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In the preceding paper, we discuss the diffusion of a particle on deterministic and quasirandom
fractal structures designed to mimic the properties of diffusion-limited aggregates. In this paper we
deal with biased transport, that is, transport in the presence of an external field. Our method is based
on a renormalization procedure that allows us to calculate the scaling properties relating distance
and time as a function of the strength of the external field. We calculate hopping probabilities and
mean first-passage times and show how these properties depend on the direction relative to the field

and on the branching properties of the model.

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION

In the preceding paper [1] we noted that the study of
transport properties in certain deterministic and quasi-
random fractals might serve as a basis for understand-
ing transport in random fractals such as diffusion-limited
aggregates (DLA’s) [2,3]. We took advantage of the fact
that it is possible to construct an exact renormalization
scheme for continuous-time random walks [4] on such
deterministic and quasirandom structures. The renor-
malization scheme is established between the probability
densities of waiting times on an original (in our case frac-
tal) lattice and on the lattice that remains after a par-
ticular set of sites has been removed. This scheme, when
repeated, then leads to the probability densities of wait-
ing times for ever larger distances and longer times and
allows the calculation of the scaling connection between
distances and times.

The structures considered in this paper are described
in detail in the preceding paper [1] (hereafter called I)
and are special cases of the following model: we define
a quasirandom fractal embedded in d-dimensional Eu-
clidean space as one that consists of d + 1 generators
and a branching sequence in which one of the d + 1 gen-
erators replaces each unit obtained at a previous step.
The generators consist of branching structures contain-
ing 2,3,...,d + 1 units. A generator with k£ + 1 units
replaces a previous unit with probability Py, where the
normalization condition Zzzl P, = 1 must hold. For
d = 2 each generator has either two (collinear genera-
tor) or three units. The replacement of each unit by a
given generator follows the construction rules introduced
by Mandelbrot and Vicsek [5] in the context of a de-
terministic fractal growth model, the MV model, that
they introduced in an effort to mimic some of the prop-
erties of DLA’s. According to these construction rules
(1) none of the branches may point in a direction below
the horizontal and (2) no branches are allowed to over-
lap. The decimation procedure used to implement the
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renormalization scheme removes from explicit considera-
tion the nearest neighbors that connect a site of origin to
its next-nearest neighbors, including the branches that
emerge from the nearest neighbors. This procedure is
then repeated again and again, producing at each stage
a structure that is statistically equivalent to the one that
preceded it. An example of a quasirandom fractal struc-
ture in two dimensions is shown in Fig. 1.

The preceding paper deals with transport in the ab-
sence of external fields, that is, unbiased transport. In
that case the hopping probability from an origin to any
particular site is independent of the direction of that site
relative to the backbone of the fractal structure and is
the same for all “equidistant” sites, that is, for all nth-
order neighbors of the origin. Furthermore, the mean
first-passage time to a particular site is the same for all
equidistant sites from the origin and is independent of
direction. The mean first-passage time turns out to be
insensitive to detailed features of the geometry -of the
structure and depends only on a weighted average of the
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FIG. 1. Quasirandom fractal in two dimensions at the
fourth stage of construction. Each generator has either two
units (collinear generator) or three units.

3556 ©1993 The American Physical Society



48 DIFFUSION ON DETERMINISTICAND ... . II. ...

branching structure.

The renormalization procedure was first developed by
Machta [6] for a one-dimensional lattice and later by Van
den Broeck [7] for a number of finitely ramified fractals.
We have generalized their procedure to account for the
presence of a field. In our earlier work we considered
the first-passage-time distribution on a Sierpinski gasket
[8] and found the scaling connections between time, dis-
tance, and field intensity. Herein we extend that analysis
to biased walks on the structures introduced in I, namely
the MV model as well as our quasirandom model. In par-
ticular, we consider the effect of an external field parallel
to the backbone of the structure. The hopping probabil-
ities and mean first-passage times to a given nth-order
neighbor of a point of origin are no longer the same for
all neighbors of a given order but rather depend on the
location of that neighbor relative to the backbone.

We begin our analysis with a digression on notation in
Sec. IT; we expect that the necessary proliferation of sym-
bols, subscripts, and superscripts is thereby made more
manageable. In Sec. III we develop the renormalization
scheme for a one-dimensional biased walk. Although such
a walk is well understood and easily dealt with using
other standard methods, the presentation helps to intro-
duce our procedures in the simplest context. Section IV
deals with biased walks on the MV model, while Sec. V
deals with walks on the quasirandom model. We con-
clude with some observations in Sec. VI.

II. NOTATION

There is an inevitable proliferation of notation even
in the unbiased walk considered in I to indicate all the
possible physical quantities, points of origin, and na-
ture of the branches involved in the random walk on
the fractal structures that we consider. Thus we first
introduced the hopping-time distribution o(t) between
a site of origin and any of its nearest neighbors and its
Laplace transform to(s). Next we generalized this defini-
tion to the hopping-time distribution ¥, (¢) (and its asso-
ciated Laplace transform) between the origin and any of
its (n+1)st neighbors. For some of our fractals these dis-
tributions depend on the way in which the site of origin
is connected to the rest of the structure, a dependence
that we indicated via an additional superscript (z), as in
1ﬁ£:), which indicates the number of nearest neighbors of
the origin. In some instances we needed to distinguish
between different branching structures emerging from a
neighbor of the site of origin, a dependence that we indi-
cated via a second subscript in addition to the generation
subscript n. From these hopping-time distributions we
then went on to calculate hopping probabilities

oo
¥ = [ a0 = da(s = 0) (2.)
0
and mean first-passage times
9y = [ et di (s)
W9y = [ ampde) = -5 L0 (2:2)
0 ds

s=0
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The situation in the presence of a field becomes con-
siderably more complex for two reasons. First, it is no
longer sufficient to indicate only the neighbor generation
n from a given site: the properties of a walk to an (n+1)st
neighbor now depend on the particular neighbor. Sec-
ond, vertices of origin that were previously degenerate
[in the sense that they fell under the same label (i)] may
now differ from one another because, although their lo-
cal configuration is the same, their orientation relative
to the backbone of the structure differs. Our notation in
this paper is therefore necessarily somewhat cumbersome
and will be as indicated in Fig. 2, where we have drawn
all the possible configurations of a site of origin and its
nearest neighbors.

We distinguish six different types of vertices, indicated
by greek letters. We also distinguish between different
jump directions: all upward jumps parallel to the back-
bone are denoted by a p, those downward by a ¢, those
upward but at an angle to the backbone by r, and those
downward but at an angle by u. Each of these symbols
then carries one of the six vertex-type subscripts indi-
cating the type of vertex of origin and another subscript
indicating the generation.

