) models, describing three-dimensional
(3D) convection [5,14—17].

For the case of convection between two rigid plates,
secondary instabilities that restrict the stability region of
rolls are well known since the work of Busse as the
cross-roll instability and the zigzag or Eckhaus instability
[18]. In the case of BM convection, we get additional in-
stabilities: the transition from rolls to hexagons and vice
versa as amplitude instabilities as well as sideband insta-
bilities for hexagons. The latter restrict the variation of
the size of stable hexagons drastically to a small band
close to the critical wavelength. Recent experiments by
Koschmieder and Switzer [19]on wavelength selection in
BM convection confirm our computations quite well.
Spatially uniform amplitude instabilities for non-
Boussinesq fluids were calculated earlier, for genera sys-
tems in [20], for BM convection in [21].

The present paper is organized as follows: In the next
section, we give an overview on the hydrodynamic equa-
tions of motion for a Quid undergoing BM convection.
We make the assumption of an infinite Prandtl number
(high viscosity) and of a fiat upper surface. The linear-
ized problem yields the critical line in 2D space of con-
trol parameters where convection sets in. In the third
part we calculate weakly nonlinear solutions, applying
the formalism of amplitude equations. The stability of
the two typically encountered basic patterns, namely,
rolls and hexagons, is discussed with respect to their
wavelength and the distance from threshold. Since there
exists very little experimental material for BM convection
that can be evaluated quantitatively, we perform in the
fourth part direct numerical solutions of the 3D Navier-
Stokes equations. Finally we present a two-dimensional
model based on generalizations of earlier models that
may reproduce the main features of pattern formation
near the threshold of convection. Numerical solutions of
this model are discussed.

II. THE BASIC EQUATIONS
GOVERNING BM CONVECTION

=p(r, t )gza Vp—(r, t )+gb v(r, t ),
V v(r, t)=0,

B,T(r, t)+v(r, t) VT(r, t)=xb, T(r, t),

where zo is the unit vector in vertical direction. In the
Boussinesq approximation the variation of the density p
is neglected except for the external force term, where ~t

results in buoyancy effects. In this term a linear variation
of density with the temperature is assumed:

p(T) =pa[ 1 —a[T(r, t ) —T0]j, (2)

where T0 is the temperature at the bottom plate and the
thermal expansion coefFicient is denoted by e.

For the general representation of the divergence-free
velocity field we make the usual decomposition into a
toroidal and a poloidal part, represented by two scalar
fields:

v(r, t)=V X [p(r, t)zaj+VXVX f[(r, t)z 0j, (3)

where za is the unit vector in vertical direction. Intro-
ducing the variation O(r, t) of the temperature from the
basic linear temperature profile and eliminating the pres-
sure by forming the curl and twice the curl of the
Navier-Stokes equations one arrives at the following set
of evolution equations:

A Quid with density p, viscosity g, and thermal con-
ductivity x. is described by the velocity field v(r, t ), the
temperature field T(r, t ), the pressure p(r, t ), as well as a
state equation for the density. The conservation laws for
an incompressible Quid under the inQuence of an exter-
nally applied gravitational acceleration g read [6] as

p(r, t)[d, v(r, t)+v(r, t).Vv(r, t) j

bb2$(r, t) =R 620(r, t) — [VX VX [v(r, t ) Vv(r, t)] j, ,r

[VX[v(r, t) Vv(r, t)]j, ,
1

Pr (4)

[b, d, jO(r, t)=b2$(r, t)+v—(r, t) VO(r, r),

with the Prandtl number Pr=g/pic and the horizontal
Laplacian 52 8 z+Byy Time and length are scaled by
the vertical diffusion time ~/d and the layer depth d, re-
spectively, and all quantities are dimensionless. The first
control parameter, R, the Rayleigh number, is given by

pagaPdR=—
P(r, t)=g(r, t)=d g(r, t)=0 (6)

for r on the bottom and on the vertical walls and n per-
pendicular. On the lateral walls, we have, in addition,

R is proportional to the (negative) temperature gradient
P. Assuming vanishing velocity components on the
closed boundaries (rigid boundary conditions), (3) leads to
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B,P(r, t)=0, hzg(r, t)=0 . (7) (codimension one) [22]. From Fig. 2, we define the dis-
tance from threshold as

General boundary conditions (BC) for the temperature
Geld can be expressed in the form

BioS(r, t) for z=0,
BSrt =' —Bi,S(r, t) for z=1, (8)

(10)

where the (negative) coefficient y describes the linear
dependence of the surface tension on the temperature
along the surface [7,8]. If the temperature gradient P is
increased, the ratio R/M remains constant. Therefore,
the system can only move on lines that go to the origin of
parameter space. From the two definitions (10) and (5) it
is obvious that the ratio R/M of the two instability
mechanisms and therefore the slope y of these lines can
be changed in the experiment by changing the depth of
the Quid layer (see Fig. 2). In thin fiuid layers, surface
tension is the driving mechanism, in very thick (experi-
mentally not accessible) layers, buoyancy forces are alone
responsible for the formation of fIuid patterns. In the fol-
lowing, that line will be called the "physical line. "

