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DifI'usion in equilibrium mixtures of ionized gases
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Diffusion in a mixture of two nonreacting homonuclear gases with an arbitrary degree of ionization
is considered. It is shown that, provided that an equilibrium composition of the gas mixture can be
defined as a function of temperature, pressure, and relative concentrations of the two gases, diffusive
Inixing of the gases can be fully described by three combined diffusion coeKcients. These coe%cients
describe diffusion due to concentration, temperature, and pressure gradients, respectively, and re-
place the —(q + q —2) independent diffusion coeKcients required in previous treatments to describe
diffusion in a q-species gas mixture. Diffusion due to applied electric and gravitational fields is also
considered. Formulas for the combined diffusion coefBcients are presented, and combined diffusion
coeKcients in a mixture of argon and nitrogen at temperatures up to 30000 K are calculated as an
example.

PACS number(s): 51.10.+y, 52.25.Fi, 05.60.+w

I. INTR.ODU OTIC)N

The Chapman-Enskog method [1—3] is widely used to
calculate the transport properties of gases. Of these
properties, viscosity, thermal conductivity, and electrical
conductivity are each described by a single coefficient, ir-
respective of the number of species present in the gas. In
contrast, in a gas containing q species, a total of 2 q(q —1)
independent ordinary diffusion coefficients D,~, describ-
ing difFusion due to species concentration gradients, pres-
sure gradients, and external forces, and a total of q —1
independent thermal diffusion coefficients D,-, describ-
ing diffusion due to temperature gradients, must be de-
fined. Only in the special case of a two-species mixture
are ordinary diffusion and thermal diffusion, respectively,
described by one coefficient.

There is a wide range of problems, such as vaporiza-
tion of a condensed particle in a hot gas and cooling of
a plasIna jet by an ambient gas, in which the diffusive
mixing of two high-temperature gases is important. The
occurrence of dissociation and ionization means that a
large number of species are generally present in such gas
mixtures. A species is defined here to be any type of
molecule, atom, or ion, or the electron. At present, the
treatment of such problems requires each species to be
considered separately. A species conservation equation
and. a momentum conservation equation then have to be
solved for each species [4]. Treatment of these problems
would be greatly simplified if diffusion could be described
in terms of the two gases rather than the many species
present. In fact, many workers use this simplification,
without properly calculating the required diffusion co-
efficients. For example, Chen et al. [5] assume the ordi-
nary diffusion coefficient for the diffusion of copper vapor
and argon to be equal to the binary diffusion coefficient
for atomic copper and atomic argon (which is equivalent
to the ordinary diffusion coefficient calculated assuming
that only these two species are present), even at temper-

atures at which the mixture is fully ionized. In calcula-
tions of the properties of plasma jets discharging into air,
ordinary diffusion coefficients have been calculated using
a simple mixing rule [6], or neglected altogether relative
to the large turbulent mixing rate [7]; both approaches
can introduce inaccuracies.

In a previous paper [8], combined diffusion coefficients
were derived to describe the diffusive mixing of two non-
ionized gases due to concentration and temperature gra-
dients. Here I extend the calculations to the more general
case of ionized gases, and I include the influence of pres-
sure gradients and externally applied fields on diffusion. I
consider a mixture of two nonreacting homonuclear gases,
with an arbitrary degree of ionization, containing a to-
tal of q species. I show that the diffusion in the gas
mixture due to concentration, pressure, and temperature
gradients, and under the inBuence of applied electric and
gravitational fields, may be described by four coefficients:
(1) a combined ordinary diffusion coeKcient; (2) a com-
bined pressure diffusion coefficient; (3) a combined ther-
mal diffusion coefficient, describing, respectively, diffu-
sion of the two gases due to concentration, pressure, and
temperature gradients; and (4) the electrical conductiv-
ity, describing diffusion of charged particles due to the
applied electric field. The applied gravitational field is
shown to have no effect. The three combined diffusion
coefffcients replace the 2q(q —1) ordinary diffusion coef-
ficients and the q —1 thermal diffusion coefficients that
are required to describe diffusive mixing of the gases in
other treatments.