Thus, for example, the hopping-time distribution from
a “dead-end” vertex to its nearest neighbor when this
connection lies parallel to the fractal backbone will be
denoted by gq,0(t) and its Laplace transform by §u,o0(s).
Further generations in the decimation process are indi-
cated by increasing the second subscript. The hopping-
time distribution from a dead-end vertex to its nearest
neighbor when this connection lies at an angle to the
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FIG. 2. All the possible configurations of a site of origin
and its nearest neighbors, and associated notation, for the 12
distinct hopping-time distributions that arise in the quasiran-
dom model. Note that only configurations «, 3, €, and w and
the 8 associated hopping time distributions arise in the MV
model.
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backbone of the structure will be denoted by ugo(t). In
the absence of an external field these two hopping-time
distributions become equal to one another and are identi-
fied with the distribution w(()l)(t) introduced earlier, that
is, in the unbiased case

Ga,n () = ug n(t) = iV (2). (2.3)

There are two types of vertices with two exits, those
parallel to the backbone and those that lie at an angle
to it. For the parallel case we denote the hopping-time
distributions by p . (t) and g, . (t) for upward and down-
ward motion, respectively. If the branch lies at an angle
to the backbone, the hopping-time distributions are de-
noted by 7, ,(t) and u, ,(t). In the unbiased case these
all become equal and reduce to

Prn(t) = tyn(t) = Tpin(t) = wpn(t) = Y1), (29)

There are two distinct kinds of vertices with three
emerging branches. We denote the respective hopping-
time distributions by pen(t), ge,n(t), and 7 ,(t) for one
of these and py, n(t), Uwn(t), and r, ,(t) for the other.
In the unbiased case these also become equal and reduce
to

pe,n(t) = Qe,n (t) = Temn (t) = Puw,n (t)
1
= Uu,n(t) =Tun(t) = giﬁf‘)(t)-
(2.5)
The hopping probabilities associated with each of these
hopping-time distributions, that is, the integrals of each
of these over time, will again be denoted by the corre-
sponding capital letters, e.g.,

Pon= / dt pen(t) = Pem(s = 0). (2.6)
0

III. ANISOTROPIC ONE-DIMENSIONAL
RANDOM WALK

In this section we detail the renormalization procedure
for the familiar case of a biased walk in one dimension.
This simple situation, which has been analyzed by Van
den Broeck and Balakrishan [9] (and whose analysis we
borrow), allows for the analytic solution of the problem
to an extent that is not possible for the fractal struc-
tures, where our aims are necessarily somewhat more
modest. We go further and relate the hopping-time dis-
tributions and associated hopping probabilities and first-
passage times to the strength of the external field. These
results offer insight into those found for more complex
systems.

The one-dimensional system consists of a string of
collinear vertices of the v type in Fig. 2. The hopping-
time distribution from each site to the site above is
Dv,0(t) and to the site below is g¢,,0(t). In the one-
dimensional analysis we can dispense with the subscript
~ since this is the only vertex we deal with. Furthermore,
the one-dimensional chain is customarily drawn horizon-
tally rather than vertically, so that po(¢) and go(t) re-
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FIG. 3. One-dimensional biased continuous-time random
walk which begins at site 1. Hopping-time distributions to
nearest-neighbor sites 2 and 3 and to next-nearest-neighbor
sites 4 and 5.

spectively label hopping-time distributions to the right
and to the left (see Fig. 3). The hopping probability to a
nearest neighbor on the right is Py and to the left is Qo,
respectively defined as

POE/Omdtpo(t), QOE/OOOdth(t), (3.1)

with Py + Qo = 1. In a symmetric (unbiased) random
walk these would each be equal to 1/2.

A. Renormalization equations

We begin with the nearest-neighbor hopping-time dis-
tributions po(t) and go(t) and wish to calculate the dis-
tributions p;(t) and g1 (¢) to the next-nearest neighbors
in terms of these. In order to do so, we now implement
the decimation procedure described in I, that is, we re-
move the nearest neighbors 2 and 3 of the origin 1 in
Fig. 3 from explicit consideration and sum over all the
paths that lead to the next-nearest neighbor 4 before 5
to calculate p;(t), and those that lead to 5 before 4 to
calculate g;(t). We must distinguish between arrival at
4 and at 5 since the hopping-time distributions to these
sites are no longer equal to each other. Therefore, instead
of obtaining a single renormalization equation connect-
ing the nearest- and next-nearest-neighbor hopping-time
distributions ¢ and ¥; we now obtain two coupled equa-
tions connecting p; and ¢; to po and go. It is possible to
obtain these equations by explicitly following all the pos-
sible paths as we did in I, and we do so in Appendix A.
However, this process becomes especially cumbersome for
the more complex structures considered subsequently, so
instead we use a method that we introduced in [8] for
the Sierpinski gasket to write the sums over all paths in
compact matrix form.

For that purpose we define the matrix

0 po(t) qo(t)
Ao) = [ q@) 0 0 (3.2)
po(t) 0 0

The rows and columns of A correspond to the sites shown
in Fig. 3, and the elements of the matrix are the hopping-
time distributions between these sites on the original lat-
tice. The diagonal elements are 0 because a walker does
not hop from a site onto the same site. The (1,2) ele-



48 DIFFUSION ON DETERMINISTIC AND ... . IL. ... 3559

ment represents a hop from the origin to site 2, the (1,3)
element a hop from the origin to site 3, etc. Since there
are no direct hops between sites 2 and 3, the associated

Now suppose that we wish to calculate the hopping-
time distribution p;(¢) to the next-nearest neighbor 4. It
is not difficult to convince oneself that this distribution

entries are zero. is given in terms of the following convolution:

pa(t) = 3001 [dtyaee [T dtialt; — ti0) -+ Aolta — 1) Ao(tr) gt — 1)) (3.3)

Here (0| = (1 0 0) is a row vector that reflects the fact that the walker starts at site 1. The vector |v,(t)) is
a column vector constructed so as to identify the final site of interest and reflects the final step that the walker
must take to arrive there. Thus, with site 4 as the goal, the final step must occur from site 2 to the right, and
consequently |vp(t —t;)) has components (0, po(t —t;), 0) (in column vector form). If instead we wished to calculate
the hopping-time distribution g;(¢) to the next-nearest neighbor 5, then in (3.3) on the right-hand side |v,(t — t;))
would be replaced by |v4(t — t;)) with components (0, 0, go(¢t — ¢;)) indicating the final step that the walker must
take from site 3 to the left. Note that Eq. (3.3) in I is recovered from (3.3) above if one sets po(t) = qo(t) = 34o(t).

We subsume both of these cases into the single equation

z1(t) = Z(0|A dtj_q-- /0 : dt1Ao(t; —tj—1) - Ao(tz — t1)Ao(t1)|ve(t — t;)),

where z stands for either p or ¢. The Laplace transform
of (3.4), which replaces Eq. (3.4) of I and yields p; (s) and
G1(s), then is

F1(s) = S (0l[Ao(s)F | (s))

j=0

= (0|[1 — Ao ()] H=(s))-

These are the renormalization equations after one dec-
imation. These renormalization equations are valid at
each stage of decimation, that is,

(3.5)

Fn(s) = Z<0|[An_1(s)]"lﬂw(s)>

= (0I[1 — An_1()] 7 H | (s))-

It is a simple matter to calculate the inverse in (3.6)
with the matrix (3.2), and one easily finds upon perform-
ing the sum over j the explicit renormalization equations

[Pr—1(s)]?

1—2pp—1(8)gn-1(5)’

(3.6)

Pn(s) = (3.7a)

q.n(s) _ [‘q.n—l(s)]z

= T s (9 () (3.70)

Note that these renormalization equations are valid
whether the walk is biased or unbiased. The information
concerning the presence or absence of a bias only ap-
pears when one specifies the hopping-time distributions
Po(t) and go(t) on the original lattice, that is, the “initial
conditions” for the recursion formulas. If these are equal
(unbiased walk), then they remain equal for all subse-
quent generations, as can easily be seen from Egs. (3.7).