The onset of convection is marked by the critical line

where Bi is another dimensionless parameter, the so-
called Biot number, standing for the ratio of the thermal
conductivity of the corresponding wall and to that of the
fluid. A perfectly conducting boundary corresponds to
Bi—. + ~, a poorly heat conducting boundary to Bi &&1.
In the following we assume that on the bottom of the lay-
er Bio—+ ~, and, since air is a poor conductor compared
to the commonly used fIuids oil or water, on the upper
surface Bi,=0.1. The last condition on the upper surface
links the velocity field to the temperature (see, e.g. , [8,9]).
In terms of the variables S,f, and P they read as

B,p(r, t ) =0, f(r, t ) =0, B,p(r, t ) = MS(r, r—)
at z = 1. Here occurs the second control parameter of the
system, the Marangoni number M:

P(r, t)=0 (12)

in the whole layer [23]. We are left with only two depen-
dent variables, g and 8.

III. PATTERN FORMATION ABOVE
THRESHOLD OF CONVECTION

In this section, we wish to describe pattern formation
in the weakly nonlinear regime, i.e., in the vicinity of the
critical line in the R-M plane. We therefore project the
nonlinear solutions of the basic equations onto a certain
number of Galerkin modes, namely, the eigenfunctions of
the linearized system to Eq. (4) [24] and obtain a large
system of coupled ordinary differential equations for their
amplitudes. The slaving principle [16,24] then allows for
a drastic reduction of dependent variables in mode space.
After elimination of the enslaved (linearly damped)
modes, we are left with a small system of equations that
may be studied in detail, namely, the amplitude equations
(AE). Using two particular solutions of the AE, rolls and
hexagons, we compute stability boundaries depending on
the wavelength of these patterns and the distance from
threshold.

A. Amplitude equations

A general nonlinear solution of Eqs. (4) may be ex-
pressed by

P(r, t ) f,(k,z)
S( )

—~ I d g&(k, t) k2 e
I

and

(13)

R —R, M —M,
R, M,

In the following, we restrict our treatment to the case of
a fluid with a large Prandtl number. This is a very good
approximation for fluids such as water or oil, where Pr is
clearly larger than 1. Then, the second equation of (4)
reads as

hb, 2$(r, t ) =0
and, together with (6,7)

(R,M)

R~ R

FIG. 2. Two-dimensional space of control parameters. If the

temperature gradient is increased, the system moves to the right

on the physical line (dotted). On the right-hand side of the criti-

cal line, the motionless state gets unstable and pattern forma-

tion sets in. The slope tan(p) of the physical line is proportion-

al to the inverse of the height of the Quid layer.

gi(k, t)=(1 ( k, t), —

where f and g are eigenfunctions of the linearized eigen-
value problem to (4) after performing the usual normal-
model analysis [8,22]:

(d, —k ) fi —Rgi =0,
[d' —k' —~ (k') lg +k'f =o

and l labels the difFerent eigenfunctions. The functions f
and g are calculated numerically by a Gnite difFerence
method in vertical direction where the BC (8) and (9) can
be implemented.

Inserting (13) into (4) yields, after multiplication with
the adjoint function go+exp(ik x) and integration over
the spatial coordinates, the system
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B,gi(k, t)=Xi(k )g, (k, t) —g J d k'd k"c
i („(kk'k")gl (k', t)g), (k", t)5(k —k' —k"), (15)

where the coefFicients c are matrix elements that we compute directly from the basic equations for any given set of con-
trol parameters:

+ 2 +c„,,„(kk'k")—=k' dz g,+(k, )fI.(k', )d,gI (k", )
—(k', k") d gI+(k, )gI.(k', )i3,fI-(k", ),

0 0
(16)

where (k, k') denotes the scalar product of k and k'.
Here we are still at the same level of complexity; the infinitely many degrees of freedom intrinsic in the basic partial

differential equations are expressed by an infinite number of mode amplitudes (I(k, t). To eliminate the fast modes by
the linearly growing ones, we divide the eigenmodes into two groups [16,24,25]:

X„(k)=0,—g„(k,t), ~k~=k, , u=—l=l,
+ ~

1,, «0, : g, (k,-t), s= l )—l, or s—= l —1 but ~k Wk, .

In the following we may therefore substitute the index l by u (unstable) or s (stable), depending on the values of l and
~k~. Now we express the amplitudes of the enslaved modes invoking an adiabatic elimination (k, denotes the wave vec-
tor that maximizes A,„). In this case, the dynamics of the enslaved modes is neglected, they follow instantaneously to
the order parameters. The remaining equations for the order parameters g„, the amplitude equations, read (here and in
the following we suppress the index "u" at g and A, ) as

B,g(k, t) =A(k)g(k, t )+ 1 dk'dk" A(k, k', k")g(k', t)g(k", t)5(k —k' —k")

+ fdk'dk"dk"'8(k, k', k",k'")g(k', t)g(k", t)g(k"', t)5(k —k' —k"—k"'), (17)

where k~, ~k'~, ~k" ~, ~k'"~ = ~k, ~. If the system is isotropic in real space, the linear part of the AE may only depend on
k, i.e., the unstable modes lie on a ring in Fourier space with radius k, [17]. The Landau coefficients A and 8 in (17)
are directly related to the matrix elements (16):

A(k, k', k")= —c„„„(k,k', k"),

8(k, k', k",k"') = g „„,c,„„(k"+k"',k', k")[c„„,(k, k', k"+k"')+c„,„(k,k"+k"',k')],1

A,, k"+k"'

where the indices u and s are defined above.

