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The multicomponent primitive model electrolyte is analyzed using the Ornstein-Zernike equation
and the asymptotic behavior of the direct correlation function. An approximation for the screening
length is derived from the second-moment condition, K = ~o/V 1 —(mod)z/2+ (tcDd)s/6, where

is the Debye length and d is the ion diameter. This is accurate up to 1M concentration for
monovalent aqueous electrolytes and considerably extends the range of validity of the classical Debye-
Hiickel theory. The asymptotic behavior of the ionic pair correlation functions is formally analyzed,
and exact expressions are given for the decay length and the e8ective charge on the ions in terms
of the direct correlation function. Three di8erent regimes are identified: monotonic exponential, for
rz&d g2, and two types of damped oscillatory, electrostatic dominated at intermediate concentra-
tions and core dominated at high concentrations, distinguished by whether or not the oscillations
are in charge or in number density. The electrical double layer is also analyzed and it is shown that
the asymptotic behavior of the density profiles and the interaction pressure is the same as for the
bulk correlation functions. The hypernetted chain closure (with and without bridge functions) is
used to obtain numerical results for binary symmetric aqueous electrolytes (monovalent with d = 4
and 5 A, and divalent with d = 4 A), and the three asymptotic regimes are explored.

PACS number(s): 61.20.Gy, 61.20.+g, 82.45.+z, 82.70.Dd

INTRODUCTION

Electrolytes and the electrical double layer are widely
studied. This is partly for practical reasons, since many
liquids of technological and industrial importance contain
ions or charged particles or surfaces, and also because
electronic techniques are highly developed in modern lab-
oratories. Prom the theoretical perspective, Coulomb
interactions are the only part of the intermolecular po-
tential that is known exactly, which makes for a well-
defined model system for investigation, and the long-
ranged tails create both challenges and opportunities for
analytic study.

The simplest description of an electrolyte is the prim-
itive model, in which the solvent is subsumed into a con-
tinuum dielectric constant, and the spherical ions bear
a simple charge at their center and have some short-
range repulsion, usually a hard core. The classical ap-
proach to electrolytes is the Debye-Hiickel theory, which
is a linearized mean-Geld approximation; the correspond-
ing theory for the electrical double layer is called the
Poisson-Boltzmann approximation. %lith the advent of
computers, more exact numerical approaches have been
developed, specifically simulations, which follow the mo-
tions of individual ions, and methods based upon the
Ornstein-Zernike equation, which is solved for the radial
distribution functions. These more sophisticated theo-
ries include the eR'ects of ion size and ionic correlations,
which are neglected in the classical approach, and which
can sometimes be dramatic.

This paper exploits the long-range tail of the Coulomb
potential to obtain a variety of exact and approximate re-

suits for the asymptotic behavior of the ionic correlation
functions of the multicomponent, primitive model elec-
trolyte. There are a number of reasons why this paper
may prove useful theoretically. First, the analysis com-
plements the numerical approaches. These usually have
trouble with the asymptotic tails (e.g. , beyond about half
the simulation cell) and the formulas given here can be
used to correct them since they are expressed in terms
of short-ranged functions that should be accessible in the
simulation. Also, the analysis may help to interpret cer-
tain results, which can be obscured in a numerical treat-
ment of the problem. Second. , certain quantities emerge
naturally during the analysis (e.g. , an effective charge for
the ions) and the definitions given here may be used to
quantify them using existing simulation schemes or in-
tegral equation approaches and show how the quantities
found. in a particular investigation may be applied more
generally. Third, the computational problem can be sim-
pliGed in the sense that the results allow some aspects
of a difficult problem (such as the interaction between
two double layers) to be cast in terms of a simpler one
(in this example, the density profile of an isolated double
layer). Fourth, the exact analysis also suggests some an-
alytic approximations for the pair correlation functions
and consequently for the thermodynamic properties of
the electrolyte. The one explored in detail here should.
provide a useful basis for the discussion of numerical re-
sults, since it is as simple as the Debye-Huckel theory,
but will be shown to be more accurate.

It is these approximate formulas that may be the
most useful to experimentalists. For example, the Debye
length is almost universally used in the characterization
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of data, even though it is known that the actual screen-
ing length of the electrolyte can be rather different. Here
a simple analytic result is given that expresses the ac-
tual screening length in terms of the Debye length and
the size of the ions, and this is shown to be accurate in
typical aqueous monovalent electrolytes up to 1M. This
important correction to the Debye length also improves
the classical analytic results for properties such as the
internal energy per ion, and the osmotic coeKcient, and
considerably extends their range of validity. The other
Gnding of experimental interest is the transition from
monotonic to oscillatory behavior of the ion correlation
functions, and the two types of oscillations that occur.
These should be testable by scattering experiments or by
measurement of the electrical double layer force between
charged surfaces. The reason that the latter data are
relevant is because, as is shown here, it is the bulk pair
correlation functions that determine the type and length
of the decay of isolated and interacting electrical double
layers.

The paper is divided into three sections. Section I in-
troduces the formalism and derives in a simple fashion
the well-known moment conditions. The Debye-Huckel
approximation is also derived, and it is pointed out that
this does not obey the second moment condition. An
approximation for the pair correlation function is given,
which has the same Yukawa form as the Debye-Hiickel
approximation, but which satisfies the first two moment
conditions, thereby providing a formula for the actual
screening length of the electrolyte in terms of the Debye
length. This formula is used to provide an estimate of
the monotonic-oscillatory transition. Section II consists
of a formally exact analysis of the asymptotic behavior of
the pair correlation functions based upon the Ornstein-
Zernike equation. Monotonic asymptotic decay, oscilla-
tory decay that is dominated by electrostatics, and core-
dominated decay are treated in turn. The distinction
between the last two is that in the electrostatic case the
oscillations are in charge density, whereas in the latter
the asymptotes are determined by the short-range part
of the potential, and if these are the same for all ions then
all the correlation functions become asymptotically iden-
tical. The asymptotic behavior of spherical solutes and
planar electrical double layers is also analyzed. Sections
I and II are for a general multicomponent electrolyte,
whereas Sec. III gives results specific to a symmetric bi-
nary mixture. In particular, it contains an explicit anal-
ysis of the asymptotics, a description of the hypernetted
chain algorithm, and numerical results. The latter in-
cludes tests of the analytic approximations and results
for the concentration dependence of the asymptotes of
three aqueous electrolytes (monovalents with core size 4
and 5 A, and a divalent with d = 4 A.). A short summary
concludes the paper.