(3.4)

If they are not, then the evolution of the discrepancy for
subsequent generations must be found from Egs. (3.7). In
any case, the renormalization equations (3.7a) and (3.7b)
can be solved explicitly for all s, something that is not
possible for our more complex structures. Here we take
advantage of the fact that we can exhibit the full solution
in this case.

B. Solution of renormalization equations

The full solution of the renormalization equations is
accomplished by noting that Egs. (3.7) imply that [9]

zo -] - BT

(3.8)

and that

1 1
S S— N
V4Pn(8)dn () (V 4ﬁ"_1(s)(jn_1(s)>

= cosh [2" cosh™?! (—1 )} s
4Po(5)Go(s)

(3.9)
where T, is the Chebyshev polynomial of order 2 [10].

The solution for the renormalization equation is obtained
by combining (3.8) and (3.9):

() = [VEl) /()]

X

1

2 cosh [2n cosh™! (—Jm)] ’

(3.10a)
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() = [Vao@ /5o@)]

1

2 cosh [2n cosh™ (m)] |
(3.10b)

X

Consider now the particular and familiar case of a
Markov process, that is, one in which the hopping-time
distributions in the original lattice are exponential. We
further assume that the jump rate parameter A for jumps
to the right and the left are the same, so that the asym-
metry in jumps to right and left occurs only because of
the difference in the total hopping probabilities in these
directions. Thus

po(t) = Pore ™, qo(t) = Qore™, (3.11)
and consequently

- A - A

Po(s) = Poy——» Go(s) = Qoy 7 (3.12)

With these initial conditions the full solution of the renor-
malization equations is

on
#n(s) = (vVPo/ @) e -
2cosh |27 cosh™? (ui/%)

0&o / |

- (3.13a)

. 2" 1
@n(s) = (VQo/Po) SN M (

A+s ) .
2/\\/ QOPO J
(3.13b)

In particular, we can use this solution to calculate the
asymptotic hopping probabilities and mean first-passage
times.

The asymptotic hopping probabilities are obtained
from Eqgs. (3.13) in the limit » — co. One readily finds
the following result:

0, Py<1/2
P=lim P,={ 1/2, Py=1/2 (3.14)
neo 1, Py>1/2.

Thus, if the probability of going to the right on the orig-
inal lattice is smaller than that of going to the left, then
asymptotically the walker will certainly walk to the left;
conversely, if the initial probability of going to the right
is greater, then asymptotically the walker will certainly
walk to the right. If the left and right probabilities are
initially equal, they will remain so for all times.

The first-passage time for arrival at either of the nth
neighbors of the origin can also be evaluated from the
derivatives of (3.13a) and (3.13b) with respect to s at
s = 0 [cf. Eq. (2.2)]. Conversely, we could take these
derivatives in Eqgs. (3.7a) and (3.7b) to find (¢,) in terms
of (t,—1) and then we could directly solve this recursion
relation. This was the procedure followed in I and is
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the appropriate method when we cannot solve the full
renormalization equations. We defer the calculation of
the first-passage time to Sec. III C, where we first relate
the parameters P, and Qo to ones that are physically
more transparent.

C. Parameters of the model

It is physically instructive to relate the initial condition
(3.11) of the renormalization flow to the external field
causing the anisotropy and to the elementary hopping
rates on the original lattice.

The rate of escape from one site to any nearest-
neighboring site in the absence of a field is denoted by I'y.
The presence of a constant external force F of magnitude
F introduces a bias so that jumps against the external
field occur at a lower rate than those in the direction of
the field. The new rate of escape is [11,12]

1
I';; =Toexp (E'BF . rij> ,

where r;; is the vector that joins the nearest-neighbor
sites ¢ and j, 8 = 1/kT, and T denotes temperature.

In our one-dimensional system we take the field to
point toward the left and denote the nearest-neighbor
distance by Az so that Eq. (3.15) can be rewritten as

(3.15)

Pi,i:tl = Fo exp (ﬂ:%ﬂFA(I:) . (3.16)

In the case of Markovian initial waiting-time distribu-
tions (3.11) we identify the total jump rate with the
quantity A introduced earlier, that is,

A= I\Oe(l/Z)ﬁFA:c + Foe—(l/z)ﬁFAz

= 2I'g cosh (%,BFAQJ) , (3.17)

and the hopping probabilities appearing in the coeffi-
cients with the ratios I'; ;41 /A:

e_%ﬁFAw 1

Po= e3BFAz + e~ 3BFAz = eBFAz 1 7’ (3.183)
e%ﬁFA:c eﬁFA:c

Qo= = (3.18b)

e3iBFAz | ~3BFAz ~ eBFAz 4 1°
Consequently we have for the Laplace transforms (3.12)

exp (— %,BFAw)
s + 2T cosh (%ﬁFA:v) ’

]30(3) = FO (319&)

exp (%ﬂFAm)
Os+ 2I'g cosh (%,BFA:E) ’

Go(s) =T (3.19b)

D. Hopping probabilities
and mean first-passage times

We can now use the identifications (3.17) and (3.19) to
write the full solution (3.13) in terms of the temperature
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and the external field,
exp (——%,BF:nn)
1 2 n
2 cosh [\/(2,8an) +4 S/Fo]

Pn(s) = o (3:20a)

an(s) = exp (38Fx,)

B 2 cosh [\/(%ﬂan)z + 4"s/I‘0]

(3.20Db)

In this relation we have set =, = 2"Az = the distance
covered by one step in the nth generation, which is twice
the distance covered in the previous generation. Note
that these definitions reflect the distance and time scaling
of the isotropic problem, where twice the distance takes
four times longer to cover (ordinary diffusion).

Let us now consider the hopping probabilities and first-
passage times implied by these results. The former are
obtained by setting s = 0 in (3.20):

1 eBFzn

= . (3.21
P, e G

T eBFE. 11’

As n — oo, since z, grows without bound, this result
reproduces (3.14) for P, < 1/2. However, more infor-
mation can be extracted from these results if instead we
rescale the external field in such a way that Fz,, remains
finite even as n grows without bound, that is, we al-
low the field over a distance Az to become smaller and
smaller (as 27 ") as the distances that we are interested in
grow (double at each generation) relative to the nearest-
neighbor distance on the lattice in such a way that the
potential Fz,, over the distance of interest remains finite.
Thus we rescale the force F' as F — F,, = F2™™ so that
at each step (and, in particular, as n — oo) we can set
F,z, = FAz = Fz = finite independently of n where
z is the (usually macroscopic) distance of interest and F'
is the force acting over that distance. We then rewrite

P, = P(z,F) and Q,, = Q(z, F) of (3.21) as

2P2Q, n 2P,

(1-2P,Qn)? 1-2P.Qn
2Q,,

(1-2P,Qn)?

J.(0) =

where the P, and Q, are given in Eq. (3.21). This re-
cursion relation can be solved as a 2 X 2 matrix recursion
relation, but it turns out that the sum of the elements of
column 1 is equal to the sum of the elements of column
2 when the substitution p = 1 — q is made. This allows
us to construct a direct recursion relation for the mean
first-passage time:
(tn> = _ﬁ;. - q’:l

—J11Pp_1 — J12Gn_1 — J21Py_1 — J22G_4
(J11 + J21) (tn—-1)- (3.27)

[

The solution of the recursion relation (3.27) is [as can
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1 efF=

P(z,F) = BFz 1 1’ Q(z, F) = APz 11

(3.22)
These relations then give the dependence of the hopping
probabilities on the hopping distance and the external
force via the product Fz. If Fz goes strictly to infinity,
we recover (3.14).

