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We study the nonlinear response of a periodically driven dissipative two-state system. The exact
formal solution in the form of a series in the number of system transitions is derived. The series
is summed in analytic form in the parameter region where incoherent transitions prevail. We also
present the exact solution for the time evolution of the system in the entire region of temperatures
and driving strength for a special value of the Ohmic viscosity. The destruction of quantum coherence
by incoherent processes which are induced by the fluctuating and the driving forces is discussed on
the basis of these solutions.
PACS number(s): 05.30.—d, 05.40.+j, 33.80.—b, 62.65.+k

I. INTRODUCTION

Quantum-mechanical systems whose states are eB'ec-

tively confined to a two-dimensional Hilbert space are
ubiquitous in physics and chemistry. For instance, imag-
ine a particle resonating or fIuctuating by quantum-
mechanical tunneling between two difFerent localized
states. Such a system is &equently interacting with a
heat bath allowing the system to enter a state of ther-
mal equilibrium [1]. In many cases of practical interest
it is adequate that the response of the environment be
considered as linear. Then a thermal bath represented
by a set of harmonic oscillators with a bilinear coupling
in the system's and reservoir's coordinates captures the
essential physics [2]. Since the two-state or two-level sys-
tem (TLS) is like a spin, the corresponding model has be-
come known in the literature as the spin-boson model [3].
Within the vast literature, the thermodynamics and dy-
namics of this model have been discussed in the context
of quantum optics, chemical physics (e.g. , electron trans-
fer reactions), amorphous materials, and polaron theory,
to mention a few.

In this paper, we study the infIuence of periodic driv-
ing on the dynamics of a damped two-state system. This
model is simple enough that it is at least partly tractable
by analytic methods. Nevertheless, it shows many of
the characteristic features of more realistic systems. The
model is versatile to describe, e.g. , ac-driven super-
conducting quantum interference devices (SQUID's) [4,
5], laser-induced isomerization of bistable molecules [6],
laser-induced localization of electrons in semiconductor
double-well quantum structures [7], and paraelectric res-
onances [8].

At low temperatures, the essential dynamics of such
systems corresponds to a Hilbert space with dimension

two. In many circumstances, the amplitude of the driving
field is so large that the linear response approximation is
not valid, and a more profound treatment is required.

A main theme of driven damped bistable systems is
the reduction of the coherent tunneling motion by inco-
herent processes which are induced by the variation of
the tunneling splitting by fIuctuating and driving forces.
The frictional infIuences can lead to qualitative changes
in the behaviors. Quite generally, the stochastic force
results in a reduction of the tunneling process [1—3], and
may even lead to a fIuctuation-induced phase transition
to self-trapping at zero temperature [9]. Quenching of
quantum tunneling may also be induced by external pe-
riodic driving in some regions of the parameter space [10,
11].

Our study is also partly motivated by recent experi-
ments on acoustic properties of amorphous metals [12,
13]. These experiments showed strong deviations from
the expected logarithmic temperature dependence of the
sound velocity and a drastic decrease of the internal
friction below about 30 mK. The standard phenomeno-
logical tunneling model [14] can only partially explain
[15] the observed low-&equency properties of the inves-
tigated amorphous materials. The anomalies have been
tentatively interpreted in terms of a low-energy cutofF
in the distribution of tunneling splittings leading to an
upper bound of relaxation times induced by the conduc-
tion electrons [12, 16]. However, further extensions of
the theoretical description are imperative. Since most
of the data reported on acoustic properties in Ref. [13]
show amplitude-dependent efFects, the strain. fields in the
vibrating reed or vibrating wire experiments were suf-
ficiently strong that the linear response regime is ex-
ceeded. This strengthened our interest in the study of
bias-amplitude dependent efFects in driven damped two-
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state systems.
The outline of the paper is as follows. In Sec. II we

formulate the problem, derive the exact formal solution,
and give a brief discussion of the linear response regime.
Section III is devoted to the nonlinear response in the
regime of incoherent tunneling. We present the solution
for the steady state for difIerent shapes of the driving
force. In Sec. IV we solve the dynamics exactly in an-
alytic form for any temperature and driving parameters
for a special value of the Ohmic damping strength. This
particular case shows many of the characteristic features
of a driven damped two-state system. Finally, in Sec. V
we summarize the findings and draw our conclusions.

II. DYNAMICS OF THE
DB.IVEN SPIN-BOSON SYSTEM

Many physical and chemical systems, among them
those mentioned in the Introduction, can be described
by a generalized coordinate with which is associated
an effective potential energy function with two separate
minima. We characterize the double well by the bar-
rier height Vp, by the separation h~p of the erst ex-
cited state from the ground state in either well, and by
an intrinsic "detuning" energy hap between the ground
states in the two wells. Then in the parameter regime
Vp )) h(dp )) hcp, kgb T, the system will be effectively re-
stricted to the two-dimensional Hilbert space spanned by
the two ground states. Taking into account the possibil-
ity of tunneling between the two wells, the TLS is then
governed by the pseudospin Hamiltonian

t" hZ) /heo l
HTr, s = k2) (2.1)

Here the 0's are Pauli matrices, and. the basis is chosen
such that the states ~r) (right) and ~l) (left) are eigen-
states of 0, with eigenvalues +1 and —1, respectively.
The interaction energy hL is the energy splitting of a
symmetric TLS due to tunneling.