Historically, the theory of electrolytes and ionic cor-
relation functions began with the classic work of Debye
and Hiickel [1]. Stillinger and Lovett [2,3] obtained the
second moment condition that bears their names, and a
fourth moment result has also been given [4,5]. There
have been a number of studies of the departure of the
screening length Rom the Debye length [4—13]. The re-

I. MOMENT CONDITIONS
AND APPROXIMATIONS

A. Correlation matrices

For a multicomponent Quid, the Ornstein-Zernike
equation is

(s «(r) = s «(r) + ) p„j(« „(s)ss«(~~r —
s~~) ds(1.1),

where h and c are the total and the direct correlation
functions, p is the number density, and the Greek sub-
scripts index the species. This can be written in matrix
form

H(r) = g(r) + jH(s)C{~r —s~) ds, (1 2)

where the symmetric matrices have components

{g(.))., = &.'~'p,'~'h. ,(.) (1.3)

(1.4)

Consider a primitive model electrolyte, in which the
long-range part of the pair potential is

coui(„) (1.5)

where q is the charge of species o, and e = 4meoe„ is the
total permittivity of the medium. In view of this, one
defines the dyadic matrix

47rP z
qq (1.6)

where P = 1/k~T is the inverse of the thermal energy

suits of the formal asymptotic analysis of the present
work are equivalent to those of Kjellander and Mitchell
[13],although the derivation is somewhat different. Inter-
est in the transition from monotonic to oscillatory decay
of pair correlation functions can be traced to the work of
Fisher and Widom [14] (see the literature cited by Evans
et al. [15]). Stillinger and Lovett established an upper
bound on this transition for electrolytes [2], and oth-
ers have discussed the occurrence of charge oscillations
[8,10,16]. A hypernetted chain study of the asymptotic
phase diagram of the primitive model electrolyte, similar
to that given here, has been independently carried out by
Ennis [17], who in addition has obtained values for the
effective surface charge of the planar double layer. The
work of Evans et al. [15] is of relevance to the present
discussion of the electrical double layer, since there it is
stressed that it is the behavior of the bulk correlation
functions that determine the decay of the density profile
in an inhomogeneous Quid, a point that has been made
by others [13,18].
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and where the column vectors have components

Iv)- = p.' 'v-,Z/2 (1.7)

with T denoting the transpose.
The matrix Q has a number of convenient properties.

Its trace is related to the Debye length

Equating the coefBcients of A:, one obtains

0 = -q —H(')q. (1.16)

Explicitly, this is the zeroth moment condition

B. The zeroth moment condition (electroneutrality)

4vr p
P~g~ = KD,

E
(1.8) q = —) p»q» fA«(») dr, , (1.17)

and it is essentially idempotent,

qn+1 2n q (1.9)

Although Q itself is singular, det(Q) = 0, one can show

that

which expresses the fact that each ion is surrounded by
a cloud of ions bearing a net equal and opposite charge.
In other words, the electrolyte is overall neutral. Note
that in the case of the zeroth moment, the two matrices
commute, Q H( ) = H( ) Q.

(I + cqQ)
' = I —

2 Q.
D

(1.10) C. The second moment condition (Stillinger-Lovett)

In the electrolyte, the total correlation function is ex-
ponentially short ranged, but the direct correlation func-
tion goes like the negative of the pair potential at large
separations. Accordingly, one defines the function

1
y(r) = C(r) + Q,

The second moment condition arises &om the equality
of the coefBcients of k in the small-A: Taylor expansion
of the Ornstein-Zernike equation

H(0) (0) + H(0) (0) H(2)Q

Premultiplying by Q, one obtains

which has a shorter range than the total correlation
function y ~(r)/6 z(r) -+ 0, r ~ oo. The three-
dimensional Fourier transform is

q H(0) q (0) + Q H(0) (0) q H(2)q (1.19)

)t(k) = C(k) +Qk '. (1.12)
or, using Eq. (1.16),

The matrices H and C commute, because the former is
the sum of products of the latter. However, it is impor-
tant to note that neither commute with y or Q, nor do

these themselves commute.
The Fourier transform of the Ornstein-Zernike equa-

tion is

Explicitly, this is

).Q&V&PvP& ~~&(")"
—4m)

p, A

(1.20)

(1.21)

H(k) = C(k) + H(k)C(k)

= y(k) —Qk-'+ H(k)~(k) —H(k) qk-2.

Both the zeroth and second moments are determined by
the long-range tail of the Coulomb potential and are in-

dependent of any short-range interactions between the
ions [2,3].

Because both the correlation functions are short ranged,
they possess a small-k Taylor series expansion. One has

II(k) - H('+H(')k'+H(')k'+. . . ,k —+0 = (1.14)

H(2n) ~( ) H( )
2n+2 g

(2n+ 1)! (1.15)

All moments exist for an exponentially short-ranged
function. One now inserts the Taylor expansion into the
Ornstein-Zernike equation and equates powers of k.

and similarly for y(k). This expression may be obtained

by expanding the integrand of the Fourier transform, and
the moments are de6ned as

D. The fourth moment condition

Equating the coeKcients of k, one obtains

H(2) y(2) +. H(2)y(0) + H(0)y(2) H(4)q (1.22)

The second moment of the shortened direct correlation
function can be eliminated by premultiplying by Q and

using Eq. (1.16),

qH(2) qH(2)~(0) qH(4)q (1.23)

Finally, the second moment equation [cf. Eq. (1.18)] can
be used to relate the fourth moment of the total correla-
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tion function to the two zeroth moments,

QH~ lQ = (H~ ~ —y~ l —g~ lH~ l)(I —y~ ~). (1.24)

In contrast to the other two moment conditions, this
fourth moment will depend upon the short-range behav-
ior of the ions. Earlier work has related the coefBcient of
k in the expansion of the partial ionic structure factors
to the isothermal compressibility of the electrolyte [4,5].

which when exponentiated gives the radial distribution
function. This nonlinear version has the same asymp-
tote, but remains physical at small separations for high
electrolyte couplings. The other problem with this result
is that it does not obey the second moment condition.
Now an elementary approximation with the same func-
tional form is explored, but which obeys both moment
conditions by determining the actual decay length of the
electrolyte in terms of the Debye length and the ionic
diameter.

E. Debye-Hiickel theory

y(k) = 0. (1.25)

The Ornstein-Zernike equation, (1.13), becomes

H{a) = —(I+qz-*) 'qs-*

, Q IQk '
k2+ K2D ——y =

—1
k2+ K2 =QD

(1.26)

where Eqs. (1.9) and (1.10) have been used. This has
inverse transform

The linearized Debye-Hiickel theory may be derived by
neglecting the short-ranged part of the direct correlation
function,

F. Self-consistent screening length

q (r) = ) q~p~h ~(r) (1.SO)

and assumes that qrI (r—) ) 0. For ions all with the
same hard-core diameter d, it follows &om Eq. (1.21) that

1 = ) p 4ir qq (r)r-dr4zp . 4

6~

In this paper one concern is with the transition from
monotonic exponentially decaying pair correlations to os-
cillatory behavior, and the zeroth and second moment
conditions have been used to set a limit for this tran-
sition [2]. In view of the explicit representations of the
moment conditions, Eqs. (1.17) and (1.21), one defines
the countercharge density

H(r) =

or in component form

(„)
Er

(1.27)

(1.28)

) p 4ir qrI (r)r' d—r
d

24mp ~
p~g

6E

' —1,
h ~(r) = ( Pq q~e"~~ e-

e[1+v~d]

r(d
r)d.