Next we consider the mean first-passage time to an nth
neighbor (or to a distance z) to the right or left of the
origin:

dﬁn}(s)

<t"> — ds _dqﬂ-(s)

ds

(3.23)

8=0 8=0

The time (t,) is of course determined primarily by the
time it takes to reach the neighbor to the left since the
field biases the walk in that direction. The mean first-
passage time can be calculated directly from (3.20a) and
(3.20b), or we can go back to the renormalization equa-
tions (3.7a) and (3.7b) and use those to establish a re-
cursion relation that can then be solved. The former
method is more straightforward—it leads to the result
in one step. However, since we usually cannot solve the
renormalization equations analytically, it is instructive to
illustrate the second method, which is the one that has
to be used in more complicated cases.

We denote the appropriate derivatives of the Laplace
transforms of the hopping probabilities evaluated at s =
0 as follows:

_, _ dpn(s)

~ dqn (3)
! = —_—_—
28 Is q

’ "7 ds

(3.24)

8=0 8=0

Taking derivatives of the renormalization equations
(3.7a) and (3.7b) we can then construct the relations

(%) =305,

The 2 x 2 Jacobian coefficient matrix J,(0) is given by

(3.25)

2P3
2Q,i(llgn— 2PnQn)22Qn : (3.26)
(1-2P,Q.)%  1-2P,Q.

also readily be obtained by direct derivates of (3.20a) and
(3.20b)]

47 tanh (56Fnzn)

(tn) = e LpFuon (3.28)

Again, in order for this result to be sensible as n — co we
rescale the external force as we did earlier. Furthermore,
we introduce the “effective” hopping rate I',, = 1/4™%o
(which is independent of the external force) and intro-
duce a scaling of this rate which ensures the correct dif-
fusive limit when the external field is vanishingly small:
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Az\? Az \*
=) = (=) . 3.2
ol ( Ty ) (Z"Aaz) (329)
(In other words, we are setting 4™ = 22™.) As a function

of the scaled continuous variables we then rewrite (3.28)
as

2 tanh (i8F
(= F)) = gropzs (1072)

%ﬁFm

= baF (3.30)

L _ tanh (—;—ﬁFm) ,
where we have set 2I0Az? = D, an effective diffusion co-
efficient. This result then characterizes the way in which
the mean first-passage time varies with the distance and
the external force (see Fig. 4).

It is instructive to define a field-dependent random
walk dimension d,, [13,14] such that Eq. (3.30) can be
written in the usual way as

(t(z,F)) = g tanh (%ﬁFz) — Dz%.  (3.31)

Clearly,
2(1 + ePF=)?
1
. “((1+e2 )
v In2 )

The associated spectral dimension d, = 2d;/d, with
df =1 (seeI) is

(3.32)

2In2
BFx\2
In giesz
(1+e )

(see Fig. 5). As a check of these scaling choices, we note

ds =

(3.33)

1.0 lIl-I[ll'
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FIG. 4. Mean first-passage time as a function of dis-
tance and external field for a one-dimensional biased near-
est-neighbor random walk. Solid curve, analytic results; solid
circles, direct simulations.
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FIG. 5. Effective spectral dimension of the one-dimensional
biased random walk as a function of distance and field
strength.

that when Fz is small, Eq. (3.30) reduces to

(t(z)) ~ z%/2D, (3.34)

independent of F, which is indeed the usual diffusive
motion result relating the square of the displacement to
the time, as appropriate for an unbiased walk; at these
small distances and/or weak forces the walker does not
yet have an opportunity to “feel” the effects of the force.
The spectral dimension in this limit approaches unity,
dy, — 1, as appropriate for Brownian motion in one di-
mension (compact random walk). When F'z is large the
mean first-passage time (3.30) becomes

z kT

(4@ F) ~ 555 = pp-

(3.35)
The mean first-passage time to cover a given distance is
now proportional to the distance (characteristic of biased
motion) and inversely proportional to the external force.
The spectral dimension d; — 2, as appropriate for a ran-
dom walk in which each step on the average takes the
walker to a new site.

IV. BIASED WALK ON THE
TWO-DIMENSIONAL MV MODEL

Consider the effects of a field parallel to the backbone
of an MV structure. When such a field is turned on,
instead of the single hopping probability density ¥, ()
that occurred in I we now have to consider eight different
ones: one in Fig. 2 associated with the vertex «, one with
(B, three with ¢, and three with w.

In I we distinguished between a “dead-end” vertex and
a “normal” vertex. Now we must make finer distinc-
tions because previously degenerate situations are differ-
entiated by the field. In particular, we must distinguish
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3) @ .

FIG. 6. Four different vertices that must be considered sep-
arately in the MV model.

between two dead-end vertices and between two normal
vertices, shown in Fig. 6.

A. Renormalization equations

The decimation procedure that leads to the renormal-
ization equations proceeds as in the one-dimensional case,
but now the matrix Ag(t) and the other associated quan-
tities are considerably more complex than in Sec. III. In
particular, in place of Eq. (3.5) we now have

9 (s) = (011 AP ()] M (), (41)
where z(®) stands for each one of the eight distinct
hopping time distributions that arise in this model (cf.
Fig. 2) and the superscript (k) with £ = 1,2, 3,4 labels
each of the four types of vertices. The elements of the ma-
trices Agk) (t) are the probability densities for hops among
the origin of vertex k and the sites to be removed at the
next decimation. We exhibit these four matrices explic-
itly in Appendix B. The vector (0| stands for (1 0 0)
when k =1and k=2and for (1 0 0 0 0 0 0) when
k = 3 and k = 4. The column vectors |v ) (t)) again
reflect the final step that the walker must take to arrive
at the site of interest and are also listed in Appendix B.

As before, the renormalization equations repeat ex-
actly after each stage of decimation, so that (4.1) con-

nects the nth generation to the (n — 1)st for all n. In-
verting the matrices A,,_;(s) explicitly then leads to the
following set of coupled renormalization equations for the
Laplace transforms of the hopping probability densities
(we omit the arguments s):

_ (1 - p.w,n qa,'n) p~§,n

ﬁs,n+1 - = ,
Dl,n
5 5 2
- (1 = Pu,n Gayn) en
Qe,nt+1 = = ,
Dl,n
~ _ (1 - ﬂ,ﬂ,n Fe,n) 'Fe,n Fw,n.
Ten+1 = = )
Dl,n
~ _ (1 _ﬁw,n qa,n)ﬁw,nﬁe,n
Pon+1 = = s
D2,n
~ (1 — UB,n FG,") dun
Uw,n+1 = = )
D2,n
== ~2
7 — (1 —UBn TE,") Tw,n
w,n+1 — = )
D2,n
~ _ 'aw,n ﬂﬂ,n
Ug,n+1 = = )
D3,n
~ 9e,n ‘ja n
dan+1 = = = ) (42)
D4 n

where

1~)1,n(s) = ﬁw‘nﬁgynfezm + (ﬁw,nﬂﬁ,n(ja,n
— g — T n)Fen
+(20e,nde,n — 1)Pw,ndan — 2Penden + 1,
D3 (s) = (2 nFen — 2)iwnfuwn
+(Pw,ndon — 1)8g,nTen
+(B2 nden — Pun)dan — Punden + 1,
D3n(8) =1 — g nfwn — Pondan

D4,n(s) =1- ﬂﬁ‘n”:e,n - ﬁe,nda,n- (43)

It is difficult to find the analytic solution for these
renormalization equations. Instead, we concentrate di-
rectly on the prediction provided by these equations for
the hopping probabilities and mean first-passage times.
As in the one-dimensional walk, it is useful first to choose
initial conditions for the flow and then to relate the pa-
rameters in these initial conditions to the external field
and the elementary hopping rate on the original struc-
ture.