In order for the three combined diffusion coefficients
to be calculated, an equilibrium composition of the gas
mixture must be defined as a function of temperature,
pressure, and mole fractions of the two gases. This is be-
cause the various species diffuse with difFerent velocities;
the imposition of an equilibrium condition means that
we are in fact assuming that dissociation, ionization, and
recombination reactions occur to maintain the equilib-

1063-651X/93/48(5)/3594(10)/$06. 00 3594 1993 The American Physical Society



DIFFUSION IN EQUILIBRIUM MIXTURES OF IONIZED GASES 3595

rium composition. This is always possible for homonu-
clear gases because the species required for the reactions
will always be present at any position in the mixture.
In mixtures of heteronuclear gases, the different diffusion
velocities of the various species mean that this will not be
true. The question of equilibrium composition is further
discussed in Sec. II C.

In Sec. IIA, I discuss the definition and the usual
method of calculation of diffusion coefBcients in a non-
ionized neutral gas. The effect of the presence of charged
particles on these diffusion coeKcients is treated in Sec.
II B. The method of calculation of the combined diffusion
coefBcients is given in Sec. II C. An illustrative calcula-
tion of the combined diffusion coefBcients for a mixture
of nitrogen and argon at high temperatures is presented
in Sec. III, and conclusions are given in Sec. IV.

II. CALCULATION
OF DIFFUSION COEFFICIENTS

A. Present method

I consider a mixture of two homonuclear gases, de-
noted gas A and gas B, consisting of a total of q species.
For generality, I allow the gases to be partially ionized.
Zero and fuH ionization can be treated as special cases by
neglecting charged or neutral species, respectively. The
individual species present are denoted by the subscript
i, where i = 1 denotes the electron, i = 2, . . . , p denote
the species derived &om gas A, and i = p + 1, . . . , q the
species derived &om gas B. I assume that gases A and
B do not react; there is thus no ambiguity regarding the
gas to which species 2 to q are assigned.

There is considerable variation in the definition of the
diffusion coefFicients employed by different authors. For
example, Hirschfelder, Curtiss, and Bird [1], Chapman
and Cowling [2], and Devoto [9] define the ordinary dif-
fusion coeKcients D;~ and the thermal diffusion coefB-
cient D, using the equation for the number Aux of the
species i relative to the mass-average velocity:

the special case of q = 2.
Ferziger and Kaper [3] prefer the definition, adapted

from that suggested by Curtiss [10],

g, = n; —) D;zd~ + D; 7'lnT

The notation D;~ and D, is used to differentiate the ordi-
nary and thermal diffusion coeKcients &om those under
the previous definition. In this case, the ordinary dif-
fusion coe%cients are symmetric, i.e., D,.~ = D~;, and
are thus explicitly consistent with Onsager's reciprocity
relations. Also, D;~ and DT have the same dimension.

Despite these advantages, the definition of Eq. (1) ap-
pears to be used almost exclusively in the thermal plasma
literature; see, for example, Refs. [5,6,11—13]. For this
reason, I choose to use this equation, rather than Eq.
(3), as the definition of the diffusion coeflicients. For
completeness, and to allow direct comparison between
Ref. [8] and this paper, I present a summary of results
calculated under the definition of Eq. (3) in Appendix A.

The diffusion coeKcients D;~ and D, may be calcu-
lated from series of linear equations, with terms incorpo-
rating the collision integrals describing interactions be-
tween the species present in the plasma. The appropriate
equations are given by, for example, Hirschfelder, Curtiss,
and Bird [1] and Devoto [9].

B. Ambipolar diffusion

The diffusion of charged particles is affected by both
externally applied electric fields and the electric field that
arises because of the tendency of electrons to diffuse more
rapidly than ions. For generality, I consider the effect
on transport of both types of electric field, as well as
an externally applied gravitational field. The force on a
particle of species i is then

F; = eZ;(E' + E ) + m;g,

2 DT
g, = n, v, = —) m~ D;~ d~ — ' 'I7 ln T,

j=i

( p21
d~ = V'x~+

~
x~ ——'

~

'|71nP
p)

F,. —) n(F)
Pp (m~

' -
)