One problem that remains with this linearized theory is
that it allows the co-ion radial distribution function to
become negative. For this reason, this functional form
is often applied instead to the potential of mean force,

Hence the Debye-Hiickel theory predicts that the ion cor-
relation functions are exponentially decaying, with the
decay length being the Debye length, and with the am-
plitude proportional to the product of the charges on the
ions.

The Debye-Huckel approximation only satisfies the
electroneutrality condition if this exponential form holds
for all of r, not just asymptotically. For ions all with
a hard core of diameter d, h ~(r) = —1, r ( d, which
means that the electroneutrality condition is no longer
satsified by Eq. (1.28) applied beyond the core. If one de-
mands this functional form but scales the prefactor so as
to satisfy electroneutrality, then the modified linearized
Debye-Hiickel approximation is

= r.Dd /6,

KDd ( +6. (1.S2)

By making a stronger assumption on the counter-
charge profile, namely that it has the Debye-Hiickel form,
one obtains an approximation that obeys both moment
conditions and also a tighter bound for the onset of os-
cillations. One assumes that the countercharge profile is
purely exponential beyond the hard core,

8
q (r)=rl r

where again —q g & 0, and an explicit approximation is
now obtained for the screening length v in terms of the
Debye length. The second moment condition becomes

where the inequality follows kom the non-negativity as-
sumption and the third line follows from Eq. (1.17). Since
oscillations violate the assumption, this provides an up-
per limit for the concentration (i.e. , inverse Debye length)
for which one can have monotonic ion profiles, namely [2]
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4' p ) —qp4m 'g~6 P

4~p ) q~ p~ 47r'g~ K
6e

x [6 + 6rd + 3(rd) + (Kd)s]e

rD 1 + rd + (rd)2/2+ (Kd)s/6
K 1+Kd

(1.34)

where g has been eliminated using the electroneutrality
condition

—q =47t g e ""r dr

= 47rq K [1+Kd]e (1.35)

The assumption of purely exponential profiles is only ex-
pected to be valid for small rd Expa.nding Eq. (1.34) to
second order, one has

r. = v2D[1+ (vd) /2+ O(Kd) ], (1.36)

with solution

Ql —(v Li d) 2/2
(1.37)

This equation gives the actual screening length of the
electrolyte in terms of the hard-core diameter and the
Debye length; it equals the latter in the limit rDd —+ 0.
Although only the leading correction to the Debye length
is strictly valid, the above may be viewed as a linear Pade
approximant to the actual screening length of the elec-
trolyte. The divergence of the denominator may be inter-
preted as signifying the breakdown of the monotonicity
assumption and, hence, oscillations commence when

~~d & A. (1.38)

The next order solution to the cubic equation for the
screening length that has the same functional form as
Eq. (1.37) is

Ql —(e~d) 2/2 +. (rD d) s/6
(1.39)

The amplitude of the countercharge profile follows
from Eq. (1.35)

-q ~'e""
4~[1+ Kd]

(1.40)

h r)=
—pq q~ r.'e"" e

—""
e[l + vd]

T )
r (1.41)

This result would be identical to the modified Debye-
Hiickel result, Eq. (1.29), if the screening length were the
Debye length r = rD. To the extent that Eq. (1.39)
is valid, this result represents an improvement on the

This and the definition Eq. (1.30) imply that q is an
eigenvector of H(r), and if one assumes that the latter is
dyadic, then

Debye-Huckel approximation.
As mentioned above, a problem with this linearized

type of approximation is that it allows negative values
for the co-ion radial distribution function at higher elec-
trolyte couplings. Experience shows that a better ap-
proximation is to assume that it is the potential of mean
force that has the exponential form

q q~e
78~~

6V
, r) d.

r (1.42)

One seeks values for v and v so that the correlation func-
tions Ii ~(r) = —1+ exp Pm ~—(r) satisfy the two mo-

ment conditions. It proved straightforward to use New-
ton's method to solve Eqs. (1.17), (1.21), and (1.42) nu-

merically. The nonlinear approximation has the same
asymptotic form as the analytic versions, with slightly
different values for the parameters, while remaining phys-
ically realistic at small separations. One may anticipate
that the approximations that obey the exact moment
conditions will be more accurate than those that do not,
as wiH indeed be demonstrated below.

There have been a number of earlier results for the
screening length of Coulomb fluids (electrolytes, one-

component plasmas, and molten salts). Hydrodynamic
arguments and the fourth moment have been used to ob-
tain a formal result in terms of the isothermal compress-
ibility [4,5]. Stell and Lebowitz [6] obtained an expres-
sion in terms of integrals of the total correlation function
of a reference Quid, but their correction vanished if the
short-range interactions between the ions were identical.
A similar deficiency occurred in the work of Mitchell and
Ninham [7], who expanded the short-range part of the
direct correlation function in the Ornstein-Zernike equa-
tion. Parinello and Tosi [8) gave an analytic result using
the mean-spherical approximation. Outhwaite [10] has
discussed several transcendental formulas for the screen-

ing length based upon the linearized modified Poisson-
Boltzmann theory, including one analyzed by Stillinger
and Lovett [9]. Blum [ll] and Blum and. Hgye [12] found
that the properties of the unrestricted primitive model
electrolyte in the mean spherical approximation could be
expressed in terms of a single length parameter, which
was the screening length in that approximation, and
which could be expanded in terms of the Debye length
and the diameters of the ions. Their result for the sym-
metric binary electrolyte is tc = rz&[—1 + g(1 + 2K~d)],
which may be compared with Eq. (1.39) and to the nu-

merical results below. Finally, it is worth mentioning a
footnote by Stillinger and Lovett [3], who point out that
the Debye-Huckel theory only satisfies the second mo-

ment condition for ions of zero size, unless one allows
for an effective screening length rather than the Debye
length, which is precisely the content of the results in
this section.

II. EXACT ASYMPTOTIC ANALYSES

A. E1ectrostatic domination

Monotonic asymptotic decay

The Ornstein-Zernike equation, (1.13), may be solved
for the total correlation function
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H(k) = [I —y(k)+ Qk '] '[y(k) —Qk ]
—1

(2.1a)

x [I —~(k)]-'
~

~(k) —q q
~4~p)

ek
—1

x qq

(2.1b)

(2.lc)

Here an effective charge function has been defined,

Here

Bq(k)
Ok

By(k)

Ok

Bq(k)
q+ y(ir. )

A:=i]c

k +A(k) -(k —i~)
~

2iK+ q q ~+. .2 2 4~p, ,)
~ --)

(k +r)~1+ q q'~
4~p
2ive — —j

+ O(k —i~) . (2.6)

q(k) = [I —y(k)] 'q, (2.2a)
By(k)= [I —y(ir)] (2.7)

which may be equivalently written

q(k) = q + g(k)q(k). (2.2b)

Now the first inverse is readily evaluated [cf. Eq. (1.10)]

~

I + q(k)q „I = I —„q(k)q, (2.3)
( 4~pb 4~p/.