B. Parameters of the model

As in Sec. III, we begin by introducing a rate of escape
T’y from one site to another on the original undecimated
structure. In the presence of a field (which we take to
point upward along the backbone of the structure), the
escape rates in all directions are no longer isotropic. In-
stead, we must now differentiate among the following four
escape rates (the arrow subscripts indicate the direction
of the jump):
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1
I't =Toexp (»2—,6‘F )
1
') =Toexp ( EﬁFA )
1
I, =Toexp (‘2'#,3FA$) s

' =Toexp (—E;L,BFAx) . (4.4)

Here u = cosf and 0 is the angle between the angled
branches and the backbone of the structure. As before,
we assume that the hopping distributions on the original
structure are exponential [cf. Eq. (3.11)] and identify a
total jump rate out of each vertex. Instead of a single A
we must now identify four because we have four different
vertices:

Aa =T,
Ag=T_,
Ae=T++T, +T,,

Ao =T4++T_ +T .. (4.5)

The anisotropies in each vertex are again associated with
the differences in the total hopping probabilities in the

various directions. We thus have for the eight different
initial hopping probabilities the following ratios:

r
Qoo =y =1, (4.6a)
Ugo = i—/ =1, (4.6b)
8
'y
P.o==1, 4.6
0=, (4.6¢c)
Qe,O = %’ (46d)
Re,o = 1;/' 5 (468)
Poo= %\1 (4.6f)
r
Uwao = "X{" (4‘6g)
r
R,o= -/\—/— (4.6h)

C. Analytic solution for hopping probabilities

Upon setting s = 0, the renormalization equations
(4.2) become equations directly for the hopping proba-
bilities that can be solved subject to the initial condi-
tions (4.6a)—(4.6h). There is clearly nothing further to
do concerning the vertices a and (: since they are dead-
end vertices and there is only one way to leave them, it
is easy to see that indeed Q4,n = Ug,n = 1 for all n. The
six remaining hopping probabilities can be determined
from three recursion equations together with the obvious
probability conservation conditions

Pe,-n + Qe,n + Re,n =1,
Pw,n + Uw,n + Ru,n =1.

(4.7a)
(4.7b)

The solutions of the remaining recursion equations for
the hopping probabilities then become transparent if we
consider instead the ratios

P,
K., =>-2", 4.8
"= Qum 48
Rw n
w,n = =, 4.9
Ko = 5 (49)
P€ n PU n
C, = 5% = —wn 4.10
Ren  Rupn (4.10)
These ratios satisfy the equations
Ken=K2, 4, (4.11)
Kon=K2 . 1, (4.12)
Cn — Ke,n—l (1 + Kw,n~1) Cn—l (4‘13)

Kw,n—l (1 + Ke,n—l)

The solution of these three equations is completely
straightforward since each generation is connected to the
previous one through simple power relations. Thus first
solving for the K’s and then with these solutions finding
C one obtains expressions with exponentials analogous to
(3.21). As in that case, sensible solutions as n — oo are
obtained if ever increasing distances and ever stronger
fields are scaled by factors of 2™. The procedure is iden-
tical to that carried out in Sec. III, and finally we obtain
for the hopping probabilities associated with vertices €
and w in terms of the distance z and the force strength

F:

P.(z,F) = 1% (4.142)
Qc(z,F) = e_ﬂFmA(,:(; ;—)wm), (4.14b)
R.(z,F) = %ﬁ({;)ﬁ (4.14c)
Po(z, F) = %, (4.14d)
Ro(z,F) = % (4.14f)

where we recall that u is the cosine of the angle between
the angled branches and the backbone, and where



48 DIFFUSION ON DETERMINISTICAND ... . II. ...

Nz, F) = (1 — e"‘ﬁFw) (1 + e_ﬁF“) +u (1 — e_BF”) ,
(4.15a)

No(z,F)=p(1+ e_“ﬁF‘”) (1 - e_BFm) + (1 - e_"ﬂFm) .
(4.15b)

The asymptotic behavior of the hopping probabilities
[as Fz — oo, that is, in the strict limit also considered
in (3.14)] can be obtained directly from (4.14a)—(4.14f):

1

P, — — 4.16a
[ 1 + ”’ ( )
Qe — 0, (4.16Db)
n
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FIG. 7. Hopping probabilities for vertex e in the

two-dimensional MV model as a function of external field
strength F' and distance = for two values of the angle of the
branches relative to the backbone. (a) 8 = 7/4; (b) § = «/5.
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1
P, - —, (4.16d)
1+p
U, — 0, (4.16e)
)73
R, &> ———. 4.16f
T+ 5 (4.16f)

These results can be deduced from a deterministic analy-
sis and reflect the behavior induced by a field that totally
overshadows the random effects of stochastic motion.
The hopping probabilities (4.14a)—(4.14f) are plotted
in Fig. 7 (for vertex €) and in Fig. 8 (for vertex w) as a
function of F'z for two values of the angle of the branches
relative to the backbone. The figures thus reflect the
dependence of the hopping probabilities on the external
force and also on the hopping distance. For each angle
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FIG. 8. Hopping probabilities for vertex w in the

two-dimensional MV model as a function of external field
strength F' and distance = for two values of the angle of the
branches relative to the backbone. (a) 8 = w/4; (b) 6 = «/6.
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the probabilities of moving up the structure in the di-
rection of the field (the P’s) increase monotonically and
achieve the asymptotic value given in (4.16a) and (4.16d),
which increases with decreasing p. The latter trend re-
flects the fact that the angled branches “compete” with
the vertical branches more effectively as the angle de-
creases. The probabilities @ and U of moving in a direc-
tion that has any component opposing the field decreases
monotonically to zero. The most interesting field and
distance dependence is observed in the probabilities R
of diffusing in a direction that has an upward component
but is not parallel to the field. With increasing F'z, these
probabilities reflect the competition between the P and R
pathways. As the field increases, more particles move in
the P and R directions at the expense of the downward Q
and U directions. The probability of moving along the R
directions is of course always smaller than that of moving
upward parallel to the field. For large values of the angle
(which, however, is constrained to be smaller than 7/2),
the probabilities R first grow, achieve a maximum, and
then decrease (in favor of the P’s). If the angle is small,
then the R’s simply grow monotonically. In any case, the
R’s eventually achieve the asymptotic value p/(p + 1) of
Egs. (4.16c) and (4.16f). This asymptotic value increases
with increasing u, that is, the R direction competes more
successfully with the upward motion as the branch angle
decreases. We note that the nonmonotonic behavior of
the R’s is not a consequence of the fractal nature of the
structure but rather of the angles of the pathways rela-
tive to the external field. An essentially one-dimensional
structure with single branches pointing off the spine at
regular intervals would exhibit the same sort of behavior.