We shall consider linear couplings to the heat bath
that are sensitive to the value of 0 . For example,
a dipole —local-field coupling provides a simple physical
model for this type of coupling. To be definite, we choose
Hr ——q P c x where q = o,a/2 with a being a char-
acteristic length (usually the spatial distance of the two
localized states), and x is a bath coordinate. Then, by
representing the reservoir by a set of harmonic oscillators,
we end up with the spin-boson Hamiltonian [3]

1 . (p' 2 2HsB —HTr. s+ . i
+ ~~~ x

2 (m~
(2.2)

Despite its apparent simplicity, the spin-boson model
cannot be solved exactly by any known method.

Finally, we add an interaction term in which the
bias energy is modulated by an externally applied time-
dependent force he(t)/a. Then, the Hamiltonian of the
driven spin-boson system is

to o propagates under the influence of three bias-
ing forces: an intrinsic constant force heo/a, a time-
dependent (externally applied) force he(t)/a, and a fluc-
tuating force ((t) = P c x (t). The quantity heo is the
intrinsic asymmetry energy of the double-well potential
of the extended system, and he(t) is the time-dependent
asymmetry energy due to the external driving force. For
a harmonic bath, the fluctuating force obeys Gaussian
statistics, and is fully characterized by (((t))p = 0 and
by the force autocorrelation function in thermal equilib-
rium [1,3]

c2 cosh[w (hP/2 —it)]
( ( ) (o)), = ) ,

h cosh[~(hP/2 —it)]
d(d J Cd

sinh((u hP/2)
(2.4)

where P = 1/k&T, and where in the second form we have
introduced the spectral function

J(cu) = —) b(cu —cu )2 — m~&~

of the environmental coupling. Since we wish the en-
vironment to constitute a proper heat bath, we shall
consider J(w) as continuous henceforth. In the classical
description, the spectral density J(u) is related to the
frequency-dependent friction [2]. Here we will assume
that at the relevant frequencies the friction is Ohmic or
independent of frequency. This case is described by a
spectral density of the form [1]

J(w) = rlcue / c = (27rhn/a ) we / ' . (2.5)

Here, g is the phenomenological Ohmic viscosity coef-
ficient, while o. is the standard dimensionless coupling
constant [3], and we made the specific choice of an ex-
ponential cutofI'. In what follows, we shall assume that
the cutoK frequency w in the environmental modes is
the highest frequency of the problem. At low tempera-
tures, the very low-frequency dependence of J(u) is cru-
cial for the qualitative physics [1,3]. Ohmic dissipation is
widespread in physical and chemical situations. This has
been shown, e.g. , by molecular-dynamical simulations.
In metallic glasses at low temperatures, the TLS's are
affected by Ohmic friction due to excitation of electron-
hole pairs near the Fermi surface [14, 17].

A. Exact formal solution of the system dynamics

The dynamical quantity we are interested in is the ex-
pectation value (o' (t)) of the TLS for the case that the
TLS-plus-reservoir complex is described at time zero by a
density matrix in factorized form. To be definite, we shall
assume that the TLS is initially in the state ~r) while the
bath is in thermal equilibrium. Then, the expectation
value of 0 takes the form

H = HsB —he(t)o /2 . (2.3) (~, (t)) = P(t) = P(+, t;+, 0) —P(—,t;+, 0), (2 6)

Hence, the two-state system with coupling proportional where P(o, t; o', t') is the joint probability for finding the
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system in the state o at time t when it was released
without uncertainty &om the state o' at time t'.

Actually, we are only interested in the steady-state re-
sponse for periodic driving reached at large times, and
not in transient effects. Now, in this limit, the contri-
bution to P(t) which is symmetric under the inversion
Z(t) + —E(t), where E(t) = c() + c(t), is damped away.
Therefore we can restrict the attention to the contribu-
tion of P(t) which is antisymmetric under the symmetry
transformation E(t) + —Z(t). This part is given by

Now, a two-state system starting out &om a diagonal
state of the density matrix is again in a diagonal state af-
ter any even number of transitions, and in an off-diagonal
state after any odd number of transitions. Since the Hips
are sudden, a general path with 2n transitions at Hip
times tj (j = 1,2, . . . , 2n) within the interval 0 ( t' ( t
is then parametrized by

Pl l(t) = -', ) o P(a, t;cr', 0) . (2.7) (2.ii)

To formulate the evolution of P~ l (t), it is convenient
to use the real-time inhuence functional method devel-
oped by Feynman and Vernon for a product form of the
initial state of the composite system [18]. Formally, the
joint probability is given by the double path integral ex-
pression

t

tq]q] = exp (~ «]ep + e(t')]q'(t')/p)'
0

(2.8)

'~' o) = f qtq f qqq'&Iqltqfql&'Iq'Itq'Iq'I&]q, q'],

in which the sum is over all real-time paths q(t'), q'(t')
with constraints q(0) = q'(0) = (r'a/2, q(t) = q'(t)
o a/2 Fo. r the TLS we have q(t') = aa(t')/2.
q'(t') = acq'(t')/2, where both cr(t') and (r'(t') jump back
and forth between the values +1 and —1. The quantity