B. Two stationary solutions —Secondary instabilities

Now we discuss the stability of two particular time-
independent solutions of Eqs. (17). One corresponds to
parallel rolls with wave vector k~, having the amplitudes

4(kIt» k=+kR
g(k)= .

0, otherwise,

where

B~ (k~ )g~ (k~ )+A(k~ ) =0

with

BIt (k) =B(k,k, k, —k)+8(k, k, kk)—+B, (k, —k, k, k) .

The quadratic term A of (17) does not contribute to the
roll amplitude since rolls may only couple to odd powers
of the order parameter. The other stationary solution de-
scribes perfect hexagons with side length 4~/3k~ and is
formed by the superposition of six plane waves:

gH(kH), k, =k;, i =1, . . . , 6,
g(k) = .

0, otherwise,

k, —k, +k, =o, k, ,= —k, , k, ~=k

The index i labels the six diferent directions in 2D k
space, see Fig. 3. The amplitude gH is thereby defined as
the larger root of

BH( kH )kH + ~H( kH )kH +~( kH )

with

AH(kH )—:A (k„k2, —k3)+ A (k„—k3, k2),
6

BH(kH ) —= g [B(k„k„k;,—k, )+8(k„k;,k„—k; )

+B(k„k,, —k, ,k, )] .

We now examine the ranges of stability for the two above
calculated solutions of rolls and hexagons in the k-e
plane. Therefore we consider infinitesimal disturbances
u. that may slowly vary in space with the small wave vec-
tor. 5k:

g(k)=g (k, )+u, (k, +5k)e '

with p= gz, gH, respectively.
Inserting (20) into (17) and linearizing with respect to

uj gives the linear 6 X 6 eigenvalue problem [26]:

and [M cr ]u=0, — (21)
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k2

k4, — CC

k5

FIG. 3. Arrangement of the six wave vectors forming regular
hexagons.

where the matrix M depends on control parameters as
well as on k and 5k.

The solution of (21) for spatially homogeneous pertur-
bations (5k =0) may be obtained analytically. For hexa-
gons, it yields the eigenvalues

Here we may distinguish naturally between phase and
amplitude instabilities: The first two eigenvalues are al-
ways zero, the eigenvalue of the general case 5k+0 will
depend in lowest order on (5k )2:

o =o' '(5k) +O((5k) ) .

For o' '&0, a pattern with a slightly different wave vec-
tor (sideband instability) from klan can grow. The lines

o' '(e, kH)=0

denote the phase stability boundaries in the e-k plane of
hexagons with side length 4m/3kH [27]. In contrast to
the case of rolls, the phase stability domain of hexagons is
bounded also from above. A more detailed analysis of
cr' ' shows that there exists no dependence of the phase-
stability boundaries on the direction of 5k with respect to
the primary hexagons (see also [26]). This can be qualita-
tively understood by the fact that a hexagonal lattice has
a sixfold rotational symmetry, in contrast to rolls, where
the two domains bound by transversal (zigzag) and longi-
tudinal (Eckhaus) instability are completely different.
Figure 4 shows the linearly growing patterns for the two
cases 5k~~k, and 5klk, .

The second group of eigenvalues o.
4 5 6 belongs to am-

plitude instabilities. The hexagons can become unstable
to a spatially uniform disturbance with 5k =0. The line

rx4 5(e, k~ )=0

denotes the stability boundary with respect to the transi-
tion from hexagons to rolls. Figure 5(a) shows these two
stability domains for a simplified model where only the
liner part of (17) depend on k, i.e., all Landau coeKcients
in (17) are assumed to be constant.

Applying the same formalism on the linearization with
respect to rolls, the 6X6 system (21) separates into three
2X2 systems. Two of them are equal and define the am-
plitude instabilities, here the transition rolls to hexagons,

FIG. 4. Basic hexagonal pattern (solid) and a pattern caused

by phase instability (dashed) with 5k parallel (left), 5k perpen-
dicular (right) to one of the six wave vectors.

as a lower bound of e. The remaining 2X2 system con-
tains the phase instabilities, namely, the zigzag instability
for 5klkz and the Eckhaus instability for 5k~~k+. The
phase instabilities are not affected by the quadratic Lan-
dau coefficient A.

To be complete, we computed another important am-
plitude instability that confines the stability region for
rolls. It is the cross-roll instability [18) and describes the
growth of rolls with wave number close to the critical one
but perpendicular to the primary ro11 pattern.

The cross-roll, Eckhaus, zigzag, and hexagon instabili-
ties are sketched in Fig. 5(b), again for the approximation
of constant Landau coefficients.