D. Mean first-passage times
for weak and strong fields

The mean first-passage times to reach a site a distance
z away from a vertex of origin on a MV structure de-
pend on the vertex of origin and must therefore carry
appropriate labels to differentiate among four different
mean first-passage times. Thus, for instance, (tc ) is the
mean first-passage time from an € vertex to a site n gen-
erations removed. To find these four mean first-passage
times for each n we combine the reasoning of Sec. IV of
I and that of Sec. III of this paper as follows. First, we
define appropriate derivatives of the Laplace transforms
of the hopping probability densities evaluated at s = 0,
e.g., [cf. (3.24)],

= 99un(s)

= Qo n =
€,n ds 0 b w,n ds

~/ — dﬁe,n(s) ~/ .
=0

(4.17)

The mean first-passage times of interest are related to
these derivatives:
=!

<te,n> = _ﬁlz,n - ‘j;,n — Tens

(tw,n) = —Puomn — Tom — T

(tpn) = —lg p,

(tan) = —q;yn. (4.18)
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Next, we take derivatives of the renormalization equa-
tions themselves to obtain a set of recursion formulas di-
rectly for the derivatives of the hopping probability den-
sities [cf. (3.25)]:

~ =/

pe,n pe,'n—l
~r ~!

qe,n qe,'n.—l
'Fé,n T;,n—l
~f =~/

Pun—

Pon | =3,(0) | ot (4.19)
lf;u,n ~';.,v,'n—l
Tw,n Tw,n—l
~1 ~1
’lflﬁ,n 1_':’['1,n—1
qa,n 9da,n—1

The 8 x 8 Jacobian coefficient matrix J,(0) connecting
the nth to the (n — 1)st set depends only on the hopping
probabilities considered in Sec. IV C and can be evaluated
explicitly [see Eq. (4.11) in I]. The “initial condition” for
the recursion relation is given by

ﬁle,o _Pe,O/Ae

q;,o "QE,O/).‘e

;;,0 "RE,O/Ae

=~/

pw,O _ _Pw,O/)\w

ﬁfu,o = Uo/r | (4.20)
f(/.u,O _Rw,O/Au

ff{},,o —Up,0/ s

da.0 _Qa,O/Aa

where the rates A, A,, Ag, and A, are defined in Eq.
(4.5) and the initial hopping probabilities are given in
Eqgs. (4.6a)—(4.6h).

With enough patience and perseverance the Jacobian
matrix can be evaluated and the recursion relation (4.19)
with (4.20) solved explicitly as a function of n or, upon
rescaling distance and field strength in the usual way, as
a function of the product Fz. We have not carried this
exercise to completion. Instead, we have concentrated on
the weak- and strong-field limits.

For weak fields it can be shown that the above equa-
tions reduce to the correct isotropic limit detailed for this
system in I. In particular, for the MV model in two di-
mensions, the mean first-passage time to reach an nth
neighbor of any vertex is given by

(tn) = 6™to. (4.21)

Here t; is the mean waiting time for a walker to move
to a nearest neighbor on the original structure. In the
notation of this section the isotropic case corresponds to
A = Aa = A/3 = A,/3 = 1/to. We follow the rescaling
procedure discussed following Eq. (3.28) and introduce
an “effective” hopping rate I';, = 1/6™¢, which is inde-
pendent of the external force. The scaling of this rate
that ensures the correct diffusive limit when the external
field is vanishingly small is, as in (3.29), given by

dy dy
toln = (22 " = (B2 )7,
T, 2" Az

where d,, is the random-walk dimension discussed in I.
For the MV model the random-walk dimension is given

(4.22)
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by [cf. Eq. (3.15) with d = 2 in I]

In3
= —+1=2.58.
*  In2 +
[In other words, we are setting 6™ = (2")%».] With this
scaling, the mean first-passage time to a site a distance
z from any vertex in the weak field limit is given by

(t(:l:)) ~ .’L’d“’ ~ :112'58.

(4.23)

(4.24)

Now let us consider the other limiting behavior, namely
the strong-field limit. In Appendix C we describe how to
obtain the dominant behavior of the mean first-passage
time in this limit. The arguments in the appendix lead
to the scaling relations

(ta(2z, F)) = PP (to(z, F)),
(tp(22, F)) = e~ (1=1PF2 (4, (2, F)),
(te(2z, F)) = (t,(2z,F)) = e A=#BF2(1 (2 F)). (4.25)

We assume a solution of the form

(ta(z, F)) = CePF= (4.26)
for the longest of the four mean first-passage times. This
then finally yields for the mean first-passage time to cover
a distance z in the presence of a field and in the limit of
a strong field for each of the four vertices

(ta(z, F)) = CePF=,
(ta(a, F)) = = eltusiraare,
o

(te(@, F)) = (to(a, F)) = —C—c(1/28F=

o (4.27)

The longest time corresponds to exit from a vertex of
type «, since the only way out requires the walker to
go parallel but opposite to the field. Next is the time
to exit vertex 3, in a direction at an angle to the field.
Finally, the shortest times are those to exit vertices € and
w. These two are equal since their behavior is principally
determined by the fact that one pathway involves walking
parallel to and along the direction of the field. The other
two pathways do not contributed asymptotically to these
mean first-passage times.

As the arguments in Appendix C make clear, it would
be possible to confirm the assumption (4.26) and it would
also be possible to evaluate the constant C analytically
if we solved (4.19) with (4.20) completely. Instead, we
have evaluated the mean first-passage times numerically
as a function of F'z, as shown in Fig. 9. It is clear that
these plots of the logarithm of the mean first-passage
times as a function of BFz rapidly become linear, that is,
they confirm the exponential forms (4.27). Using linear
regression we obtain, for instance, for yp = 1/2

In{tg(z, F)) = 1.00443Fz + 36.0977,
In(to(z, F)) = 0.75233Fz + 36.8019,
In(te(z, F)) = In(t,(z, F)) = 0.50458Fx + 35.7099. (4.28)

The calculated slopes agree with those predicted in (4.27)
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FIG. 9. Mean first-passage time as a function of Fz for the
four vertices of the MV model for a branching angle § = 7/3

(b =1/2).

to within 0.05% [1.0044 for predicted 1; 0.7523 for pre-
dicted (p + 1)/2 = 3/4; 0.5045 for predicted 1/2]. Fur-
thermore, these results confirm the form (4.26) by in-
deed yielding a common value of the intercept C = 36 to
within 2%.

V. BIASED WALK
ON THE TWO-DIMENSIONAL
QUASIRANDOM STRUCTURE

Finally we consider a biased walk on the most general
version of our model (albeit restricted to an embedding
dimension d = 2), i.e., on a quasirandom structure such
as the one shown in Fig. 1. The question here is whether
the quasirandom character of the structure affects the
properties of the walk in a substantial way. If it does,
then there is little hope of modeling random structures
via deterministic models of the sort that admit analytic
solution. If the quasirandom character of the structure
does not affect the properties very much, then such mod-
eling is possible—indeed then one can argue that a MV
model in particular may represent quite accurately the
properties of a biased walk on a DLA.