A[q] is the probability amplitude of the TLS to follow
the path q(t') in the absence of biasing and fluctuating
forces. The factor

where to = 0, t2 +q = t, and where e(t) is the unit step
function. The labels (~ = +1 and gj = +1 mark the two
off-diagonal and diagonal states of the density matrix,
respectively. The periods t2~ & t' ( t2~+1, in which the
system is in a diagonal state, are usually referred to as
sojourns, and the periods t2~ 1 & t' ( t2~, in which the
system stays off diagonal, are called blips (cf. Ref. [3]).
In this parametrization, the sum over histories of paths
is represented (1) by the sum over any number n of flip

pairs, (2) by the time-ordered integrations over the 2n
Hip times (tj) within the given interval, and (3) by the
sum over all arrangements ((j) and (7' j of the possible
values +1 of the individual (j and gj. Introducing for
the time integrals the compact notation

~ ~ ~ ~ ~ ~ ~ ~ ~

t t tg tg

dt2 dt2„g . . dt's
0 0 0 0

(2.12)

the path summation takes the form

incorporates the effect of the biasing force, and &[q, q']
is the Feynman-Vernon inQuence functional which de-
scribes the influences of the Huctuating force. For Gauss-
ian statistics, it takes the form

Dg Jg 0 ~ ~

OO

) fqt-«) ):.) "
n=O

(2.13)
t t

&]q, q'I = exq (
— «' «"iq(t') —q'(t')]

0 0

x]K(t —t")q(t") —' K'(t' —t )q (t )]), "'"
(2.9)

where ~(t) —= (((t)((0))& is the force autocorrelation
function given in (2.4). Finally, J 17q symbolically means
summation in function space over all paths with the end
points held Bxed.

The exact formal expression for P~ l(t) has been de-
rived in Refs. [3, 1]. We now give the main formulas
relevant for our purposes and generalized to the case of
a time-dependent bias.

In real-time studies, it is convenient to introduce the
antisymmetric and symmetric coordinates

@qt = EO ) (j (t2j —t2j 1)
j=1

(2.i4)

C'."= ) .4[g(t») —g(t2j-~)]
2=1

where the function g(t) is given by the expression

The amplitude per unit time to switch from a diagonal
to an off-diagonal state, or vice versa, is +iA/2, and the
amplitude to stay in a sojourn is unity. Further, the
product of amplitudes for n intermediate blips depends
on the bias and is exp(iC ). The phase C receives con-
tributions from the static and from the time-dependent
strain Beld. We have

@(0) + @(1)

(t) = —
[ (t) + (t)] .

(2.10)

t

g(t) = dt' c(t') .
0

(2.i5)
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Finally, the inhuence functional for 2n transitions be-
tween the states of the density matrix reads

~- = G-((G))II-(8') (~~))

interaction the form (2.19) of the Ohmic case. We finally
obtain

( ) ) n ( 6 Cos(7lrl)

Gn = exp ) S2j,2j —i ) ) (j (kAj, k

j=l j=2 k=1
(2.16)

1) (tz) ) tan(em(i)G sin 4
n 2 —1

II„=exP i ) (~ ) rjkX~ k

j=l k=p

The function G describes the interactions of the n blips.
Here we broke them up into the self-interactions and the
interactions between blip pairs. The factor H„ includes
the interactions of each of the blips with the respective
preceding sojourns. The interactions are given by the
expressions

S, k = S(t, —tk), R, k = R(t, —tk),
~j,k —~2j,2k —1 + ~2j—1,2k ~2j,2k ~2j—1,2k —1 )

Xj k = B2j 2k+1 + B2j 1 2k —B2j 2k B2j —1 2k+1

(2.17)

(2.21)

The result (2.21) represents the exact formal solution for
the evolution of P( )(t) under time-dependent external
strains in the Ohmic case. It forms the basis of our sub-
sequent work.

To study the frequency-dependent response, it is con-
venient to turn to the Laplace transform P( )(A)

dt P( ) (t) e " . To this, we introduce the blip lengths
wj and sojourn lengths Sj, respectively,

rj = t2j —t2j i, Bj = t2j+1 —t2j (g = 1 2 . . . ri)

(2.22)

where Sp ——tl. With the abbreviation

where the functions S(7 ) and R(7 ) are related to the real
and imaginary part of the second integral of the force
autocorrelation function, respectively. We have

S(r) = da) (1 —cosa)r) coth
I

a2 J(~) fhp~
ah, p (d 2

(2.18)

'D„(A) dr, e-""
I

ds, e-""
I

(2.23)
a2 J((u)

R(r) = dhu sinw7 . the Laplace transform of P( )(t) takes the form

In the Ohmic case and for times 7 )) 1/ur„ the complex
interaction is given by

h,pa)~ . f 7l TS[~)+iB(v) = n(2 in ' sinh
~ -him)

vr (h
(2.19)

17„(A)
—Asp

Collecting all factors, the joint probability takes the form
of the series expression

x ) tan(nn(i)G sin@
(&.)

(2.24)

P (o, t; o.', 0) = b ~ + o.cr.' ) 4)

&„(t,) ) G„e'- ) H„,
(n2)'

(2.20)

where the prime in (i1~ ) indicates that the outer sojourns
are chosen according to the boundary conditions, i.er)
rIo

——o' and q = o. The expression (2.20) is in the form
of an expansion in even numbers of transitions between
the four states of the density matrix. The transitions
occur at times (t~), and the sum over g~) and (rI~}'
takes into account all possibilities of intervening states
in a given order 4 . It is now straightforward to per-
form the summation over the inner gj. The resulting
expression can be simplified further if we insert for the

For later convenience, we have kept explicitly in our no-
tation the integration over the initial sojourn length 8p.
In terms of the blip and sojourn lengths, the phases C (o)