We note that the inclusion of phase instabilities shrinks
the domain of stable hexagons as well as the size of the
hysteric region considerably [Fig. 5(c)]. In contrast to
rolls, the stability domain of hexagons is also bounded
from above. This is in good agreement with experimental
results of the stability of hexagonal convection cells in a
non-Boussinesq Quid where the viscosity is strongly tern-
perature dependent [28].

C. Some results for BM convection
for various parameter values

Now we wish to present numerical computations of
stability domains of rolls and hexagons when we also in-
clude the dependence of the Landau coefficients on wave
vector k. We calculated all coefficients by solving the
linearized problem by a finite difference method for cer-
tain values of the slope of the "physical line, " as defined
in Sec. II. Figures 6(a) —6(d) show the results. Due to the
dependence of the cubic coupling on the wave vector, the
stability lines of the transitions roll-hexagon and vice ver-
sa are inclined to the left. For small values of k, rolls are
preferred since the value of the cubic cross-coupling term
increases. The lines that denote the phase instability of
hexagons are also inclined, but to the right-hand side.
This is due to the shift of k„ the wave vector that maxim-
izes the linear part of (17), to larger values with increas-
ing e. For vanishing Marangoni number, i.e., for fu11y-
buoyancy-driven convection, the situation resembles that
one found in earlier calculations for convection between
two closed surfaces [18]. The only stable patterns are
rolls, their wavelength is 1irnited by the zigzag instability
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FIG. 5. Stability diagram for the case of constant Landau coefficients; (a) stable hexagons in the shaded area, restricted laterally by

phase instabilities and vertically by transition to rolls (top) and transition to conduction (bottom), (b) stable rolls in the shaded area,
confined by transition to hexagons, cross-roll (CR), and zigzag (ZZ) instability. EC denotes the longitudinal Eckhaus phase instabili-
ty. (c) Hysteresis is found in the cross-hatched area in a relatively small region.
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FIG. 6. Stability diagrams for Landau coefficients computed directly for BM convection for different angles y of the physical line.
Solid lines: amplitude instabilities (hexagon rolls and cross rolls); bold lines: phase instabilities; dotted lines: k,„,wave vector that
maximizes the linear growth rate. (a) y=O, no stable hexagons, rolls are limited by zigzag and cross-roll instability (down-hatched).
(b) tp=10, hexagons are stable in the small bubble (up-hatched) around k, . (c) y=20', large area of stable hexagons, confined by
phase instabilities. (d) y=70, no stable rolls possible, hexagons are stable in a small band around k,„. Black dots mark experimen-
tal data obtained from [19]. k in dimensionless units of Eqs. l4).
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for large values and the cross-roll instability for small
values [Fig. 6(a)]. If surface-tension effects are included
but convection is still mainly buoyancy driven, the stabil-
ity range for hexagons appears with a small bubble locat-
ed around k=k, and e=O [Fig. 6(b)). In experiments
done for these parameter values, one should observe rolls
even near threshold. Since it is dif5cult to find a liquid
that has a low enough dependence of surface tension on
temperature, all experiments in BM convection until now
are done for the surface-driven case, i.e., for a much
larger Marangoni number, corresponding to a situation
shown in Fig. 6(d) [11,19,29,30]. But also here, the phase
instabilities restrict the stability region for hexagons
drastically to a narrow band around k, and should there-
fore select the wavelength of the stabilized patterns in a
more or less sharp region. Rolls cannot be stable, even at
larger distance to threshold. In Fig. 6(d) we inserted ex-
perimental results on wavelength selection in BM convec-
tion extracted from the recent work of Koschmieder and
Switzer [19]. The experimentally determined wave-
lengths lay all within our computed region of stability
and confirm our calculations based on amplitude equa-
tions well, even up to 75%%uo above threshold.

IV. NUMERICAL RESULTS OF 3D BASIC
EQUATIONS FOR BM CONVECTION

Since there are only few experimenta1 data on BM con-
vection, we wish to present numerical results coming
from a direct integration of the basic equations (4) for an
infinite Prandtl number. After introducing the numerica1
method followed by a short discussion on numerical sta-
bility as well as numerical accuracy, we present several
time series where the different instability mechanisms dis-
cussed in the previous section can be seen clearly.

=F,(k, r),
where one has to sum up over j on the right-hand side
and the indices i,j denote the N meshpoints in the z direc-
tion, 6, the Kroneckei symbol. D "' stands for the
differential matrix of the nth derivative (see, e.g. , [31]).
The BC in the vertical direction are incorporated in D,'."',
D . ' depends on the Marangoni number, D,-'. ' in the
second equation on the Biot number. We used central
differences on the order 5z. F; denotes the Fourier trans-
form of the left-hand side of (22) in layer L If we combine
0; and P; to a 2X-component vector U of the form

U=(8i pi . 8N 6 )

the task we are left with is the inversion of a band matrix
L at each time step:

LU(k, r+5t ) A=(kr), (24)

that can be performed effectively using standard routines
(see, e.g. , [32]). Here, Cr is introduced as

Cr=(F„O,F2,0, . . . ,F~, O) .