(2)

describes the diffusion forces due to gradients in concen-
tration x~ = n~/n and pressure P, and due to external
forces F~. n and p are, respectively, the number and
mass densities of the gas mixture, and n~, p~, and m~
are, respectively, the number density, mass density, and
mass of the jth species. Under this definition, we have
D;; = 0, but in general D;~ g D~; for i g j, except for

where v, is the diffusion Aux of species i relative to the
mass-average velocity, T is the temperature, and

where E' is the externally applied electric field, E is the
electric Geld caused by the separation of electrons and
ions, g is the acceleration due to the gravitational field,
and where Z;e is the charge on a particle of species i, e
being the electronic charge. Substituting Eq. (4) into Eq.
(2) gives, after applying the charge neutrality condition
P;. , n;Z; = 0,

d;=V'x;+
~

x, ——' ~VlnP — ' ' (E'+E ). (5)p, 'l n;Z, e
nkT

Note that the terms in g cancel, so the gravitational
field has no direct effect. Separation of gases of differ-
ent molecular weights can, however, occur due to the
pressure gradient term.

The electric field E slows the diffusion of the electrons
and speeds the diffusion of the ions so that charge neu-
trality is maintained; a steady state is reached in which
the current is due only to the applied electric field:
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e) Zg; =ox,

which is the same as that obtained by Devoto [9]. The
remaining terms may be solved for E; substituting the
resulting expression into Eq. (5) gives

q

g, = —) m, D,, + —') Z)D(,

p) nkT

( 7 ~ 7)D; 0'; ZID) V' l TZ + V'lnT,Ii ~l (8)

where
q

n; = ) n, m, Z, D...
j=1

(9)

q

P = —) Z;Z, n, m, D;, . . (10)

Equation (8) is the same expression as given by De-
voto [9], apart from the addition of the term in K'. It
shows that diffusion due to an applied electric field is not
altered by the electric field E, and thus can be repre-
sented by the expression for electrical conductivity given
in Eq. (7). DifFusion due to concentration, pressure and
temperature gradients is, however, affected: the ordinary
diffusion coeKcient D,~ and the thermal diffusion coeK-
cient D,- must be replaced, respectively, by

where o is the electrical conductivity. This is a gener-
alization of the ambipolar condition, which is obtained
by setting E' = 0. Substituting Eq. (5) into Eq. (6) and
equating terms in E gives an expression for the electrical
conductivity:

(
num~ Z~ Di~ —. Z~ ) n;m, z;D~, , (7)

sumption is that the concentrations of the individual
species are defined as a function of temperature, pressure,
and relative concentration of the two gases. This requires
an equilibrium description of dissociation and ionization
reactions; this is usually provided by the requirement
that Gibbs &ee energy be minimized, or, equivalently, by
the Guldberg-Waage equation for dissociation and the
Saha equation for ionization.

It is emphasized that there is no requirement that the
relative concentration of the two gases be uniform in the
plasma; hence phenomena such as mixing of two gases,
and demixing [4], may be treated. It is also not nec-
essary that the equilibrium descriptions of the dissocia-
tion and ionization reactions correspond to those given
by the Guldberg-Waage and Saha equations; any set of
species concentrations as a function of temperature, pres-
sure, and relative concentrations of the two gases may
be used. It should be noted, however, that departures
from Saha equilibrium are generally, in physically re-
alistic situations, associated with the electron temper-
ature being greater than the heavy-particle tempera-
ture. Such two-temperature plasmas cannot be treated
using the standard Chapman-Enskog method; however,
many adaptations of the Chapman-Enskog method to
two-temperature plasmas have been suggested; see, for
example, Refs. [14—17]. The use of one of these adap-
tations would allow the concept of combined diffusion
coeKcients to be applied to two-temperature plasmas.