and 4 read(1)

C(') = e, )
(2.25)

—g so + ) .(ri + si)
l=l

Before discussing the periodically driven system in the
general case, we now first draw the attention to the linear
response regime.
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B. Linear response
to a time-periodic harmonic force

e(t) = Eco's(Ldt —(p) (2.26)

and linearize Eq. (2.24) in 4 . It is then easy to perform
the 80 integration. The result is

Consider a two-state system driven periodically with
frequency u,

1
y(~) = —X(A = —iur, —(u)5

1 ~~ ( 6 cosxnl
2hld ( 2 )
x 17 —iu tan mo. G cos 4~

(&.)

—2idp( ~ (1( +s() l 24)1g 1)X g qI, C

I =x
(2.32)

-(,) „X(A,(u); X(A, —(u)

A —i~ A+ i~ (2.27)

where the function X(A, u) depends only on the intrinsic
properties of the system,

i
~

( A cos pro.')
2(dA ( 2 )
x 17 (A) ) tan(ao. (q)G cos Ci l

&r. )

q (~!+ ~)8( trna& 1)2

j=1
(2.28)

The transform Pi ' l(A) can then be inverted to obtain
P(a, l ) (t)

dA P~'l(A) ."',
2' Z

(2.29)

P~"'l(t) = eP(A = i~', ~) e'~ '

+ X(A = —i~, —(u) e '~ ' ~lj . (2.30)

From this we see that a phase shift in the driving force
simply gives an identical phase shift in P~' ~l (t). Hence-
forth, we shall set y = 0.

Using Kubo's linear response theory, one finds that
P~' ' l(t) is related to the linear dynamical susceptibility
~(~) by

P'""(t) = h [~(— )
' '+ ~( ) (2.31)

Comparing now (2.30) with (2.31), and using (2.28), we
get

where C is the standard Bromwich contour lying to the
right of all singularities of P~ 'l(A). Here, Pi 'l(t) is
made up of two different contributions. The one arises
from the poles of the function W(A, w), the other is due
to the additional poles at A = +in. The poles in the
first case depend on the parameters of the system, and
for n g 0 they are lying entirely in the left-hand half
plane. Hence, all their contributions to P~ 'l(t) will de-
cay exponentially. Therefore they only describe the tran-
sient response of the system. It is just the second sort of
poles which gives the steady-state behavior of the system
reached at large times. We find

The dynamical susceptibility y(u)) describes the sys-
tem's response to a weak external perturbation. In
spectroscopy experiments with electromagnetic or elastic
waves, the real and imaginary parts of y(~) determine
the dispersive and absorptive properties of the TLS, re-
spectively. It is interesting to see whether the expression
(2.32) coincides with the dynamical susceptibility calcu-
lated as the Fourier transform of the retarded suscepti-
bility

(t) = „',0(t)(h(t), q(0)) ) (2.33)

where q(t) = ao, (t)/2. Here, the driving force he(t)/a is
disregarded, and ( )& means thermal average with respect
to the system-plus-reservoir Hamiltonian.

There are two important reasons for checking the
equivalence of the two different approaches. First, if ver-
ified, there would be in fact two different starting points
for a computation of the dynamical susceptibility. In the
former approach, we assumed a product initial state of
the system-plus-reservoir complex for Pi 'l(t), while if
we had agreed to calculate y(u) from y(t), we had to
consider a correlated thermal initial state. Second, and
more importantly, it is only the first approach which is
easily generalizable to the nonlinear response regime.

We now confirm the equivalence of the two different
approaches. Prom this we shall deduce our confidence in
the first method, which we shall apply in the following
sections to the study of the nonlinear response.

When the coupled system-plus-reservoir complex is er-
godic, the system will relax towards thermal equilibrium
independently of the chosen initial state. Thus we may
choose for simplicity at t = to a product state, and
the particle will have equilibrated with the bath at time
t = 0 if we shift to to the infinite past. Performing now
at time t = 0 a measurement of the observable in ques-
tion, we just have the kind of a correlated thermal ini-
tial state. When the same observable is measured again
at time t ) 0, we gain information about the equilib-
rium correlation function of this quantity. Regarding the
correlation function (cr, (t)o (0))p, we have to study the
propagating function J((,q, t; (', q', 0; (",q", to) in the
limit to ~ —oo for(=0, g= +1 and(" =O, q" =+1.
Since we may neglect system-bath correlations in the in-
finite past, the environmental inQuences can again be de-
scribed by the standard Feynman-Vernon inhuence func-
tional. Now, the correlations due to the thermal ini-
tial state at t = 0 are in the interactions between the
negative- and positive-time branches conveyed by the in-
huence functional.
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&2@+1

x) dt,„
0 g2

X dt21,

x ) (y tan(ma(i)G cos@l l .

H. )
(2.34)

Switching to the Laplace transform, it is again convenient
to introduce the blip and sojourn lengths (r~ }and (s~},
respectively. Doing this, a special role is played by the
blip length 7I, ——7I', + 7-I", , where 7I", ———t2I, q and tk ——t2A.,

represent the periods spent in the blip state (k at negative
and positive times, respectively. Since the integrand f