An inverse FFT of 0;(k, t+5t) and g;(k, t+5t) to real
space completes one iteration step. To avoid convolution
sums in Fourier space, the nonlinearities are calculated in
real space using again a finite difference method with grid
spacing Ax, hz for their derivatives. Switching between
real and Fourier space is also known as "pseudo-spectral
method" (see, e.g., [33]).

B. Stability

[5, k"" 2—k D,' '+D, ' ']g. .(k, t+5t) —R0,. (k, t+5t)=(),
(23)

5,, +k' —D,'," 8,(k, t+5t) k—'g, (k, t+5t)
5t

A. Numerical method

We treat Eq. (4) with /=0 in three spatial dimensions
under periodic BC in horizontal directions. To perform
the time integration, we use a semi-implicit one-step-
forward scheme, where the linear part of (4) is treated im-
plicitly, the nonlinear one explicitly:

We wish to show the relation between the size of
5t, b,x, bz, and numerical stability. To this end we have
to linearize (22) around a stable solution and examine the
temporal behavior of an arbitrary disturbance. For the
sake of simplicity we restrict the calculation here to the
two-dimensional case and to free-free BC in the vertical
direction. Then a stationary solution of (4) consists of
parallel rolls and reads, up to the order e, as

6'P(r, t+5t ) RO(r, t+5t ) =—0,

1 —6 8(r, t+5t )+b,,P(r, t+5t )
6t (22)

1/2
4 e E'

8o(x,z ) =—— sin(mz )cosk, x +—sin2vrz,
7T 3 7T

L

4
Po(x, z) =—V3e sin(mz)cosk, x,

(25)

v(r, t) V8(r, t), —8(r, t)
5t

with k, =sr/&2. Inserting (25) into (22) and linearizing
with respect to small disturbances u(k, t) added to (25),
(24) yields a linear iteration rule for u in Fourier space:

with 6t being the time step. To invert the right-hand side
of (22), we apply a fast Fourier transform (FFT) in the
horizontal coordinates x. To calculate the derivatives
with respect to the vertical direction z, we use a finite
difference method. Equations (22) take the discretized
form in each layer i:

Lu(k, t+5t ) =Au(k, t )

with the matrix elements of X given as

66,
Q~=Q~

(26)
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The condition for numerical stability is now that the
spectral radius of the amplification matrix Q,

' ' ' '
I

' ' ' '
I

' ' ' '
I

' ' ' '
I

' ' ' '
I

' ' ' '
I

' ' ' ' '

err& ~

Q=L (27)

is less than 1. We evaluated the spectrum of (27) numeri-
cally for several step sizes b,z, bx, and 5t (Fig. 7). Up to
rather large values of e, we found the restriction

C(bx )6t&
E

where C increases monotonically with b,x but is more or
less independent of Az. Some value for C and Ax are
C =0.030, ~x =A,c /4, C =0.021, Ax =~c /6, C=0.017
bx =A,, /8, and C=0.013, bx =A,, /10 with A,, =2rrlk, .
Finally, we note that the restriction on the time step to
ensure numerical stability is much weaker than that for a
fully explicit scheme. This justifies the larger numerical
effort of the semi-implicit method.
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C. Accuracy

The single-step-forward method yields an accuracy of
order 5t in time [33]. The remaining relative truncation
error 6'„, is of order (5t) and is determined near the
above calculated fixed point by:

6'„,(6t ) =2 max, [A,'(5t /2) —A,. (5t )], (28)

6'„,(5t ) =const x (e6t )z

with const =75 for small e 6t can be extracted.

0.25

0.20

0.15

0.10

0.05

0.1

s s s s I ~ s s s I s s s ~ 1 s

0.2 0.3 0.4

hx = X~/4
tsx = Xs, /S

. X ssx=X~/8
gx =X 10

5t

FIG. 7. The numerical code for the 3D integration of
Navier-Stokes and temperature equation is stable under the hy-

perboles that depend on 5x but that are more or less indepen-
dent of 6z.

where A;(5t) denote the eigenvalues of Q for given 6t.
Figure 8 shows values for the truncation error in percents
for several values of e as a function of the time step. Due
to the increase of the spectral radius of Q when the prod-
uct e 5t approaches the region where the numerical
method gets unstable, the truncation error changes sign
and increases strongly in magnitude. From Fig. 8, the re-
lation

FIG. 8. Numerical error in percent of the two eigenmodes
(solid and dashed) that belong to the two largest eigenvalues as a
function of time step for several e.

D. Results

The numerical code was implemented on a VAX sta-
tion 4000-60 computer. The time series on which we re-
port in this section were calculated on a mesh with
96X72X 15 points. This geometry allows a regular hex-
agonal pattern to fit within the periodic lateral BC. For
this grid size, the method takes 14 s CPU time for one
time iteration. To ensure sufficient accuracy as well as
numerical stability, we choose always e5t &0.01. To
achieve a stationary solution, where the changes in the
dependent variables from one time step to the following
are less than the numerical round of error of the
machine, we need about 10000 iteration steps, resulting
in about 40 h of CPU time for each run.