Again, the field lies parallel to the backbone of the
structure and points upward. A walker may begin at any
of the six different points shown in Fig. 2 and therefore
we must now deal with 12 distinct hopping probabilities.
Instead of the four vertices shown in Fig. 6 that had to
be considered in the MV model we must now consider
20 different ones. For example, in Fig. 10 we show that
what used to be the single vertex 3 in Fig. 6 may now take
on eight different configurations as different branches are
omitted. Similarly, eight configurations arise from vertex
4, and two each from vertices 1 and 2.
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FIG. 10. Eight configurations that arise from vertex 3 in
Fig. 7 in the quasirandom model.

The method developed in Sec. IV can clearly be gen-
eralized to the present situation. Not only is it necessary
to deal with all the possible paths that arise from each
of the 20 different configurations, but each one must be
weighted according to its probability of occurrence. In
the preceding paper I we develop these weightings in de-
tail. For instance, the first configuration in Fig. 10 carries
the weight v® because each three-unit generator occurs
with probability v; the second configuration in the figure
carries the weight vy(1 — v) appropriate to two three-
unit generators (probability v for each) and a two-unit
generator (probability 1 — v).

Little is gained by exhibiting the resulting morass of
matrices here. In any case, we did not attempt analytic
solutions for the hopping probabilities of this model. In-
stead, we carried out just a sufficient amount of numerical
analysis to verify the dependence or independence of the
results on the parameter v since this parameter charac-
terizes the randomness of the structure (the MV model
is recovered when v = 1). Similarly, we did not attempt
to solve analytically the 12 x 12 Jacobian problem for the
first-passage times.

The behavior of the system in the weak-field limit is the
isotropic behavior detailed in I and need not be repeated
here. In this limit there are of course differences between
the different structures, and these differences have been
captured in the v dependence of the various fractal di-
mensions.

The limit of interest here is the strong-field limit. Our
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calculations lead us to conclude that, in the limit of
strong fields, walks on quasirandom structures behave es-
sentially the same as on the MV structure, that is, that
the principal features of the walk arise from the dead ends
in the system where a walker gets trapped for a long time.
Indeed, for the hopping probabilities we observe the same
maxima associated with steps at an angle to the back-
bone as seen in Figs. 7 and 8 as a result of the com-
petition among the different directions described in Sec.
IV C. The hopping probabilities approach their asymp-
totic values with the same exponential dependences as
for the MV model.

Representative results for the mean first-passage times
for the different vertices are shown in Fig. 11. Exponen-
tial increases of the mean first-passage times with increas-
ing field and distance are again observed. Furthermore,
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FIG. 11. Mean first-passage times for various vertices in
the quasirandom structure and for different branching angles:

(a) 6 =0; (b) 6 = w/5.
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the coefficients of SFx obtained in these results (that
is, the slopes of the logarithm of the mean first-passage
times vs F'z) are in complete agreement with those found
analytically for the MV model. Thus these coefficients in
the exponents are independent of the randomness pa-
rameter v. The only place where the randomness has an
effect is in the prefactor C of the mean first-passage times
[cf. (4.27)]: the prefactor increases as v increases. This
is a consequence of the fact that barer structures have
shorter mean first-passage times since they have fewer
dead ends to trap the walkers.

VI. CONCLUSIONS

We have complemented the analysis of the preceding
paper I by considering the effect of an external field
of the behavior of a random walker on various fractal
structures. In particular, we considered the Mandelbrot-
Vicsek structure designed to mimic the behavior of
diffusion-limited aggregates, as well as certain quasiran-
dom generalizations of this structure. The field is applied
in a direction parallel to the backbone of the structure
and in the direction of the branching of the structure
(i-e., upwards in all the figures). We have extended the
renormalization procedure discussed in I to deal with the
anisotropic problem.

For small external fields and/or short distances we re-
cover the results of the isotropic problem. In this limit
the hopping probabilities are direction independent and
the mean first-passage times to cover a distance x scale as
z% | where d,, is the random-walk dimension associated
with the structure.

For large fields and/or long distances, the walks are
dominated by the dead ends from which it is difficult
for a walker to leave against the direction of the field.
The asymptotic behavior of hopping probabilities and
mean first-passage times is exponential in the field and
the distance. The hopping probabilities parallel to the
backbone grow (upward) and decay (downward) expo-
nentially, and the hopping probabilities in the branching
directions have a nonmonotonic behavior that reflects the
competition of these branches with the upward motion as
downward motion becomes more and more difficult. The
associated mean first-passage times grow exponentially,
the longest times being those involving walkers that be-
gin from a dead end from which it is necessary to step
downward against the field before any other motion is
possible.

We find that the behavior of the walker in the large-
field limit is entirely dominated by the dead ends and is
insensitive to the regularity or randomness of the struc-
ture. The transport properties of a structure in this limit
are essentially entirely determined by the number of dead
ends on the structure. We believe that the same descrip-
tion is valid for random fractals such as the DLA, that is,
we expect that a walk on such a structure in the presence
of a field is dominated by the dead ends that trap a walker
and that transition probabilities and mean first-passage
times in such a structure will also exhibit exponential
field and distance dependences [15,16].
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APPENDIX A: RENORMALIZATION
EQUATIONS FOR THE ONE-DIMENSIONAL
BIASED WALK

In this appendix we briefly illustrate the fact that the
renormalization equations can be calculated in the same
way as was done in I, that is, by explicitly counting paths.
In order to calculate the hopping-time distribution for
arrival at the next-nearest neighbor 4 in Fig. 3 before
arrival at next-nearest neighbor 5 we construct the fol-
lowing relation:

P1(s) = Po(8)Po(s) + Po(s)do(8)P1(s) + do(s)Bo(s)P1(s).
(A1)

This equation is reasoned as follows: to reach site 4 (be-
fore reaching 5) the walker can do one of three things: (i)
it can take two steps to the right, as embodied in the first
contribution above; (ii) it can take one step to the right,
then one to the left back to the origin, and then start all
over again (as embodied in the second contribution); or
(iii) it can take one step to the left, then one to the right
back to the origin, and from there start all over again
(third contribution). Solving (A1) for 5;(s) immediately
yields (3.7a).

APPENDIX B: MATRICES
FOR THE MV MODEL

The four matrices that arise in Eq. (4.1) are given as
follows, in terms of the notation introduced in Fig. 2.
Each of the matrix elements should carry a subscript
0 and an argument ¢, both of which we have omitted
for economy of notation. In Agl) and A(()z) the rows
and columns are labeled in the order (0,1,1’) of Fig. 6,

while in A(()?’) and A((J4) they are labeled in the order
(0,1,1',2,2',3,3):

L 0 gao O
AP =(p 0 r |, (B1)
0 uﬁ 0
0 ug
A((f) (t) = Tw 0 DPuw ) (B2)
0 9a 0
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0 De 0 Te 0 ge 0
ge 0 Te 0 0 0 0
0 ug 0 0 0 0 O
AP#H=]w 0 0 0 p, 0 0 |, (B3
0 0 0 g 0 0 0
Pe 0 0 0 0 0 e
0 0 0 0 0 wug O
0O w, 0 p, 0 r, O
Tw 0 p, O 0 0 0
0 pa 0 0 0 0 0
APt)=] ¢ 0 0 0 r. 0 o0 |.(BY
0 0 0 wg 0 0 0
Uy, 0 0 0 0 0 po
0 0 0 0 0 go O
The column vectors |v ) (t)) are as follows. With
z(1) = g, for arrival at site a of vertex 1 we have (in
row form)
|Vga (£)) = (0, ge,0(t), 0). (B5)