G„cosC„depends only on 7.I„and not on ~k and ~k'

separately, the occurring integrals over 7I', and ~I", may be
transformed according to

dr/ f„(r„'+r„")e

d~g f„(7.A, )(1 —e " ") . (2.35)

In an earlier work [19], two of the authors have used
this method to compute the symmetrized correlation
function. It is straightforward to adjust the procedure
just outlined to the computation of the retarded suscep-
tibility. The main difference between the retarded sus-
ceptibility and the symmetrized correlation function is
that in the former case, due to the commutator in (2.33),
the system must be at time t = 0 in an off-diagonal state
of the density matrix, i.e. , in a blip state (' = +1, g' = 0.
As a result, y(t) receives contributions from paths with
any odd number of transitions at negative and at pos-
itive times. Summing over all paths, we arrive at the
exact formal expression

analytic methods. In this section, we analyze the be-
havior of P~ l(t) at long times in the regime where the
driving &equency u matches the time scale of incoherent
relaxation. We will choose

(j—1

ep+e ) si T&

l=o
(3.2)

Now, the external driving force behaves as an effective
time-dependent bias which still depends on the preceding
sojourn lengths.

Second, we will study the environmental inHuences
within the noninteracting-blip approximation (NIBA) in
which the interblip correlations Aj k are neglected. The
self-consistency of this approximation is discussed in Ref.
[3]. For strong damping o. ) 1, the NIBA is justified
in the entire parameter region, while for weak damping
o. &( 1 it is valid in the region

(3.1)

as a parameter range to start with. Our results will show
that the effects of incoherent relaxation will indeed be
found mainly in this frequency range. For constant bias,
the main difficulty in an analytic resummation of P~ l (t)
originates from the interactions Aj A, between blip pairs
contained in the inHuence factor G . We shall refer to
them as interblip correlations. With external driving, the
situation is even worse than in the static case because we
have to deal with the correlations given by the phase C

in addition to the interactions Aj I, due to dissipation.
First, we observe that the intrablip interactions

S2~ 2~. i in the factor G lead for the Ohmic form (2.19)
to an exponential cutoff exp( —2o.sr'~/hP) on the blip
length 7j, while long sojourn lengths are not suppressed
by a corresponding factor. Thus for driving frequencies
in the range (3.1), we may linearize the phase C'„ in
(2.25) with respect to all the blip lengths vz giving the
total phase the simpler form

~..+.(t)~ )) a. (3.3)
Thus we find

1 ) f' 4 cos 7rn)
2hA2 q 2 )

D(A) ) t'an(mn(i)G cos 4~ l

Inserting (3.2) in (2.24) and setting A~ ~ = 0, the series

expression for P~ l(A) can be rewritten as

ds, e
—""Sx(so)) (—1)"

n=O

~ (7(+8() ( +A7g 1)X g ql C

k=1
(2.36)

d8 c Gp so+)

(3.4)

Recalling now that y(w) = y(A = —iw), we immediately
see that the resulting y(w) agrees with the previous find-
ings (2.32). We have therefore proved that the two meth-
ods for calculating the linear dynamical susceptibility are
indeed equivalent.

where

F~(s) = A sinvrn

Gp(s) = A cosign

d~ e " ~ l sin([eo + e(s)]r},

t& e cos([eo + e(s)]T}

III. THE INCOHERENT REGIME

Despite its complicated appearance, the expression
(2.21) for P~ l(t) can be summed in certain limits by

These functions are integrals over an effective intrablip
interaction which is a function of both blip and sojourn
lengths. As a result, the integrand of (3.4) no longer
factorizes in the variables Sj, as it does in the case of
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E~(p) = — [~(A+) —~(A-))
2i

G~(p) = 2F-(A+) + ~(A-)1
1

Ag(p) = A + i[co + e(p)] .

(3 7)

By introducing pz
——gi p s~ as new integration vari-

ables in (3.4), we can sum up the series for P( l(A) and
obtain

P (A) = dpp Eg(pp) e " ' dpi e
0 0

lf Po +Pi
x exp

~

— dp Gg(p)
~

p. r
(3.8)

Finally, noting that Eg(p) and Gp(p) are periodic func-
tions of p with period 2m/w, we can map the interval
[0, oo] of the pp integral on the principal interval [0, 27r/tu].
We then And

P(.l(A) =
~ —2~A/cu ' (3 9)

where the function K(A) is given by

K(A) = dpo Ex(po) e
0

dp e-'p'

f Po+Pz
x exp

i

— dpGp(p)
i

. (3.10)
rp.

To show that K(A) does not have singularities for purely
imaginary values of A, we use again the periodicity prop-
erty of the function Gp(p) to obtain

1 2'�/cu

] ~ —{2m%/co+ JA, ) 0
dp. E (p. )

-""K(A) =

l

�2m

/w (' pa+ p1

dpi e " ' exp
~

— dp Gg(p) i,
p.

where

2'/w
dpG), (p) . (3.11)

constant bias where the sum is just a geometric series.
The functions Ez(s) and G~(s) can be directly related to
a self-energy term hZ, where Z is given by

Z(A) = A cos(em) dv e " e
0

3.5(hp~. l' ' r( +hpA/2~)
2vr ) I'(1 —n+ hPA/2~)

'

and where I'(z) is the gamma function. In the second
expression for Z(A), we explicitly used the form (2.19)
for the intrablip interaction S(7 ), and we introduced the
effective zero temperature tunneling splitting

( ~ l n/(1 —o)
[cos(~o.)I'(1 —2n)]'~(' '

& .
&~.)

(3 6)