Evolution of random dot patterns. Starting with a ran-
domly distributed temperature field, we performed two
runs for both the extreme cases of purely buoyancy-
driven convection (q&=0) and completely surface-driven
convection (sp=90). Figure 9 shows the formation of
rolls as well as the motion and eventually the pairwise an-
nihilation of defects until a regular roll structure is stabi-
lized. This is in good agreement with computations of
2D equations (see also the next section) that model con-
vection between rigid surfaces and periodic lateral BC
[14].

On the other hand, surface-driven convection leads
after rather short evolution time to the formation of
small cells and finally to a stable hexagonal pattern (Fig.
10). The final solution shows still a large number of de-
fects. The hexagon pattern is less flexible and penta-
hepta defects cannot slide in the same way through the
structure as roll defects. Since the time for spontaneous
nucleation of hexagons out of the random initial condi-
tion is proportional to e in contrast to the propagation
speed of a hexagonal domain wall in lateral direction that
is proportional to I/e [34], the number of defects in-
creases with e, because local regions of hexagons with
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different orientations are formed at an early stage of evo-
lution (see also the discussion for the formation of rolls in
a 2D model, [35]). The increase of the number of defects
with e is also known from experiments [30]. This may
also explain the very regular hexagonal structures often
found in experiment if e is driven extremely slowly
through threshold [11,19].

Phase unstable rolls, leading to hexagons and vice versa.
We wish to examine the development of a perfect pattern
(parallel rolls or hexagons without dislocations) if its
wave number lies outside the stable regions of the phase
diagrams computed in Sec. III. To this end we start with
a perfect pattern as the initial condition with the wave
vector inside the stable region, usually with k

~

=k, .
After nonlinear saturation and complete stabilization of
this pattern we change the step size Ax of the horizontal
coordinates. This has the same effect as changing the as-
pect ratio as well as the wavelength and enlarges or
shrinks the whole structure. Then we trigger a possible
instability by adding small random perturbations and ex-
amine their spatial evolution in the course of time.

We start with a relatively small M„corresponding to
y=20' and a perfect roll pattern having its wave vector
in the zigzag unstable domain of Fig. 6(c). The zigzag in-
stability indeed occurs rapidly and leads to an almost per-
fect hexagonal pattern (Fig. 11). The small asymmetry

T= 5

T= 20

T= 80

Wn~ C(&)

T = 200

T = 'IO

'Qo O~Oo

&n~ C~)

T = 100

Wn~ &o

T = 700

FIG. 10. Same as Fig. 9, but for @=90' where convection is
purely surface driven. Different regions of hexagons are formed
soon and give rise to a stable pattern showing some grain boun-
daries and lines of penta-hepta defects.
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31

T= 51

T = 200 T = 700 T= 61 T= 191

FIG. 9. Time series of a random dot initial pattern in the
completely buoyancy-driven case. Shown is the temperature
field as viewed from the top of the layer. Completely parallel
rolls are formed eventually. For this and all the following series
we fixed the control parameters to 25 Jo above threshold. @=0,
aspect ratio I „=34.7= 12.OA,„I ~

=26.2 =9.OA,

FIG. 11. Phase instability of rolls that lie outside the stable
region in phase space. Clearly seen is the zigzag instability that
leads eventually to an asymmetric hexagonal pattern, forced by
the periodicity length of the lateral boundaries. y =20,
I =40.8= 13.7A,„I =30.6= 10.3k, .
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T= 30 T= 50

T= 60 70

there is caused by the fact that regular hexagons cannot
match the periodic lateral BC exactly for this aspect ra-
tio. Figure 12 shows the case, where a perfect hexagon
pattern with the wave vector outside of the right bound-
ary of the stable region of Fig. 6(c) evolves via a phase in-
stability to a regular roll pattern.

)f

))
))
))
))
))
))
))

An Ao

T=
Ao

45 T= 63

FIG. 12. Phase instability of hexagons with a wave number
that is too large (k=2.6). After a relatively short transient
phase rolls within the stable wave number range (k=2.25) are
formed and completely stabilized. y =20', I „=29 =9.7A,„
I y 21 8 7 3A

Nu(t)=1 —(B,O(r, t)i, o)„~, (29)

where ( )„~ denotes the average over the horizontal
coordinates. Its temporal development shows the
difI'erent stages of pattern formation. Nusselt numbers
corresponding to the pattern series, Fig. 13, are presented
in Fig. 15.

All the numerical runs performed above give an outline

Phase instabilities for hexagons .Now we switch to
large M„where convection is almost completely surface
drive (p=70 ) and no stable rolls can exist even far above
threshold. We performed two runs at @=0.25, one with
a wave vector too large (Fig. 13), the other one with a
wave number too small (Fig. 14), according to the stabili-
ty diagram Fig. 6(d). In both cases, hexagons within the
stable region evolve after a relatively long time. Two
difFerent processes can be recognized in the early stages
of Figs. 13 and 14. In Fig. 13, a fusion of hexagons takes
place in the central stripe of the layer (t =67). In Fig. 14
a pattern very similar to the so-called mosaic instability
of [28] can be detected for t =86. Smaller hexagons, lo-
cated at the places of the initial cells, are surrounded by
six larger hexagons. This and also the mechanism of cell
fusion was obtained experimentally in [28].