ek2p = k2+A k 2-

where a function has been defined that will become the
screening length [cf. Eq. (1.8)],

Hence one defines

p
21K'

1+ . q [I —y(iK)] 'y'(iK)q
2ZK6

4vrp T„, .1+ . q y'(ir)q .
2LK6

One now has

(2.8)

A(k) = q (k)q. (2.4)

with inverse

k~itc ev k2 + K2H(k) (2.9)

Now if there exists K such that A(im) = K, then the
total correlation function will have a pole at k = iK,
which determines its asymptotic behavior. Neglecting
the regular part, one has

h ~(r)
—pq q~e Im(K) = 0.

r (2.10)

H(k) „,q(k)q [I —g(k)]

, q(k)q (k) ] y(k) —qq

—4vr p/e
k +A(k) q(k)

x [q (k)y(k) —q A(k) /k ]

—4m.p/e
k'+ A(k)' ——VV

(2.5a)

(2.5b)

(2.5c)

(2.5d)

Recall that q is given by Eq. (2.2a), evaluated at k =
i K, and that K, = (4vrP/e)q q. Note that if y = 0,
Eq. (2.2a) implies that q = q, Eq. (2.4) yields r = KD,
and Eq. (2.8) shows that v = 1. In other words, the
exact asymptote, Eq. (2.10), reduces to the Debye-Hiickel
result, Eq. (1.28).

2. Oscillatory asymptotic decay

One must allow for the possibility that e is complex,
which corresponds to oscillatory solutions. In this case
one must take twice the real part of this expression, as
may be seen as follows. By definition h ~(r) is a real,
even function of r, and hence its Fourier transform is
even, h ~(—k) = h ~(k), and any series expansion in k

has real coefficients h ~(k) = 6 ~(k), where the overbar
denotes the complex conjugate. In other words,

Here the second line follows from Eq. (2.2a) and the final
line from Eq. (2.2b). Also, q = q(iv). This is in simi-
lar form to the Debye-Hiickel result, Eq. (1.26), and in
order to cast it in identical form, that is, to exhibit the
residue explicitly, one needs the Taylor expansion of the
denominator about A: = iK,

and

H( —k) = H(k)

H(k) = H(k) .

(2.11a)

(2.11b)

These two results imply that there are four poles located
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at +iK and +iR, and the singular part may be written

A A'

A B
&'+ ~' k

+

A A
k2 + ~2 k2 + R2'+

a a'
+—zK k+ zv.

(2.12)

since Eq. (2.11a) iinplies that A = —A' and B = B', —
and Eq. (2.11b) implies that B = A. Hence when the
conventional Fourier inverse is evaluated by closing the
contour in the upper half-plane (choosing K to be in the
first quadrant), one picks up the residue at k = +i+,
which is A/(2iv), and also its complex conjugate from
the residue from the pole at k = i r, wh—ich is A/(2iR).
The sum of these two is twice the real part of either one,
and one has

h «( ) e2Re j ), Imf )g eO. (2.13)

i/2

K, q~q'(ir. „)x 1 ——' —
~
— . +O(r)

2 q+q(iv. „)
4~p z, ,K~- q q.

2K~
(2.14)

The abrupt disappearance of the factor of 2 as the poles
coalesce on the imaginary axis suggests nonanalyticity in
the amplitude of the correlation functions at the tran-
sition &om monotonic to oscillatory decay. In fact, the
amplitude becomes infinite, as will now be shown.

Let the pole just move oK the imaginary k axis, v =
r.„+iK;, K, m 0. Expanding Eq. (2.4) one obtains

separations. So even though the amplitude diverges, so
do the relevant separations, and consequently thermody-
namic properties such as the internal energy remain finite
at the monotonic-oscillatory transition.

B. Cere domination

The analysis of Sec. IIA is formally exact, and the
Fourier transforms of the total correlation functions are
guarranteed to have a pole at k = i ~, for K satisfying Eqs.
(2.2a) and (2.4). Nevertheless this pole does not neces-
sarily determine the asymptotic behavior of the correla-
tions because there could be another pole, k = i(, with
Re((j ( Re(v), even assuming that v represents the so-
lution of the preceding equations with smallest real part.
Such a qualitatively difFerent pole would correspond to
the matrix I —y(i() being singular.

The implicit reason for splitting the matrix I—| (k) in
the fashion of Sec. II A was the assumption that the ma-
trix Q was the most important in the asymptotic regime.
This would be the case when electrostatics determined
the asymptotic behavior, hence the title of the section.
However, at high densities one might expect the short-
range interactions to become important asymptotically,
and this regime might be termed the "core-dominated
asymptote" and is the subject of this section.

This regime will not be treated in full generality, but
instead the following restriction will be observed. Denote
the amplitude of the total correlation functions in the
asymptotic regime by a ~. Then because electrostatic
efFects are of shorter range, locally the asymptotic charge
density about an ion must vanish, and one has

p~a~~ ——0. (2.17)

It is emphasized that this is an exact result that holds
in the core-dominated asymptotic regime. One way of
satisfying this equation is if

Equating the coefBcients of K, , one obtains a ~ = a, all species. (2.is)
4vrp z

q q = —i, v; —+0,
2K~ E

(2.i5)

or, from Eq. (2.8),

v —+0, ~, m0. (2.i6)

That is, the amplitude of the total correlation function
becomes infinite at the oscillatory to monotonic transi-
tion.

One has to be careful in interpreting this result. The
vanishing of v means that the next term in the Taylor ex-
pansion of the denominator makes an increasingly impor-
tant contribution (and consequently to obtain the residue
of the first order pole, which determines that the asymp-
totic behavior remains exponential, one also has to go to
the linear term in the numerator). For infinitesimal but
nonzero v, the present formulas give the strict asymp-
tote, but the regime of applicability moves to ever larger

What follows is predicated on this restriction. Two cases
can be mentioned where this equation will obviously hold.
First, there is the general binary electrolyte, in which case
this is the only possible solution. Second, there is a multi-
component electrolyte with the short-range interactions
between the ions being identical; since it is the latter that
determine the asymptote, the total correlation functions
between all the species must be asymptotically equal.