In terms of Z(A), the functions E~(p) and G~(p) are given
by

Now, the poles of K(A) are given by the solutions to the

q t'o

2~A/cu + Jp ——2n7ri, (3.12)

where n is an integer. It is clear that ReJp must be zero
for purely imaginary solutions. But from the reHection
formula of the I' function we get

1—2a

7r ( 2~ )
ihpQ lI' n+

2w )
(hpOl

x sin(7ro. ) cosh
i

27r )
This is positive for any real 0, so that ReJp is nonzero
for imaginary A.

From this we see that, similar to the function W(A, u)
in (2.27), the poles of the function K(A) provide the tran-
sient dynamics of the system.

The stationary response of the system is given by the
poles of the other factor in (3.9) lying on the imaginary
axis at A = in~. Picking up all of them by contour
integration, we Anally get

P("l(t) = ) e '" 'P„(cu), (3.13)

where

2m/~

P„(ur) = — dpp E;„(pp) e'
276 0

oo ( Po+ Pi
x dpi e'" ~' exp

~

— dp G;„~(p)
~

.
0 p.

(3.14)

Equation (3.13) together with (3.14) describes the
steady-state behavior of P( l(t) in the presence of an
external periodic driving force of arbitrary strength in a
parameter region characterized by hu (( 2vro. k&T and
within the validity range of the NIBA.

Using the periodicity of Eg(p) and Gp(p), it is again
easy to show that a phase shift y in the driving force
leads just to an identical phase shift in Pl' l(t).

In the quasistatic limit (u ~ 0), the P (u) are just the
Fourier coeflrcients of P('q"l [co+a(t)], where P(''i"~ (Ep) =
tanh("~2" ) is the equilibrium value limi~ P~ l(t) given
by the NIBA in the case of constant bias ep [3, 1].

In what follows, we will explicitly evaluate the Fourier
coefficients P (u) for a periodic driving with time de-
pendence given by a cosine function and by a rectangu-
lar function. For monochromatic driving, the quantities
P~r(cu) are the only nonvanishing harmonics of P( ) (t)
in the linear response regime. For large amplitude i of
the monochromatic driving force, also higher harmonics
P (w) with ~n~ ) 1 may become important. However, in
a wide range of experimental setups, e.g. , when lock-in
techniques are used, or when the system of interest is
coupled to a high-quality macroscopic oscillator such as
a resonant cavity or a vibrating reed, the response func-
tion Pr(a) is the most relevant quantity even for large

Therefore we will focus our attention on Pr(w). It is
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immediately obvious from (2.31) that the function

-inl)
(

. -) Pi(~)
he

(3.15)

is a suitable quantity which generalizes the dynamical
susceptibility to the nonlinear response regime. Clearly,
for e ~ 0, the function gi" l (w; e) reduces to the linear dy-
namical susceptibility y(u) discussed in Sec. II B.Within
the approximations stated above, we now arrive at an ex-
plicit expression for yi" l (u; e).

From Eq. (3.14) we find for the response function

where the rates I'+ and I' are either roughly equal or of
diferent magnitude.

The case I'+ = I' applies either for ~ep~ &) e or for
Then the response function simplifies further

to the form

r
Pi(~) = 2A I+ (3.22)

On the other hand, for I'+ (( I', we And as leading
terms

(~ && I+)
Pi(~) =-

27r
dpp E()(pp) e* ~'

Po+Pi
x exp

~

— dpGp(p)
~

p.

dpi e' ~'

(3.16)

(I'+ « ~ « I' )RePi((u) = A x (

2r I
(~ && I' ),

(3.23)

In accordance with the condition ur « 2ma/hP, here we
dropped the &equency dependence in the functions F
and G.

Let us now first consider the case of the "rectangular
shape" of the driving

e(t) = e sgil(cos Left) (3.17)

This case is of particular interest because it leads to ana-
lytic results in compact form which will show that relax-
ation peaks are indeed to be found in the parameter range
that we chose. With the expression (3.17) for e(t), the
functions I'i, p(p) and Gg —p(p) in (3.16) jump abruptly
between the values F+ and E, and G+ and G, respec-
tively, where

tan mo.
F~ = — [Z(i(ep + e)) —Z( —i(ep + e))],

2i

G+ = —.
' [~(i(ep + e) ) + ~( —'(" + e)) j .

%lith this simplification, it is only slightly tedious but
straightforward to evaluate the expression (3.16) in ana-
lytic form. This can be done by splitting the integration
domains into intervals where e(p) is constant and by per-
forming a summation afterwards. We then And

Pi(~) = A . C+((u) + C ((u)
I'+

I + —Z(d I —Z(d

(3.18)

where the rates 1 ~, the amplitude A, and the form fac-
tors C~(w) are given by

(3.19)

1 I'F+ F
27r qG+ G )

C+(~) =1 +
m(l ++I' )

(3.20)

(3.21)

Equation (3.18) describes a superposition of two
quasielastic resonances around ~ = 0 with widths I'+
and I', respectively. Note that the expression (3.18) is
well defined in the limit u —+ 0 since C~(u —i 0) = 1.
The form (3.18) can be simplified further in the cases

and

ImPi(u)) = A x (

I'+
2I'+

4r+

(~ «r+)

(I + « ~ « I —)

(~))1' ),

(3.24)

as follows from (3.5), (3.7), and (3.19). In this case, the
condition hI'+ (& 2mnkI T is equivalent to

ep+ e &) max(A„hA, /2k~T) . (3.26)

Hence our initially chosen parameter range h~(&
2vr~k~T contains the main features of relaxation for any
TLS with strong enough intrinsic or external bias. In