With () = ug for arrival at site a of vertex 2 we have

g (8)) = (0, uw,0(2), 0). (B6)
With ) = p, (for arrival at site a of vertex 3), (3 = ¢,
(for arrival at site c of vertex 3), and z(®) = r, (for arrival
at site b of vertex 3), we have

[vp (1)) = (0, pe,o(t), O, 0, 0, 0, 0), (B7)
!qu (t» = (0’ 0, 0, 0, 0, gc,o, 0), (B8)
v, (t)) = (0, 0O, O, Te,0, 0, 0, 0). (B9)

Finally, with 2(*) = p,, (for arrival at site b of vertex 4),
z® =y, (for arrival at site a of vertex 4), and (%) = r,
(for arrival at site ¢ of vertex 4), we have

IVPw (t)> = (07 07 0’ Puw,0, 07 07 0)7 (BIO)
[P, (2)) = (0, wu,0(t), 0, 0, 0, 0, 0), (B11)
|V7'w (t)> = (0’ 07 07 07 Oa Tw,0, 0)' (B12)

APPENDIX C: MEAN FIRST-PASSAGE TIMES
FOR THE MV MODEL—STRONG FIELDS

In the limit of strong fields the dominant behavior of
the mean first-passage times is determined as follows.
Using standard methods, the Jacobian matrix J,(0) in
(4.19) can be diagonalized by a matrix V,, whose columns
are the eigenvectors of the Jacobian matrix. Let us de-
note the eigenvalues of J,(0) as A\, ; with i = 1,...,8.
We can then exactly rewrite (4.19) as
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DPen Pen—1
~f ~/

€,n qe,n—l
~! FI 1

€,n €n—
~ =/
pw,n — V A V-—l pw,n——l (Cl)
~! - n4in n ql
~z;),n ~c;),'n,—1
rw,n rw,nol
~ ~1
153,11. %F,n—l
9a,n qoz,n—l

The matrix A, is diagonal and has the eigenvalues A, ;
of the Jacobian matrix along the diagonal.

For large n one of the eight eigenvalues of the Jacobian
matrix dominates all the others asymptotically. Let us
call this eigenvalue 1, i.e., A, 1 is the largest of the eight
eigenvalues. If we retain only this eigenvalue and neglect
all the others, then one can readily convince oneself that
(C1) can asymptotically be written as

=~/
Pen Un,1
s »

~!

qe,n Un,2

=1

o o

V.
Porn | = Cudp | 04 (C2)
! nin, . )

?c,u,n n,5
ﬂff’n z'n,ﬁ
~,ﬂ’n n,7
qoz,n ’Unyg

where the column vector v,, on the right of the equation
is the eigenvector of V,, associated with the eigenvalue
An,1- We have calculated the dominant eigenvalue and
associated eigenvector explicitly. In terms of the rescaled
variables F,z,, — Fz we find

A\ (z, F) = ePF= 4 PPz
(C3)

1
e(l“l‘)ﬁFw

0

1
e(l_ﬂ')ﬂF‘” )

0
p+1 (eHPFo | ePF2)

(# + 1)(6(2—#),5Fm _ eﬁFﬂc)

v(z,F) =

where again p < 1 is the cosine of the angle between the
angled branches and the backbone of the structure. The
coefficient C(x, F') [common to all the elements of (C2)]
can be calculated explicitly from the inverse of V(z, F').
We have not done this (although it is, of course, in prin-
ciple straightforward to do so). Instead we have evalu-
ated its effect numerically for particular values of u as
described in Sec. IVD.

For large Fx we can simplify these results further by
retaining only the leading exponential contributions:
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1
e(1-n)BFz

0

1
e(1—1)BFz

0
L+l pre

n
(e + 1)6(2—M)3Fm

A (z, F) ~ efF=, v(z,F) ~

(C1)

For large Fx we thus write (C2) as

Pe(z, F)
d.(z, F)
7.(z, F)
P (z, F)
4, (z, F)
7, (z, F)
ﬂk(a},F)
do(z, F)

1
e(1-n)BFe

0

1
e(1-)BFz

0
22 + 1eﬁFm

Hu
(u+ 1)e(2-w)BF=

= C(z, F)ePFe (C5)

Finally, for the mean first-passage times of interest
(4.18) gives

(te(z, F)) = —p.(z, F) — (2, F) — 7e(z, F),
(tu(z, F)) = —p, (2, F) — i, (z, F) — 7, (2, F),
(ts(z, F)) = —ig(z, F),

(tal(z, F)) = —4o(z, F).

Therefore combining (C5) and (C6) immediately leads to
the scaling relations (4.25) in Sec. IVD. In writing these
relations we note that the largest component of v(z, F) is
the eigth one, and therefore according to (C6) the longest
mean first-passage time is (to(xz, F')). We have chosen to
refer all the other mean-first passage times to this one.

(C6)

* Permanent address: Departamento de Fisica Aplicada I,
Universidad Complutense, 28040 Madrid, Spain.

[1] H. L. Martinez, J. M. R. Parrondo, and K. Lindenberg,
preceding paper, Phys. Rev. E 48, 3545 (1993).

[2] T. A. Witten and L. M. Sanders, Phys. Rev. Lett. 47,
1400 (1981).

[3] M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, and
Y. Sawada, Phys. Rev. Lett. 53, 286 (1984); Y. Sawada,
A. Dougherty, and J. Gollub, ibid. 56, 1260 (1986); D.
Grier E. Ben-Jacob, R. Clarke, and L. Sander, ibid. 56,
1264 (1986).

[4] E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167
(1965); E. W. Montroll and B. J. West, Fluctuation Phe-
nomena, edited by E. W. Montroll and J. L. Lebowitz
(North-Holland, Amsterdam, 1987).

[5] B. B. Mandelbrot and T. Vicsek, J. Phys. A 22, L377
(1989).

[6] J. Machta, Phys. Rev. B 24, 5260 (1981).

[7] C. Van den Broeck, Phys. Rev. Lett. 62, 1421 (1989);
Phys. Rev. A 40, 7334 (1989); in Proceedings of the Ir-
reversible Processes and Self-Organization-4 Conference,

Rostock, 1989, edited by W. Ebelbing and H. Ulbricht
(Teubner-Texte zur Physik, Leipzig, 1991).

[8] J. M. R. Parrondo, H. L. Martinez, R. Kawai, and K.
Lindenberg, Phys. Rev. A 42, 723 (1990).

[9] C. Van den Broeck and V. Balakrishan, Ber. Bunsenges.
Phys. Chem. 95, 342 (1991).

[10] J. Von Newman and S. M. Ulam, Bull. Am. Math. Soc.
53, 1120 (1947).

[11] A. S. Glass, K. J. Laidler, and H. Eyring, The Theory of
Rate Processes (McGraw-Hill, New York, 1941).

[12]) R. Ghez, A Premier of Diffusion Problems (Wiley, New
York, 1988).

[13] S. Havlin and D. ben-Avraham, Adv. Phys. 36, 695
(1987).

[14] A. Blumen, J. Klafter, and G. Zumofen, Optical Spec-
troscopy of Glasses, edited by I. Zschokke (Reidel, Dor-
drecht, 1986).

[15] J. K. Kjems, Fractals and Disordered Systems, edited by
A. Bunde and S. Havlin (Springer-Verlag, Berlin, 1991).

[16] J. P. Bouchard and A. Georges, Phys. Rep. 195, 127
(1990).