The condition Eq. (2.18) means that the short-range
part of the direct correlation function goes like

y(k) - uu x(k), k -+i(, (2.19)

where (u) = p ~ . (This follows from the Ornstein-
Zernike equation solved for the direct correlation function
near the pole. ) Note that u q = 0, and hence near the
pole
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[I —C(k)] [I —u u x(k) + q q 47rP/ek ]

= I+ uu~x(k)
1 —u~u x(k)
q q+4vrP/ek

1 + q+q4mP/ek2
(2.20)

Now it is the middle term which has the pole at k = i(,
and neglecting the remaining regular parts one obtains

H(k) [uu x(k) —qq 4n.P/ek ]
uu~x(k)

u~u x(k)~
M tl

1 —u+u x(k)
—2i(x(i()

i ~')! u~ux'(ig)(k2 + P)
(2.21)

Here a Taylor expansion of the denominator has been
used, together with the fact that ( satisfies

—4m p/eH'").='- k +A(k) " (2.27)

where the effective charge on the solute is related to the
short-range part of the solute-solvent direct correlation
functions by

qp ——q C(iK)
= qo+ q x(i&) ~ (2.28)

The asymptotic result is

Here the contribution of the bulk solvent direct correla-
tion functions is explicitly seen to be the same as before,
and hence the solute-solvent total correlation functions
have a pole at k = iv that is identical (up to a pre-
factor) to the one in the bulk solvent. The remainder of
the electrostatic analysis goes through unchanged. (The
case of core-dominated bulk behavior will be treated be-
low. ) One ends up with

u ux(i() = nx(i() = 1, (2.22) h.,~(r) - 2 Re pqoq (2.29)

where the total number density is n = g p = u u.
One concludes that

-2i( e
—

&

n.,(r) - 2a.e
r —+oo 4am*x'(a() r ) (2.23)

Again the factor of 2 is dropped if ( is real. In contrast
to Sec. IIA, this analysis holds for uncharged particles,
subject to the restriction (2.18).

C. Solutes ance the electrical double layer

E/ectf ostatic domination

(H(r)) = p'~2h0~(r), p ) 0, (2.24)

and similarly for the direct correlation functions. The
solute-ion Ornstein-Zernike equation becomes

EI(r) = C(r) + J C(s)H()r —s() ds,

Consider adding charged solutes to the electrolyte. If
these are at infinite dilution (species 0, p() -+ 0), then
they do not contribute to the solvent correlation func-
tions since the Ornstein-Zernike convolution integral con-
tains a prefactor of p0 whenever the solute correlation
functions appear in the integrand. That is, the proper-
ties of the bulk solvent are not affected by the addition of
the infinitely dilute solute, and all of the preceding anal-
ysis for the ionic correlations remains. Hence the decay
length K, the effective charge on the ions q~, p & 0,
and the scale factor v stay the same.

Define a vector of solute-solvent total correlation func-
tions

q()(B) = q C(irc; R).

The three-dimensional radial Fourier transform is

(2.30)

4m
C(inc; B) = — C(r; R) sinh(~r)r dr

K 0

270 RBe" y—(R+ z; R)R—+oo —R
—PqV() (R + z; R) e"' dz . (2.31)

Only the leading term in R is retained, and the lower
limit may be extended to —oo. The problematic electro-
static potential Vo(R+ z; R) (whose Fourier transform is
a generalized function) will be analyzed below, but the
short-range part of the wall-ion direct correlation func-
tion is readily treated. In the planar limit one has

liin y(R+ z;R) = y(z), (2.32)

where [19]

It is emphasized that K, v, and q~, p & 0, are all prop-
erties of the bulk electrolyte and are unaffected by the
solute. Only q0 depends on the nature of the solute, via
the short-ranged part of the solute-solvent direct correla-
tion functions. The solute-solute total correlation func-
tion follows by setting p = 0 in this result and depends
on the square of the effective solute charge.

The result for the planar electrical double can be ob-
tained &om the large radius limit of the preceding anal-
ysis. Explicitly exhibiting the dependence of the solute
quantities on the radius R, one begins with the effective
solute charge, Eq. (2.28),

with Fourier transform

H(k) = [I—C(k)] 'C(k). (2.26)

X(z) = H(z) + Pq&(z)

—27r dz' ds s y(s)H(z').
—OO )z —z')

(2.33)
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»m 1&(z)).= S."—1+Pq-0(0) +).~,~-,(0),

(2.34)

which mean that the one-dimensional Fourier transform
is well de6ned in the upper half of the complex plane,

R(k) = j R)z)e * *
eqz, Iez)k) ) 0. (2.35)

The solute electrostatic potential, which is constant
inside the surface, is in the large radius limit

Vp(B+ z; B) = qp(B)
e B+z

4vro
const — z, z ) 0, (2.36)

where the solute charge and the surface charge density
are related by qp(B) = 4aB2o. The requisite analytic
part of the Fourier transform is most easily extracted by
twice differentiating this

(2.37)

Here h (z) is the wall-ion total correlation function
[h (z) = —1, z & 0] and g(z) is the mean-electrostatic
potential [g(z) ~ 0, z ~ oo]. y (z) is exponentially
short ranged on the fluid side of the interface, and [19]

0, and hence q y(iris') = rr. In other words, with this
definition„o = o in the Debye-Huckel limit. Inserting
these results into the solute-ion total correlation function,

)qqz—q C(ie;R) e
— (Re*)

I
hp~(B+ z; B) - 2 Re?