The required combined diffusion coe%cients are de-
fined by an expression for the number Aux of gas A, of
equivalent form to that of Eq. (1) for a two-species gas:

2 T
g~ ——m~ D~~ VzI3 + D~~ V' ln P — V ln T;D~a

p mg

(13a)

the corresponding expression for the number Bux of gas B
1S

2 T
g~ = —mz D~~V'x~ + D~~V'lnP — V'lnT.z P Da~

P f0'
(13b)

and

q

D; = D,, + —') ZI, D(~
l=i

The term x~ —p~. /p in Eq. (2) has been included in D&J3
and D&+&, and the external force terms have been omit-
ted for reasons discussed in Sec. IIB. The bar notation
indicates that a variable refers to a gas rather than to a
species. In Eqs. (13a) and (13b),

+ P, - m
(12)

C. Combined difFusion coefBcients

Note that when n1 ——0, ambipolar effects do not occur,
andwe write D; =D;z andD; =D;.

m~ = ) (mgxA, + zmg )2

m~ = ) (mgzg + mizI, xg)

» = ).(1+Z~)*~,

) .*~,
k=2

q). ~~,
k=a+1

{14a)

(15a)
We wish to combine the ambipolar difFusion coeKcients

D, and D, defined in Eqs. (1.1) and (12) to give com-
bined diffusion coefficients that describe the diffusion of
the two gases relative to one another. A necessary as-

q

*a= ) (1+Z~)~~=1 —»,
k=a+1

(15b)
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p

gA = 8igi)
i=2

(16a)

) Sigil
i=p+1

(16b)

are, respectively, the average masses of the species of
gases A and B, and the relative concentrations of gases
A and B'. The terms in Zk include the electrons resulting
&om ionization of gas A, while excluding those resulting
from ionization of gas B, in calculating mA and xA, and
vice versa in calculating mB and xB.

We wish to find appropriate expressions for DAB,
DAPB, and DATB, which we will call the combined ordinary
diffusion coefBcient, the combined pressure diffusion co-
efFicient, and the combined thermal diffusion coefBcient,
respectively. We start by defining gA and gB in terms of
the total Qux of atoms contained in the species of gas A
and gas B, respectively:

where the Si are stoichiometric coefBcients, defined by

81 ——0,

p

s; =b;) xg
k=2

p).b~x~, 2(j.&p, (17b)

s, =b; ) xg
k=p+1

) bI xl, p + I ( z ( iI,
k=p+1

(17c)

where bi is the number of atoms in a molecule of species
i; thus bi = 2 for a diatomic molecule or ion, and bi = 1
for an atom or monatomic ion.

Substituting Eq. (1) into Eq. (16a), replacing D;z and
D, by D, and D, -, respectively, to account for am-
bipolar effects, and rearranging into the same form as
Eq. (13a), gives

n'
gA ———mB (

P

p) s) mD, , ' Vx~+
i=2 j=l

p,) s;) m, D; ~x, —. —+P
~

V'lnP &

mg ( p ~P)i=2 2=1

DTcL
mA Si

m ),D;,T V'lnT, (18)

where we have used

m~ ( p

which is valid since we have assumed that an equilibrium
composition can be defined as a function of temperature,
pressure, and the relative concentrations of the two gases.
Comparing Eq. (18) with Eq. (13a) gives

f DT.
D~„m~ ) s,

i=p+1

—) mD;, T

(24)

(25)

DAB = 1 ~ ~ Bx~) s;) m, D;,
i=2 j=1

p

and

p

D~T~ = m„) s;
i=2 mi p BT

(20) Equations (20)—(25) satisfy the conditions D&&

DBA DAB —DBA, and DAB —DBA which
analogous to the requirements that D;~ = Dz, and
D, = D+ in a two-sp—ecies gas (Sec. II A), and which
may be derived from Eq. (13a) and the relation mgg~ ——

—mBgB, which follows from the definition of v;. The dif-
fusive mixing of two gases due to concentration, pressure,
and temperature gradients can thus be fully described by
the three parameters DAB, DAPB, and DATB, respectively.

It is useful in some contexts to consider the terms in
Eqs. (21), (22), (24), and (25) separately. We may write

Similarly, we can calculate expressions for DBA, D&A,
and D&+&, using Eqs. (1), (13b), and (16b): with

DAB —DAB + DAB~ (26)

DBA =—
q) s) mD, ,

i=p+1 j=l
(23) AB

Pl ) ., ) mD;, ~x, ——'~ (27)
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and. 0.8

AB

and similarly

with

s q

) s ) m~DP
'=2 2=1

D~B ——D~ + D~B)

(28)

(29)
O

e 0.4—
O
E

% ~
'~

Ar

06 N2

0~

'~

'. N ~J

e.-."
~ 0

~ P
~O

r

N+

D

DTG
D~ = m~)

i=2

J"),) m, D;,T *'.
i=2 j=1

(30)

(31)

0.2

0
0

N~+
-- g'-A-r ~+

5000 10000 15000 20000 25000 30000
temperature (K)

Similar expressions apply for DB+& and DBT&.