An experimentally accessible quantity is the Nusselt
number. It measures the heat fiux through the Quid layer
and can be computed by [9]

T= 80 T= 83

T= 67 T= 81

T= 86 T= 89

T= 91 T= 97

T= 92 T = 122

T = 123 T = 1100

FIG. 13. Phase instability of hexagons with a wave number
that is too large (k=2.7), now in the surface-driven regime.
Two temporally separated transient phases can be seen, caused
by phase instabilities. The first goes to asymmetric hexagons by
a kind of cell fusion [28] that change again to an eventually
stable hexagonal pattern with a large number of defects.

y —70, I „=27.9=9.3A,„I „=20.9=7.0A,

T = 179 T= 1500

FIG. 14. Phase instability of hexagons with a wave number
that is small (k =1.7), again in the surface-driven regime. The
state at t =86 resembles the mosaic instability in [28]. The pat-
tern shown in the last frame is stable. y =70',
I =44.4= 14.8A,„I =33.2= 11.1A,
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FIG. 15. Temporal behavior of the Nusselt number that be-
longs to the series shown in Fig. 13. The first transient (fusion)
to asymmetric hexagons (t =75) leads to a lower value for Nu
but the resulting pattern is again unstable against phase distur-
bances. The second transient (t =100) increases Nu again and
leads to hexagons inside the stable regime in the k-e plane.

V. A TWO-DIMENSIONAL MODEL EQUATION
DESCRIBING BM CONVECTION NEAR THRESHOLD

After direct numerical treatment of the Navier-Stokes
equation, which is still rather time consuming, we turn
back to the approach considered in Sec. III. There we
derived two-dimensional amplitude equations in Fourier
space by projection onto eigenfunctions in the vertical
direction and elimination of the linearly damped ampli-
tudes.

A. The model

The decisive drawback of amplitude equations is the
lack of a rotationally invariant formulation in 2D real
space. This would require an infinite number of coupled
equations of the form of Eq. (17) since there are infinitely
many directions. A quite elegant method is the construc-
tion of a rapidly varying wave function that contains the
whole spatial dependence of the order parameter [16].
Therefore, we sum up over all directions in real space ac-
cording to

+(x, t ) =j dp gp(x, t )e' '~'"
0

of pattern formation in 3D convection under the
inhuence of several phase and amplitude instabilities.
They confirm well the phase diagrams obtained in the
previous section based on amplitude equations, even up
to a range of 25 —50%%uo above threshold.

The coefficients y; follow from a Taylor expansion of A,

around k, and R, . The nonlinear coefficients a; and b;
are calculated by comparing the mode coupling of (31)
with that of (17), where a fitting to certain coupling an-

gles between two plane waves is required. In particular,
we require an exact coupling to modes with k=O and
k=2k, . Table I shows some values for the coefficients
computed by that method for difFerent angles of the phys-
ical line.

The same procedure for the computation of secondary
instabilities as described in Sec. III can be applied and
yields qualitatively comparable results. In particular we
find the transitions from rolls to hexagons and back, as
well as stability boundaries of rolls and hexagons with
respect to phase instabilities. We note that other approx-
imations of the nonlocal expressions lead to other models,
some of them were discussed in detail in previous works
[5,14,15,17,37—39]. A simplified model showing the for-
mation of hexagons in this context was derived first in
[16] and treated numerically in [40].

Going back to (13) and (3), we may express the hydro-
dynamic variables v and 0 by the wave function %. The
relations read in lowest order of the 2D order parameter:

v(r, t)=VXVX If, (b2, z)4'(x, t)zo]+O(%' ),
8(r, t ) =g, (b2, z )'Plx, t )+O(% ) . (32)

Due to its k dependence, the eigenfunctions fi, g&

defined in (14) are now differential operators. Keeping in
mind that the Fourier representation of 4 is mainly excit-
ed on a ring with radius k„we may substitute the Lapla-
cians in the eigenvectors by —k, . Then the eigenvectors
are simple functions of z again. In this approximation,
the relations to the basic variables read as

d,f, (k„z )B %'( tx)

v(r, t)= d,f, (k, ,z)B %(x, t) +O(% ),
f, (k, ,z)b, i%(x,t)—

(33)
8(r, t)=g, (k, ,z)%(x, t)+O(% ) .

From these relations, we derive immediately boundary

e(x, t)=[y, e' —y2(k, +32) ]e(x, t) —a][V24(x, t)]2

—a V(x, t)b, %(x, t)
—

b& ql( x, t)[62%'( x, t)) —b24(x, t)b,z+ (x, t) .