I~ ~ «
~~

~~~~ ~

1I e~

~
I

Cv B+Z

(2.41)

one obtains in the planar limit

(2.42)

The limiting procedure is B i oo, z ~ oo, z/B —+ 0.
Since it is the bulk correlation functions that determine
the pole, there are two in the upper half k plane located
at i K and i K. The residues are still the complex conjugate
of each other, since y(r) is real. As before, one therefore
takes twice the real part if Im()r, ) g 0, and drops the
factor of 2 if K is real. Note that the Yukawa form of
the spherical case has become a pure exponential decay
in planar geometry, a consequence of the fact that the
three-dimensional Fourier transform of the short-ranged
direct correlation function has been replaced by a one-
dimensional one. It is probably worth mentioning that
this result can also be obtained directly from the wall-ion
Ornstein-Zernike equation (analysis not shown).

For the case of two interacting charged walls, one pro-
ceeds from the wall-wall Ornstein-Zernike equation. The
interaction free energy per unit area is [19,20]

and then using the fact that f"(z) -::-—k2f (k). Insert-
ing the Dirac qI into Eq. (2.31) and dividing by rr, , one
obtains for the electrostatic contribution to C(ir; B),

4) Z
Z~OO

H (z') C(z —z') dz' . (2.43)

8' per RqRe", B~ oo.
6K

(2.38)

Consequently one has

lim q C(ir;B) = Be"—2vr „~ 4vrP)T T
q q + q~g(ir)R—+oo- 6K

4' „R
K

(2.39)

Note that the factor of 2m has been replaced by 4' be-
cause a factor of 2 has been included in the definition of
the effective surface charge,

This is the formally exact asymptote, since the bridge
function does not contribute directly because it decays
as fast as the short-range part of the direct correlation
function. The one-dimensional Fourier transform may be
taken in the upper half of the complex plane, and using
the same arguments as above one obtains

P(u(k) - —H (k) q + g(k)
—7 47rpo

(2.44)

The wall-ion total correlation function contains a factor
of q, which multiplies the bracketed term to give 2o.
Consequently

1-
rT = — o + q g(iK)], (2.40)

8~pq72
te)z) 2 Re e

Z ~OO 6VK
(2.45)

where the efFective screening length, Eq. (2.4), has been
used. This definition preserves the Poisson-Boltzmann
form for the asymptote, with the actual surface charge
density being replaced by the effective one. Also in the
low concentration limit, where y ~(r) = 0 (and hence
K = KD and q = q) and the linear Poisson-Boltzmann
profile holds, H(z) = —Pq@(z), z ) 0, Eq. (2.33) shows
that y(z) = 0, z ) 0, and that it is constant and equal to
the first two terms on the right hand side of Eq. (2.34) for
z & 0. In this limit q y(z) = KDe@(0)/4' = rrrirr, z &

This depends only on properties of the bulk electrolyte,
K and v, and the effective surface charge of the isolated
double layer o. Drop the factor of 2 if K is real. This re-
sult shows that the interaction between two double layers
is either monotonically repulsive or oscillatory. That is,
any attractions measured or predicted cannot persist for
all separations, although they can have a very large pe-
riod of oscillation near the bulk transition. This result
also reduces to the linear Poisson-Boltzmann theory in
the Debye-Hiickel limit y ~ = 0.
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2. Cot'e domination

In the core dominated regime, the analysis proceeds
as in the bulk. Under the same assumption that the
electrolyte ions have identical short-range interactions,
one obtains for the spherical solute

—2i(x(i()

The asymptote is

—2i( e-&
h. (r;R) 2ReI, , ) p~y~P(;R))

p)p
(2.47)

Since the right hand side is independent of the index
of the left hand side, whatever the direct solute-ion in-
teraction for each species is, the solute-ion profiles be-
come identical at large separations in this core-dominated
regime (provided that the correlations of the ions them-
selves are asymptotically identical in the bulk). The
solute-solute total correlation function goes like

most closely resemble those of Kjellander and Mitchell
[13]. The expressions obtained for the efFective charge,
the screening length and the effective dielectric constant
are essentially identical, although perhaps a closer con-
nection is made with the direct correlation function in
the present formalism. In addition to the different anal-
ysis, here there is an explicit treatment of the oscillatory
regime and of the planar limit. Other formal analyses of
the screening length [4,5] were exact to order k2 in the
total correlation function, which allowed the screening
length to be identified with the isothermal compressibil-
ity. (A consequence of the second order approximation
is that one only ever obtains either monotonic decay or
undamped pure oscillatory decay. ) Stell and Lebowitz

[6] give the effective charges and the screening length in
terms of a compressibility of a reference quid. These
approximate approaches presumably give the first cor-
rection to the Debye length at low concentrations, as the
pole moves away from the origin, in contrast to the for-
mally exact results that were obtained here and by Kjel-
lander and Mitchell [13].

III. BINARY SYMMETRIC ELECTROLYTE

hpp(k; R) = cpp(k; R) + H (k; R)C(k; R)
—2i(x(i()

e~'t uTu x'(i() (k2 + (2)

xy (i(; R)u u y(i(; R), (2.48)

-2i( e-&"
hp() r;R) 2Re~-+~ 4' nzx'(ig) r

since the solute-solute direct correlation function is more
short ranged than total correlation function and since
u C = u y because I q = 0. One obtains the asymp-
tote

oo, r(d
u+, +(r) = u-, +(r) = r)d,

cr
(3.1)

where again e = 4vreoe„ is the total permittivity of the
medium.

This section contains results for a restricted primitive
model electrolyte that consists of two species identical
except for equal and opposite charges. That is, the ions
have charge q+

———q = q, hard-sphere diameters d+ ——

d = d, and number density p+ ——p = n/2. The pair
potential is

(2.49) A. Asymptotic analysis

Since electrostatics do not enter in the core-dominated
regime, one can immediately take the planar limit of this
result to obtain the asymptotic ion density profiles off a
charged wall,

—2ie-~'
h (z) 2Re ) p~y (if)), n ) o.

p)p
(2.50)

H(r) = h+(r)v+v+ + h (r)v v (3.2a)

and

From the symmetry of the pair potential, the correla-
tion matrices contain only two independent components
h++(r) = h (r) and h+ (r) = h +(r), and similarly
for C(r). The two types of poles discussed in Sec. IV
can be analyzed simultaneously by defining v+ ——(1,kl).
Accordingly,

Finally, it follows &om the wall-wall Ornstein-Zernike
equation that the interaction &ee energy per unit area
in the core-dominated bulk regime is where

C(r) = c+(r)v+v++c (r)v v (3.2b)

-2ie-& (
P~(z) 2 Re ( ) p~g (i()Z~OO

& . (251)
and

h~(r) = —[h++(r) + h+ (r)]
4

(3.3a)

The results obtained in this section (the formal analysis
of the asymptotic behavior of the correlation functions)

n
c+(r) = —[c++(r) + c+-(r)1.

4
(3.3b)
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a(k) = [I —C(k)]-'~(k)

I —c+ (k)v+v+ —c (k)v v

x [c+(k)v+v+ + c (k)v v

x Ic+(k)v+v+ + c (k)v v

+(k) -(k)
1 —2c+(k) + ' 1 —2c (k)

(3.4)

Using the orthogonality and potency properties of the
dyadics, the Ornstein-Zernike equation becomes

c' (i(-) =, +, [~++(r) —~+-(r)]
0

x [sinh(( r) —( r cosh(( r)] r dr. (3»)
It may be verified that these results correspond to those
of Sec. II applied to the binary symmetric electrolyte.

2. Coo e domination

When Re((+}( Re(( },it is the short-range part of
the pair potential that determines the asymptotic behav-
ior. One has

If the poles of these two terms occur at k = i(~, then it
follows that

—2i(+ e-&+
II(r) - 2Re, v vT

8~c', (ig, ) r -+-+

n
c+(r) = —4++(r) + &+-(r)]

4

and the appropriate denominator vanishes when

2c+(i(+) = 1.

(3.12)

(3.13)

-2i( e-&-"
+2 Re „,

'

v v*)8mc' i (3.5)
The most straightforward numerical solution of this equa-
tion for $+ follows by rearranging the first order Taylor
expansion (Newton's method)

Although both terms exist, only one contributes in the
asymptotic limit, depending upon the relative magnitude
of Re((~}.

Here

1 —2c+ (i(+)i(+ ——i(++, .
)

(3.14)