The terms D&B2 and D&B arise from the change in con-
centration, with pressure and temperature, respectively,
of the species in the two gases. These terms, unlike the
terms D&+B and D&, have no equivalent in a two-species
mixture.

I note that D&B and D&B are linear combinations of
the coefBcients D;.; similarly, D& is a linear combination
of the coe%cients D; . These relations are investigated
in Sec. III.

III. AN ILLUSTRATIVE EXAMPLE

I now present a calculation of the combined diffusion
coeKcients in mixtures of argon and nitrogen. The re-
sults illustrate some important properties of these coeS-
cients.

The equilibrium concentrations of the species present
in the argon-nitrogen mixture were determined by the
method of minimization of Gibbs free energy [18]. The
required thermodynamic data for the species were found
using the data in the JANAF tables [19], or calculated
using the atomic energy levels listed by Moore [20]. Fig-
ure 1 shows the results for a mixture of 50/p argon and
50% nitrogen by weight at a pressure of 101.3 kPa. Only
those species that were present with a mole fraction of
more than 0.01 are shown. Other species considered in
the calculation were N2+, N, Ar +, and N +; the max-
imum mole fractions of these species for temperatures
below 30 000 K were 5 x 10, 1 x 10, 1.6 x 10, and
6 x 10, respectively. All species except N were con-
sidered in the diffusion calculations.

The combined diffusion coefBcients were calculated us-
ing Eqs. (20)—(22). The required ambipolar diffusion co-
efficients D, and D+ are given in Eqs. (11) and (12) in
terms of the individual diffusion coefhcients D;~ and D; .
The collision integrals required to calculate D;~ and D;
were obtained by the methods outlined in Appendix B.

Figure 2 shows the temperature dependence of the
combined ordinary diffusion coefBcient DA N for theAr, N2

FIG. 1. Equilibrium concentration of a mixture of 50'70 ar-

gon and 50% nitrogen by weight at a pressure of 101.3 kPa.
Species that have mole fractions less than 0.01 over the full
temperature range are not shown.
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FIG. 2. Combined ordinary diffusion coeKcient, and or-

dinary diffusion coeKcients for some pairs of species, as a
function of temperature, in a mixture of 50'P0 argon and 50'Po

nitrogen by weight.

conditions of Fig. 1. The behavior of DA, N can be
understood by referring to the ambipolar ordinary dif-
fusion coeKcients D;. of the pairs of species present.
Since q = 11 species are considered in the calculations,
there is a total of q = 121 such coeKcients, of which

zq(q —1) = 55 are independent. Some of these are also
shown in Fig. 2. At low temperature, for which Ar and
N2 are the only species present, DA, N

——DA, N . At
temperatures around 9000 K, for which Ar and N are
the dominant species present, DA, N —DA, N. We see

that DA N increases with temperature up to temper-Ar, Ng
atures at which significant ionization occurs; at higher
temperatures, it falls rapidly, owing to the lower values
of D;- for ionized species. These lower values are due to
the strength of the Coulomb interaction, which leads to
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larger collision cross sections and hence lower diffusion
rates. At all temperatures, DA, N represents a weighted
average of the ordinary difFusion coefficients of the pairs
of species present.

It was mentioned in Sec. I that some authors have used
binary difFusion coefficients as a substitute for D&&. It is
interesting to establish the magnitude of the error intro-
duced by this substitution. Figure 3 compares the binary
difFusion coefficients DA, N, and BA, N with DA, N . It is
clear that although VA, N, and 'VA, N are good approxi-
mations to DA, N at temperatures below those at which
significant ionization occurs, at higher temperatures the
use of binary diffusion coefficients leads to very large er-
rors.