particular, this means that the saturation limit ~ —+ oo
can be treated by our method for any set of parameters

Figures 1 and 2 show the real and imaginary parts of
the response function Pi(u) in a double-logarithmic plot
for values of i extending &om the linear response regime
to the saturation limit. Here, and in the subsequent fig-
ures, the parameters ur, ep, e, and k&T/h are scaled by the
effective tunneling matrix element A . The line shape is
the same for both linear response and saturation, as sug-
gested by the structure of (3.22). The curves correspond
to Lorentzian line shapes, and the straight line sections
are the characteristics of the power laws on the slopes of
the peak.

Next, consider the behavior of the response function
Pi (w) for a harmonic driving force

e(t) = e cos((dt) (3.27)

Now, the functions I" and G in (3.16) depend on the con-

which shows quite simple algebraic dependence on ~. In
each case, both the real and the imaginary part of Pi(m)
decay at least as w for u )) I'+, i.e. , I'+ is always the
relevant frequency scale of the incoherent dynamics.

For weak damping o. &( 1, we find for the widths

em(ep + e) &h(ep + e) )r coth' (2~nk~T/h)2 + (ep 6 e)2 ( 2k~T )
(3.25)
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FIG. 1. Real part of the response function PI (u) for dif-
ferent amplitudes e of a driving signal of rectangular shape at
low frequencies. For values of c ranging from the linear re-
sponse limit to the saturation regime, the shape of the curves
remains a simple Lorentzian centered around zero (with width
and height depending on e). The parameter n is a dimension-
less coupling constant of the dissipative system-environment
coupling. Frequencies are given in units of A, temperature
in units of M„/k~.

tinuously varying bias ep + e(t). With the form (3.27),
it is no longer as easy (as it was in the rectangular case
where we had only two possible values for F and G) to
evaluate Pq(~) analytically, and we have to resort to nu-
merical computation. For weak damping we now have

+ (p)' (2vrnk~T/h) 2 + [ep + s(p)]2
'

a.(,) = .~.' (2z.nk~T/h) z + [tp + e(p)]

x coth
i

f h[ep + e(p)] l
2k~T

Inserting these expressions into (3.16), the remaining in-
tegrals can be computed only numerically.

Figures 3 and 4 show some results of this evaluation.

FIG. 3. Real part of the response function PI (~) for differ-
ent amplitudes e of low frequen-cy external driving with a sinu
soidal time dependence. Strong deviations from a Lorentzian
line shape are observed in a wide intermediate frequency range
for any values of e above the linear response regime. Only at
frequencies below the minimum relaxation rate I'+ is the non-
linear response comparable to the rectangular case.

We plotted 1m'(u) and RePq(w) versus u in a double-
logarithmic scale for diferent values of i for parameters
in the region of moderately high temperatures and weak
damping (k&T )) hA, n « 1) with fixed ep. There is
a rough similarity to the case of the rectangular driving
function, but there are also some striking differences.

The function 1m'(u) shows a relaxation peak cen-
tered around an effective relaxation rate which is larger
than I'+. With growing i, this rate decreases while the
value of the maximum increases and reaches a satura-
tion value. As in our results for a "rectangular shape"
of the driving force, the asymptotic decay of the re-
sponse function Pq(u) is visible already vrithin the range
u « 2mnk&T/h. The major difference between the two
types of driving is the fact that strong deviations from
the Lorentzian line shape are observed in the saturation
regime for harmonic driving. The intermediate-frequency
range between the straight sections of the curves can ex-
tend over several powers of 10, indicating a wide range
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FIG. 2. Imaginary part of the response function PI (w) for
diferent amplitudes ~ of a driving signal of rectangular 8hape
at low frequencies The curves correspond .to Lorentzians.
Same parameters as in Fig. 1.

FIG. 4. Imaginary part of the response function Pz(~) for
different amplitudes e of low frequency external dr-iving with
a Sinusoidal time dependence. See Fig. 3 for comments.
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of time scales for relaxation even for a single two-level
system with Axed parameters.

IV. THE CASE cx =—

For the special value 2 of the Ohmic damping strength
o., the exact formal expression for P( ) (t) can be summed
exactly. At first glance, the series expression (2.21) or
(2.24) seems ill defined due to the multiplicity of cos(7m)
factors, which become zeros for o; = 2, but is well de-

fined for o; arbitrarily close to 2. Taking the limit o. m 2
actually simplifies the calculation considerably since the
multiple zeros at o; =

2 need to be offset by a corre-
sponding number of divergences in the integrals over the
blip and sojourn lengths in order to render nonvanishing
contributions.

Consider the integral over the interval between two
neighboring attractive flips

(hP~.
B(n) = 6 dT cos(vrcx) f(T, n)

~

sinh