1. E/ectro8tatic domination 7t n
c+(i(+) = [y++(r) + y+ (r)] sinh((+r)r dr

+ 0
When Re(( }( Re((+},it is the Coulomb part of the

pair potential that determines the asymptotic behavior.
One has and

(3.i5)

n 2Pq2
c (r) = — y++(r) —y+ (r)—

4 Cf'

and the appropriate denominator vanishes when

(3 6)
OC)

c+(i(+) =
2 h++(r) + &+-(r)]
+ 0

x [sinh((+r) —(+r cosh((+r)] r dr. (3.i6)

n„.8~Pq2
2
— i++ (i(—) —i+- (i(-) +

This may be rewritten as

(3.7)
The total correlation function goes like

—2i(+ e
—&+"

h+~ (r) 2 Re
8~c~+ (i(+) r (3.17)

1 —
2

[~++(i(-) —~+-(i(-)] . (3.8)

The Fourier transform of the short-range part of the di-
rect correlation function is

In contrast to the electrostatic-dominated asymptote, the
counterion and coion correlations are precisely in phase
when the short-range interactions dominate the asymp-
tote. It may be verified that these results correspond to
those of Sec. II applied to the binary symmetric elec-
trolyte.

4a
y+~(z$ ) = y+~(r) sinh(( r)r dr.

0
(3.9)

B. Hypernetted chain algorithm

-2i( e —&-
h++(r) - + 2 Rer —+oo 8mc' i( r (3.10)

where

These two equations are in a form suitable for numerical
solution for ( by a straightforward iteration procedure.

The total correlation function goes like
The Ornstein-Zernike equation for the binary symmet-

ric electrolyte was solved together with the hypernetted
chain closure (HNC). The usual method of fast Fourier
transformation was used. The Coulomb potential was
removed from the direct correlation functions at large
r, using a function that was well behaved at small r,
before they were numerically transformed, and then the
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analytic transform of this function was added in Fourier
space [21]. Care was taken to transform continuous func-
tions only, and. the discontinuity in the direct correlation
function and in its first derivative were treated analyt-
ically [22]. In summary, only short-ranged, continuous,
and well-behaved functions were ever numerically trans-
formed. , and consequently it was possible to follow the
asymptotic behavior of the pair correlation functions out
to many decay lengths.

The HNC is an approximation that is known to be
accurate for bulk Coulomb Huids at not too high cou-
pling. Some calculations were performed in the problem-
atic regime using the first resummed bridge diagram [23].
The multidimensional quadrature was carried out by ex-
pansion in I egendre polynomials [24], using an orthgonal
technique [25]. In most cases HNC total correlation func-
tions were used in the bridge function quadrature. On
some occasions, the closure and the quadrature were cy-
cled to self-consistency. For almost all cases examined,
the bridge function gave negligible improvement to the
HNC, and only results for the bare HNC closure are pre-
sented in detail below.

For the Fourier transform, 2 grid points were used, at
a spacing of 0.005 A. Increasing this to 0.02 A. improved
results in monovalent electrolytes at the lowest concen-
trations examined. For the bridge function quadrature,
30 Legendre polynomials were used, and 200 grid points
in the radial direction at a spacing of 0.4 A. Iterations
were carried out to six figure convergence in the contact
value of the radial distribution funtions. After conver-
gence, the asymptotic parameters were determined, us-
ing the trapezoidal rule for the integrals for y+~ (i(~) and
the two iteration procedures for (~ as described above.
Mixing of successive iterates was used and both poles
were found. The electrostatic pole was found to be very
robust, but the equations for the core pole appeared to
possess two or so solutions, and the particular one found
could depend upon the starting guess if this pole was the
subdominant one. The values given below correspond to
the solution with the smallest real part.

0 5--

0 4--

0.3--

0 2--

0.1--

h(r) 0—

-0.1-

-0.2-

-0.3-

-0.4-

-0.5

110—

10 -'

-110—

h(r) lo'-

10—

10—

I

I ~

i
~ I
I

I
s )
I

I

~ ~

~ ~
I I

I
~ I

I
I

~ I
I

I I
~ I
I I
I
~ I

I
I I
g ~

~ I

y I
I
I

I
I

~I

~ I
I

~
~

I

10

I I
I I

15
r (A.)

(a)

20

C. Numerical results 10—

Figure 1 shows HNC ionic correlation functions in the
three diferent regimes for a monovalent electrolyte. The
probabality of finding a counter-ion near a given ion is
greater than that of ending a co-ion. This is true every-
where for monotonic correlations, where the two are ap-
proximately equal in magnitude but opposite in sign, and
is true close to contact in the oscillatory regimes. The dis-
tinction between electrostatic domination and core dom-
ination is evident in Fig. 1(a) by the relative phase of
the two correlation functions. In the electrostatic regime
they are out of phase which causes charge density oscilla-
tions (here the co-ion total correlation function becomes
larger than the counter-ion correlation function at around
10 A.). In the core-dominated regime the correlation func-
tions oscillate in phase which is equivalent to oscillations
in number density.

The logarithmic plot [Fig. 1(b)] shows the asymptotic
behavior quite clearly. The two oscillatory regimes have

10
5 10 15 20 25 30 35 40 45 50

r (A.)
FIG. 1. The total correlation function for a binary sym-

metric monovalent electrolyte with d = 5 A. Here and in the
remaining figures the temperature was 300 K and the rela-
tive permittivity was 78.5. (a) HNC results in the monotonic
electrostatic regime (0.5M, solid curves), in the oscillatory
electrostatic regime (2M, dashed curves), and in the oscilla-
tory core regime (5M, dotted curves). The counter-ion curve
is greater than the corresponding co-ion curve near contact.
(b) A logarithmic plot of the positive parts of the HNC co-ion
total correlation function, with the solid, dashed, and dotted
curves corresponding to the monotonic (0.5M), electrostatic
(2M), and core (5M) cases, respectively. Also shown for the
monotonic case is the modified linearized Debye-Huckel ap-
proximation, Eq. (1.29) (dotted line) and the self-consistent
analytic approximation, Eqs. (1.39) and (1.41) (dashed line).
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markedly difI'erent periods of oscillations. In the core-
dominated regime, the period is closed to the size of the
ions (in this case d = 5 A. and the period is 4.8 A),
whereas in the electrostatic regime the period is unre-
lated to the size of the ions (in this case it is 13.5 A.).
In general, the period of oscillations of the pair correla-
tion functions in the electrostatic regime can be expected
to be greater than twice the ionic diameter. This is be-
cause the two correlations functions oscillate out of phase
and correspond to alternate shells of positive and nega-
tive charge density about each ion. [Note that only the
positive part of the co-ion total correlation functions are
shown in Fig. 1(b); the positive parts of the counterion
correlation functions would intercalate these in the elec-
trostatic regime and would be superimposed on them in
the core regime. ]

Also shown in Fig. 1(b) is the co-ion total correlation
function in the monotonic regime, as given by the HNC
and by two approximate theories. It can be seen that
Debye length, which is here equal to 4.3 A, is not the
actual decay length of the electrolyte, which according
to the HNC is 3.1 A. The self-consistent approximation,
Eq. (1.39), gives K = 3.3 A, and also appears rela-
tively accurate for the magnitude of the pre-exponential
factor. It is the size of the error in the decay length that
determines the regime of validity of any approximation,
since all approximations will eventually be wrong by or-
ders of magnitude at large enough separations because of
the exponential decay of the pair correlation functions.

Monotonic mg&ne

Figure 2 shows the actual decay length of the elec-
trolyte, as given by the hypernetted chain theory and
compares the various approximations. All the results
converge to the Debye length at low concentrations. For
the monovalent electrolytes, with core diameters of 5 and
4 A, the Debye length is already too large by 10% at