It was noted in Sec. IIC that the combined thermal
diffusion coefBcient component D& is a linear combina-
tion of the ambipolar thermal diffusion coefficients D;
The temperature dependence of the term DA, ———DN is
compared in Fig. 4 with seven of the q = 11 coefficients
D, , of which q —1 = 10 are independent. At tem-
peratures below those at which significant dissociation of
nitrogen occurs, DA, ——DA, ———DN' , at higher tem-

peratures, up to around 9000 K, DA, ——DA, = —DN .
At still higher temperatures, DAT, decreases rapidly, be-
cause of the lower thermal diffusion coefficients of charged
species. As with DA, N for ordinary diffusion coeffi-

cients, DA, is a weighted average of the thermal diffusion
coefficients of all species present.

The dependence of DA, N on the relative concentra-
tions of argon and nitrogen is shown in Fig. 5. We see
that, unlike D,~ in a two-species gas, D&& in a mixture of
two gases can vary according to the relative concentration
of the gases. This is because the degree of dissociation
and ionization of the two gases depends on the relative
concentrations of the gases; thus, for example, x~,+/x~,
is a function of xA, . At temperatures below those at
which dissociation and ionization take place, DA, N is
independent of xA, .
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FIG. 4. The component BAT, of the combined thermal dif-
fusion coefBcient, and thermal diffusion coefBcients of some
species, as a function of temperature, in a mixture of 50%
argon and 50% nitrogen by weight.

Figure 6 shows the dependence of DA, N and its two

components, DA, and DA, ~ ) on xA, . We expect DA, to
have a strong dependence on xA„since D;, unlike D;~,
is a function of x; in a two-species gas. This is illustrated
in the figure by the low-temperature behavior of DA, .' at
temperatures at which Ar and N~ are the only species

present, DA, ——DA, , although relatively small, clearly

depends strongly on xA, ——xA, . We also expect DA N

to be a function of x~„since Bx;/BT is a function of x~, .
Figure 6 indicates that at temperatures below those

at which dissociation of N2 takes place, and also in the
temperature range between the dissociation temperature
of N2 and the ionization temperatures of Ar and N, DA,
is the dominant component of DA, N . At other temper-

atures, DAT~N is generally the more important.

Figure 7 shows the dependence of DA, N and its two
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FIG. 3. Combined ordinary diffusion coefBcient, and bi-
nary diffusion coefficients for Ar-N2 and Ar-N, as a function
of temperature, in a mixture of 50% argon and 50% nitrogen
by weight.

FIG. 5. Combined ordinary diffusion coefFicient as a func-
tion of temperature for different mixtures of argon and nitro-
gen. Proportions are by weight.
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FIG. 6. Combined thermal difFusion coefBcient, and its
components, as a function of temperature for difFerent mix-
tures of argon and nitrogen. (a) 10'%%uo argon, 90% nitrogen;
(b) 50%%uo argon, 50% nitrogen; (c) 90% argon, 10'%%uo nitrogen.
Proportions are by weight.

components, DA, N and DA, N, on xA, . We see that,

similarly to D~r ~ ~ DAr N and its two components
strongly depend on the relative concentrations of the two

gases. The dependence of DA, N arises from the factor
x~ —p~/p in the definition; see Eq. (27). The dependence

of DA, & is analogous to that of DA, N . For most tem-

peratures and concentration ratios, ~D&, N ~
)& ~DA, N

The magnitude of DA, N is generally within one or-

der of magnitude of that of DA, N, however, diffusion
due to pressure gradients will in most cases be negligi-
ble compared to difFusion due to concentration gradients,
because of the logarithmic dependence of dz on P in Eq.
(»a).