0 lr h

(4.1)

where the function f (T, a), which contains the interac-
tions with all the other Hips, is bounded. It is to be noted
that the integrand is uniformly bounded on the interval
[Tp, oo] for any positive parameter Tp, and it vanishes in
the limit o.~ 2. So the only contribution to (4.1) in this
limit comes from the interval [0, Tp], where Tp can be ar-
bitrarily small. Then f(T, n) can be replaced by f(0, o.),
and expression (4.1) is transformed into

Q2
B(n = -') = lim f (0, n) cos(7m)I'(1 —2n)

4)c m —+ l/2

p(a) (p) g2 ) ) ( 1)l+mrl+m —22i —l

)=l m=1

dspe ~" d se
0

—A~'
d we ~~=& ' exp —S

Here, l —1 is the number of collapsed sojourns inside the
extended blip, and. m, —1 is the number of succeeding
collapsed blips. The integrals over the blip times v~ in-
side the extended blip can easily be rewritten as a single
breathing mode integral of the extended blip, and. the in-
tegrations over sojourn times after the extended blip are
now trivial. So only two integrations remain,

dse z —A7- —F~/2 —S(~)dTe

x sin[epT + g(s+ T) —g(s)] .

Here, the factor e ~ of the integrand arises from the
noninteracting gas of collapsed sojourns inside the ex-
tended blip, while the factor l &&&

is due to the nonin-

teracting gas of collapsed blips succeeding the extended
one. Apart from the kernel e ' of the Laplace transfor-
mation, the integrand is a periodic function of s and can
be given as a Fourier series, which leads to an expression
of the form

(4 2)
P( ) (A)

where

7t. L2I':—A, (n = -') =—
2 cc)c

(4.3)

Q2 1 OO

) dT Ar I'r/2 S(r)p—(
—)—

A+I %+inn

(4.4)

is the natural frequency scale of the system for o. = —.If
the integration over a blip or sojourn length is handled
in this way, we shall allude to a "collapsed" blip or so-
journ. The technique of collapsed blips or sojourns used
in evaluating this limit has been described before by two
of the authors [19] in the case of a static bias. Here we
generalize the discussion to a time-periodic driving force.

As P( )(A) contains a factor (cos am) in order A
n —1 blips and sojourns are collapsed. The interactions
of any collapsed blip or sojourn with other blips vanish,
and the only remaining interaction is between the two
flips forth and back that are neither part of a collapsed
blip nor of a collapsed sojourn. These two instantons
form a so-called "extended" blip. This generalized blip
is always the first one, and it may contain inside an arbi-
trary number of collapsed sojourns. The extended blip is
followed by any number of collapsed blips. Thus P( ) (A)
takes the form

For harmonic driving e(t) = e cos(ut —&p), which is the
case of most interest, the coeKcients I' (T) can be given
explicitly [with J (z) denoting the Bessel function of the
first kind],

P2i, (T) = (—1)"e' " e '" "sin(epT) J2A, —sin
Cd 2

F2k+i(T) = (—1)"e'( "+')~e '( +~) cos(epT)
2C . (d7

X J2Ic+l —sin
2

The integral on the right-hand side of (4.4) is the Laplace
transform of a function that is bounded by a decaying
exponential function. Thus the only singularities on the
imaginary axes are again simple poles at A = —inn. It
is these poles that determine the periodic long-time be-
havior of P( ) (t), and from their residues we extract the
Fourier coefBcients P of
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P" (t) = ) e '" 'P„((o). (4.5)
0.006

0.005

We finally arrive at the form

e (incr —I'/2) a
d7P„((u) = +-(&) (4.6)I —xn(o AP p slllll ~p

inte ral can be evaluated analytically onlyThe remaining in egra c
l arameter regions. Note t a ein special p

i e. enters againonl through a phase factor e, i.e. , y
h e shift. So we can set againP(' )(t) only as a trivial p ase s i

= 0 in the following without any loss of generality.
Inserting the iimiting orms o

small ar uments into the functions I" (v~, we see a
ll e. Thus in leading order Po

t of e and u, and coincides with thebecomes independent o e an w, a
= P~ "~ = limyequilibrium value ((r, )p =

constant bias. We find

0. 004
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:o 4o 6o0.0 2 ~ 0 8. 0 10 ~ 0 12 ~ 0 14.0 16.0 18.0 20. 0

the res onse function Pi((d) forFIG. 6. Imaginary part of the re p u for
oderate amplitude. Comments of ig.strong dissipation at mo era e a

»pply.

(4.7)

where @(z) is the digamma function, and

(4.8)

e is fully determined byThe linear response regime is
P~i((o). Using the relation

P~ i ((d ) = hing( +,CO') (4.9)

(4.10)

usce tibilitywe find from ~ . ~ a~4 6~ th t the linear dynamical susc p
'

y
takes the analytic form

ar res onse limit e~ ooThe opposite, extreme non inear p
~bl sim le analytic result. Here, t eleads to a remar y

'
p

P reach saturation values t aat are also in epen e
the intrinsic bias eo and of temperature,

0,
lim P„((o) = &

2
E~OO

rr~n~ 1 —in(o

n even
(4.11)

72 odd .

~~.6& for the response function Pi(w)The expression . or
evaluated numerically as a function o e p-

h' h
f tion P io) displays justlarge bias amplitude e, the function

a simple relaxation pn eak of width I'.
Figures 5—8 are represen tatives of the i eren
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