around 0.2M. In the divalent case, the actual decay
length is larger than the Debye length at quite small
concentrations (e.g. , at 0.01M, it is 17 A. , compared to a
Debye length of 15 A). As the concentration of the diva-
lent electrolyte is increased, the decay length ultimately
becomes greater than the Debye length, as was the case
for the monovalent electrolyte, which means that in the
intermediate regime up to 0.3M the Debye length is ac-
curate to within 10%, by happy accident.

The self-consistent analytic approximations for the de-
cay length, Eqs. (1.34), (1.37), and (1.39), describe the
decay length of the monovalent electrolytes quite accu-
rately over a substantial part of the monotonic regime.
The third order result, Eq. (1.39), is as good as solving
the cubic exactly, Eq. (1.37), and is within 10% of the
decay length up to 0.9M (for d=4 A, electrostatic oscil-
lations set in beyond 0.95M, K~d = 1.3). The fact that
the two monovalent electrolytes lie on the same curve
shows that +ad is the appropriate dimensionless param-
eter that characterizes the electrolytes in this regime, as
is predicted by the self-consistent approximations.

The decay length in the divalent case clearly lies on
a difFerent curve to the monovalents. It is not well

0.5-

0
0 0.5 2.5

FIG. 2. The decay length of the pair correlation functions
as a function of the Debye length, in units of the hard-sphere
diameter, in the monotonic regime. The large solid symbols
represent HNC calculations; the squares and diamonds are for
monovalent ions with d = 5 A and d = 4 A, respectively, and
the triangles are for divalent ions with d = 4 A. The straight
line is the Debye length, the full curve represents the solution
to the cubic equation (1.34), and the dotted and the dashed
curves are the analytic expansions (1.37) and (1.39), respec-
tively. The open symbols are the exponential approximation
(1.42).

(3.18)

described by the self-consistent analytic approximation.
However, the nonlinear version, Eq. (1.42), which is also
self-consistent with the two moment conditions but which
must be solved numerically, is qualitatively correct in pre-
dicting that the divalent decay length is first larger than
the Debye length, and then smaller, and it may be de-
scribed as quantitatively accurate at low concentrations.
(Note that in this case the monotonic electrostatic regime
ends at 0.4M, KDd = 1.6.) One can conclude that a sub-
stantial part of the error in the analytic approximation in
the divalent case comes from its linearity; at low concen-
trations the potential of mean force can be quite large at
contact. In the monovalent cases, the nonlinear version is
equal to the analytic self-consistent approximations over
the whole regime shown, which indicates that the lin-
earization is legitimate here. It is worth mentioning that
the HNC results for the decay length may be regarded
as exact. Inclusion of the first bridge diagram decreased
the decay length of the monovalent electrolyte by 1% at
the highest concentration shown.

Figure 3 shows the excess internal energy per ion. For
the present binary symmetric electrolyte this is
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For the linear theories, the nontrivial parts of the brack-
eted term cancel. The osmotic coeKcient is plotted in
Fig. 4, and it can be seen that only the nonlinear self-
consistent theory is quantitatively accurate. This is prob-
ably due to the significant contribution from the contact
value of the correlation functions, which cancels identi-
cally in the linear theories. The nonlinear self-consistent
theory exaggerates the turn up in the HNC data as the
concentration is increased. In the case of the 5M divalent
electrolyte, inclusion of the first bridge diagram decreases
the osmotic coefficient by about 3%.

-0.2—
2. Oscillator y regime

-0.25

-0.3—

-0.35

-0.4

FIG. 3. The excess internal energy per ion, normalized by
the coupling constant I' = Pq /ed. The symbols are as before,
the solid curve uses the approximation (1.39), and the dashed
curve uses the Debye-Huckel approximation (1.29).

where the dimensionless coupling constant is I' = Pq /ed.
This integral was evaluated numerically for the HNC and
for the nonlinear approximation. In the linear cases one
obtains

Figures 5 show the characteristic lengths of the cor-
relation function, mainly in the oscillatory regime. The
total correlation function may be written

h++ (r) = A cos[K;(r —b)]e """/r. (3.21)

The decay length is v„, and the period of the oscillations
is 2xr/r. ;. Oscillations are signified by nonzero values of
K, . The amplitude is A and the phase is b. The lengths
corresponding to both poles, the electrostatic and the
core, are plotted; the pole which dominates the asymp-
totic behavior is the one with the larger decay length.

In Fig. 5(a) (monovalent electrolyte, d=5 A.), electro-
static oscillations begin at 0.65M (K~d = 1.3), which is
somewhat less than the Stillinger-I ovett [2] upper bound

1.3

{3.19)

with e being equal to KD for the modified Debye-Huckel
approxixnation, Eq. (1.29), and being given by Eq. (1.39)
in the self-consistent case. It can be seen in the figure
that the results for the monovalent electrolyte are given
quite accurately by the self-consistent approximations,
and that the Debye-Huckel theory significantly underes-
timates the magnitude of the internal energy. The non-
linear self-consistent theory gives the energy accurately in
the divalent electrolyte at low concentrations, but overes-
timates the correction to the linear theory as the concen-
tration is increased. Including the first bridge diagram in
the HNC increased the magnitude of the internal energy
by about 0.2% at 5M concentration of the divalent elec-
trolyte (rrxd = 6.8), and by even sxnaller amounts for the
monovalent electrolytes. Hence the HNC may be taken
as an accurate benchmark to test the more approximate
theories, as has been done here.

In general, the pressure is more sensitive to approxi-
mations than the energy. The osmotic coeKcient is given
by

=1+
nk~T 3

VCAd [2+ h++(d+) + h+ (d+)]. (3.20)

0.9

0.8
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0.6

0.5

0 4--

0.3
0 0.2 0.4 0.6 0.8 1.2 1.4

FIG. 4. The osmotic coefBcient. The symbols are the HNC
(as above), the solid curve uses the exponential approximation
(1.42), the dashed curve uses the analytic moment approxima-
tion (1.39), and the dotted curve uses the Debye-Huckel ap-
proxixnation (1.29). The latter two aproximations are shown
for the monovalent and divalent electrolytes with d = 4
A oxily.
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of the Ornstein-Zernike equation using the fact that the
direct correlation function decays like the Coulomb po-
tential at long range. The main approximate result was
an analytic expression for the decay length in the elec-
trolyte, derived by satisfying the exact second moment
condition with a Yukawa form for the total correlation
function. The result was shown to be fairly accurate by
comparison with hypernetted chain calculations, and to
greatly enhance the applicability of the classic Debye-
Huckel theory. The results of the asymptotic analysis
were a formally exact expression for the decay length in
terms of efFective charges on the ions, and an expression
for the latter in terms of integrals of the short-range part
of the direct correlation function. The analysis enabled
the three asymptotic regimes —monotonic, electrostatic-
dominated oscillatory, and core-dominated oscillatory

to be clearly distinguished. The analysis was extended
to the spherical and the planar electrical double layers,
where it was shown that the decay of the density pro-
file due to an isolated solute or charged wall, and also
the decay of the interaction &ee energy, was the same as
for the bulk correlation functions of the electrolyte. The
approximate and exact theories were tested by numerical
hypernetted chain calculations, and the asymptotic phase
diagram of several aqueous electrolytes was explored.
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