IV. CONCLUSIONS

I have shown that the diffusive mixing of two non-
reacting homonuclear gases can be fully described by
three combined diffusion coefficients, provided that an
equilibrium composition of the gas mixture can be de-
fined as a function of temperature, pressure, and relative

-0.0005 ~ I s I ~ I I I ~ I

5000 10000 15000 20000 25000 30000
temperature (K)

FIG. 7. Combined pressure difFusion coe%cient, and its
components, as a function of temperature for different mix-
tures of argon and nitrogen. (a) 10%%uo argon, 90% nitrogen;
(b) 50% argon, 50'% nitrogen; (c) 90% argon, 10%%uo nitrogen.
Proportions are by weight.

concentrations of the two gases.
The combined difFusion coefficients, termed the com-

bined ordinary, thermal, and pressure difFusion coe%-
cients, describe diffusion due to concentration, temper-
ature, and pressure gradients, respectively. The com-
bined ordinary diffusion coefficient is analogous to the
ordinary diffusion coefficient in a two-species mixture.
The combined thermal and pressure difFusion coefficients
each have two components. The first components are, re-
spectively, analogous to the thermal diffusion coefficient
in a two-species mixture and the ordinary difFusion coeK-
cient (which describes diit'usion due to a pressure gradient
as well as diKusion due to a concentration gradient) in
a two-species mixture. The second components describe
diffusion arising, respectively, from the temperature and
pressure dependence of the concentrations of the species
in the two gases.

The ambipolar effects that occur in ionized gases are
included in the formulation employed. As in previous
treatments, diffusion due to an applied electric field is
described by the electrical conductivity, and an applied
gravitational field has no influence on diffusion.
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I have presented formulas for the combined diffusion
coefBcients and the electrical conductivity in terms of
the ordinary diffusion coefBcients of the pairs of species
present and of the thermal diffusion coefBcients of the
species present. Combined diffusion coefBcients in a mix-
ture of argon and nitrogen at atmospheric pressure and
at temperatures up to 30000 K have been calculated as
an example.

Previous treatments of diffusion in mixtures of ion-
ized gases required 2q(q —1) independent ordinary diffu-
sion coefBcients and q —1 independent thermal diffusion
coefBcients to be considered. The complexity of such
treatments has led some authors to make inappropriate
approximations in an effort to simplify problems. The
concept of combined diffusion coefBcients that I have in-
troduced wil1 allow a wide range of problems encountered
in modeling thermal plasmas and hot gases to be treated
simply yet correctly.

gA
——nA DAB V'zB + DAB V ln P + DAB V' ln T

(A5)

where nA ——nxA is the number density of gas A. We
then proceed as in Sec. IIC to obtain

1 ~ ~ 022D~ ) sn) D"
i=2

(A6)

D~+~ —— ) s;n, ) D,, ~ z~ ——+P ~, (A7)

and

To derive the combined symmetric diffusion coefBcients

DAB, DAB, and DAB, we begin with the analogous equa-
tion to Eq. (13a):
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APPENDIX A:
SYMMETRIC-DIFFUSION-COEFFICIENT

FORMULATION

q

D; =D;; + =') . Zin)Di, (A1)

It was noted in Sec. II A that there is considerable vari-
ation among authors in the definition of diffusion coefB-
cients. Here I present a summary of the main results of
this paper in terms of the symmetric diffusion coefFicients
D;~ and D+, defined by Eq. (3).

The symmetric ambipolar diffusion coefBcients D, and

D; may be calculated using the method outlined in Sec.
II B, giving

p1DJ3= ) sn;
nA i=2

8
BT )

(A8)

Similar expressions for DBA, DBA, and DBAP T

may be calculated. They obey the relations

nA~ADAB = nB~BDBA nAmADAB — nB~BDBAP

and nAmADAB ———nBmBDBA, respectively.

APPENDIX 8: CALCULATION OF COLLISION
INTEGRALS

The diffusion coefBcients D;~ and D;, defined by Eq.
(1), and their counterparts D;~ and D+ under the al-
ternate definition of Eq. (3), were calculated using the
Chapman-Enskog method [1—3,9]. The coeKcients are
calculated from sets of linear equations, the terms of
which are functions of the number densities, masses, and
co1lision integrals of the species present. The collision in-

tegrals 0, " for interactions between species i and j are
defined by

and

where

q
D7'~ = D7 + =*) Z)n(D+

l=i

q

n;=) Zn D;,
2=1

(A2)

(l, s) 4(t + 1)
vr(s + I)![2t + 1 —(—1)']

' ~"+'&,',"(g)d~
0

pg2/2kT, p, being the reduced mass of the

species i and j, g is their relative speed, and Q, (g) are(&)

the gas-kinetic cross sections, given by

Q; .l (g) = 2vr (1 —cos y) 6 db
0

(B2)

p = —) z z, nn, 15,, (A4)

When n1 ——0, ambipolar effects do not occur, and we
write D;- = D,.~ and DT = D; .