(31)

where g'&(x, t ) is the Fourier transform of
g(k(P) —k, (P), t) and, since ski = ik, ~, is slowly varying
in real space. The angle p denotes the orientation of k in
2D Fourier space. Inserting (30) into (17) yields, after a
Fourier transform to real space, a nonlocal nonlinear
equation for 4 (for details see [16]). The nonlinearities
may be approximated by gradient expansion of the ker-
nel. This leads to a local order parameter equation for
the scalar function 4 in form of a partial difFerential
equation, the generalized Ginzburg-Landau equation that
reads [17,36] as

00

10'
20'
70'
90'

2.17
2.14
2.11
2.05
2.03

7.5
7.2
6.9
6.3
6.2

0.085
0.084
0.082
0.078
0.073

2.2
2.6
3.1

3.8
4.6

1.1
1.1
1.1
0.3
0.2

—0.01
—0.04
—0.07
—0.21
—0.29

0.19
0.20
0.21
0.27
0.31

TABLE I. Numerical values for the coefficients of the gen-
eralized Ginzburg-Landau model introduced in Sec. V. The
values were computed for several angles y of the physical line,
compared Fig. 2.



48 PHASE AND AMPLITUDE INSTABILITIES FOR BENARD- . . ~ 3633

conditions for 4 on the lateral walls. Assuming vanish-
ing horizontal velocity and temperature field (poor
thermal conductors), they are

B„V( xt)=%( xt)=0 (34)

for x on and n perpendicular to the lateral walls.

B. Results

The numerical effort of the treatment of 2D models as
(31) is much lower than that of the 3D basic equations
and the inclusion of rigid lateral BC (34) can be reached
more easily. We use again a semi-implicit pseudo-
spectral code, allowing for a large time step during
periods of small changes in pattern formation. The
method is described in more detail in [39]. We performed
solutions for periodic BC and found very similar results
to those obtained in Sec. IV that we do not want to repeat
here in detail. Using rigid BC (34) and a circular lateral
wall, we also computed solutions for a rather large aspect
ratio, to show the role of sidewall forcing and defect
motion. Here we wish to present only two time series re-
sulting of the evolution of a random dot pattern for
different parameters. Figure 16 shows the case for purely
buoyancy-driven convection, y=0'. Rolls are formed
showing dislocations and grain boundaries in the bulk for
early stages of evolution. In contrast to periodic BC, the
dislocations cannot move freely and cannot annihilate.
After a very long transient phase a pattern of slightly
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FIG. 17. Same as Fig. 16, but for the surface-driven case.
Hexagons are created in an early stage of the evolution and
form stable domain boundaries that separate regions with
diff'erent orientation. y=90', I = 198=64k.„@=0.06.

bended rolls in the bulk is stable. The grain boundaries
still present originate from the sidewall. Nevertheless the
dynamics of pattern evolution tries to minimize the
length of these grain boundaries. Figure 17 shows the
opposite case, where convection is completely surface
driven (q&=90). Hexagons are formed soon and are
stable, showing defects. Stable grain boundaries separate
regions where hexagons have different orientation. Again
the number of defects increases with the distance from
threshold e.

T = 15000 T = 25000 VI. CONCLUSION AND OUTLOOK

/////////////////////////////////

-=-

((((((((((((((((((((i(rip',

=

T = 40000 T = 70000

FIG. 16. Temporal evolution of an initial random dot pat-
tern, found by integration of the order parameter equation {31)
for rigid boundary conditions along a circular side wall ~ Due to
the lower numerical effort, the aspect ratio can be chosen very
large. CoefFicients of the model equation were determined for
the buoyancy driven case. y=0', I =185=64K,„a=0.075.

We presented a detailed theoretical investigation of a
relatively simple pattern-forming system far from equilib-
rium. We showed the restriction of stability for primary
patterns of convection, such as rolls and hexagons, if spa-
tially inhomogeneous disturbances are taken into ac-
count. This can be considered as an extension of "Busse's
balloon, " computed for parallel rolls in Rayleigh-Benard
convection [18]. For our analysis we made two impor-
tant assumptions: the Prandtl number was assumed be-
ing infinite, this is surely a good approximation for all
common fiuids, where Pr is in the range of 10 or larger.
However, for convection in gases under high pressure
(Pr(1), the toroidal velocity field can no longer be
neglected and gives rise to another order parameter in the
frame of amplitude or generalized Ginzburg-Landau
equations. Recent experiments in gases can be found in
[41], also including non-Boussinesq eff'ects. First model
calculations based on order-parameter equations as de-
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scribed in Sec. V are published in [39]. The other as-
sumption is that of a Hat upper surface. In experiment,
the free surface becomes slightly deflected above thresh-
old. It could be interesting to see what the inclusion of
these two effects would change qualitatively.

Another important purpose of this work was to show
to what extent pattern formation in a certain nonequili-
brium system can be modeled by a unified and simplified
approach based on generalized Ginzburg-Landau equa-
tions. In the last part we saw that even quantitative
features such as wave-length selection and creation and
stability of dislocations can be compared directly with re-
sults found by integration of the hydrodynamic equa-
tions. Beneath their unifying character the great advan-
tage of these models is a drastic simplification and there-
fore a considerable decrease of the numerical effort for

their treatment. This allows one to consider pattern for-
mation in very extended geometries under physical la-
teral boundary conditions and could be an important tool
for the study of defect statistics and defect motion.
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