Here b is the impact parameter, and y is the defIection
angle, which is a function of b, g, and the intermolecular
potential V(r), where r is the separation between the
interacting particles [1,3].

Diffusion coefBcients were calculated to a second-order
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approximation; this required that 0,-.', 0,--', 0, '(l, l) (1,2) (1,3)

and AI
' be calculated. (The order of the approxima-

tion is kere defined to be the number of terms retained in
the finite Sonine polynomial approximation used in the
Chapman-Enskog method. )

The method. s by which the collision integrals for the
interactions of species derived &om argon and nitrogen
were obtained are now described. Considerable effort was
expended to locate up-to-date and reliable data. The
collision integrals were obtained. in three ways: directly
&om tabulations, by numerical integration of experimen-
tal data for the momentum-transfer cross section Q, (g)

(i)

using Eq. (Bl), and from published intermolecular po-
tentials using Eqs. (Bl) and (B2). In the latter case, the
method of Barker, Fock, and Smith [21] was used to nu-
merically evaluate the required integrals for all but expo-
nential, polarization, and screened Coulomb potentials;
collision integrals in these cases were obtained using the
data of Monchick [22], Kihara, Taylor, and Hirschfelder
[23], and Mason, Munn, and Smith [24], respectively.

Collision integrals for N-N interactions were taken &om
the tabulation of Levin, Partridge, and Stallcop [25].
All other collision integrals for neutral-neutral interac-
tions were calculated &om intermolecular potentials. Ar-
Ar interactions were described using the Hartree-Fock-
dispersion —total-cross-section-2 potential [26], N2-N2 and
N2-N interactions by exponential potentials [27], N2-Ar
interactions by an exponential-spline —Morse-spline —van
der Waals potential [28], and N-Ar interactions by the
Lennard-Jones (12,6) potential [28].

Collision integrals for N+-N interactions were taken
&om the tabulation of Stallcop, Partridge, and Levin
[29]. Collision integrals for the N+-Ar interaction were
calculated &om the Morse potentials given by reise and
Mittmann [30]. The 0,. "i collision integrals for the Ar+-

Ar and Ar+-N2 interactions were calculated from the
charge-exchange data given by Aubreton, Bonnefoi, and
Mexmain [31]and Tosi, Dmitrijev, and Bassi [32], respec-

tively. The 0; " collision integrals for the N2+-N2 and
N+-N2 interactions were calculated &om the momentum-
transfer cross-section data tabulated by Phelps [33]. The
l = 8 = 2 collision integral for the Ar+-Ar interaction was
calculated using a combination of Morse and exponential
potentials [31]; the l = s = 2 collision integral for the
Ar+-N2, N2+-N2, and N+-N2 interactions, and all colli-
sion integrals for the N2+-N, N2+-Ar, and Ar+-N inter-
actions were calculated using the polarization potential
V(r) = n(Ze—) /32rr ear, where o. is the polarizability
of the ion, Ze is the ionic charge, and eo is the permit-
tivity of free space. Values of o. were taken &om Ref.
[34].

The l = 1 collision integrals for electron-neutral inter-
actions were calculated from momentum-transfer cross-
section data; it was assumed that 0, ." = 0; " . The
momentum-transfer cross-section measurements of Mil-
loy et al. [35], supplemented by those of Frost and Phelps
[36] for high-energy collisions, were used for e-Ar inter-
actions. The measurements of Engelhardt, Phelps, and
Risk [37] were used for e-N2 interactions. The total cross-
section measurements of Neynaber et al. [38] were used
in place of momentum-transfer cross-section data for e-
N interactions, since no measurements of the latter were
available.

Collision integrals for interactions between charged
species were calculated using the screened Coulomb po-
tential [24], the screening distance being set equal to the
Debye radius.

More detailed discussions of the general principles of
the calculation of collision integrals in ionized gases have
been presented by, for example, Capitelli [14] and Aubre-
ton and Fauchais [39].
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