
PHYSICAL REVIEW E VOLUME 48, NUMBER 5 NOVEMBER 1993
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We consider a network of globally coupled phase oscillators. The interaction between any two of
them is derived from a simple model of weakly coupled biological neurons and is a periodic function
of the phase difFerence with two Fourier components. The collective dynamics of this network is
studied with emphasis on the existence and the stability of clustering states. Depending on a control
parameter, three typical types of dynamics can be observed at large time: a fully synchronized
state of the network (one-cluster state), a totally incoherent state, and a pair of two-cluster states
connected by heteroclinic orbits. This last regime is particularly sensitive to noise. Indeed, adding
a small noise gives rise, in large networks, to a slow periodic oscillation between the two two-cluster
states. The frequency of this oscillation is proportional to the logarithm of the noise intensity. These
switching states should occur frequently in networks of globally coupled oscillators.

PACS number(s): 05.45.+b, 05.90.+m, 87.10.+e

I. INTRODUCTION

The dynamics of coupled nonlinear oscillators can be
described in the limit of weak interaction by phase mod-
els. For a free oscillator a single phase variable that
indicates its position on the limit cycle can be natu-
rally defined. When interactions between oscillators are
switched on, this phase description is a priori no longer
sufBcient, as amplitude e8'ects alter, or even destroy, the
limit cycles. However, if the coupling is weak enough,
such e8'ects can be neglected, and the original coupled
system can be replaced by phase oscillators coupled by
an effective interaction [1]. The situation where the os-
cillations of the single units emerge through a normal
Hopf bifurcation has been widely studied. In this case,
the effective phase interaction reduces to a single Fourier
mode. Obviously, this does not exhaust all the richness
of phase models. In the context of neural modeling, for
instance, more complicated interactions must be consid-
ered [2,3]. In [3] we showed that phase interactions with
several Fourier modes were needed to account for synap-
tic couplings [4] between Hodgkin-Huxley (HH) neurons
[5], with nontrivial consequences on the dynamics of a
pair of coupled neurons.

We study here the phase dynamics of a large network
for an interaction with two Fourier modes inspired by [3].
This interaction depends on a parameter o. that controls
the competition between an attractive contribution and
a repulsive contribution. Depending on o. , we find that
besides the fully synchronized state in which all the os-
cillators are phase locked with zero phase shift and the
totally incoherent state (these states can also be found for
a single mode phase interaction), the network can reach

less trivial states at large time. The first type consists
of stable n-cluster states (n ) 1) [6—10] where the net-
work spontaneously breaks into n macroscopic subgroups
inside which the oscillators are locked in phase. A sec-
ond type consists of pairs of unstable two-cluster states
connected by heteroclinic orbits.

In a large range of the parameter o. , random initial
conditions lead at large time to states of the network be-
longing to this second class. Adding a small noise has
a remarkable consequence: a slow collective dynamics
emerges and the system switches back and forth between
the two connected two-cluster states. In large networks,
this switching is periodic with a period depending log-
arithmically on the intensity of the noise. This phe-
nomenon is similar to the eKects reported in the con-
text of Gauss-Lotka-Volterra species dynamics [11] and
rotating-convection experiments [12—14].

II. THE MODEL

We consider a network of % globally coupled identical
phase oscillators evolving in time according to

dP, 1* = u) + 9—) I'(q, —g, ) + rl;(t).

The phase of oscillator i (i = 1, .. . , A') is P, , 0 & P, &
2'. In the absence of coupling, each unit is moving
around its limit cycle at frequency u. The function I'
characterizes the interaction between the oscillators and
the coupling constant g is positive. The uncorrelated
noise q;(t) is local and Gaussian with variance a . One
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can assume that g = 1 without loss of generality provided
that o, u and the time are properly rescaled.

In the following we consider a simple model defined by

I'(x) = —sin(x + o.) + r sin(2x), (2)

where n takes values in [ vr—, vr] and 1/2 ) r ) 0. It
should be noted that, except for o, = 0, the dynamics
of the network described by (1) and (2) does not derive
from an energy function. It should also be remarked that
the dynamical equations display the obvious symmetry:
o. ~ —a, P; —+ —P; (for all i = 1, ..., N). Hence we may
restrict our attention to 0 & o. & 7r. For n & n/2, the
first term in I' corresponds to a "ferromagnetic" interac-
tion that tends to lock two coupled oscillators in phase.
On the other hand, the second term favors out-of-phase
locking. The parameter o; controls the competition be-
tween these two terms. Denoting by 4 the phase shift
between the two oscillators, one easily shows that for
n & o., = arccos(2r) the only stable state corresponds to
in-phase locking. At o. = o. it loses its stability and a
bifurcation to an out-of-phase locking [with b, g 0 and
satisfying I'(A) = I'( —A)] occurs. One expects that such
a competition between the attractive part and the re-
pulsive part of the interaction will give rise to nontrivial
patterns of synchronization in large networks. The effects
reported in this paper exist for all values of r (0 & r & 2)
and do not depend qualitatively on its precise numerical
value. To be more specific, numerical results will be given
for r = 1/4 (n, = vr/3), which corresponds to a trunca-
tion of the phase interaction we have calculated for HH
neurons [3], keeping two modes in the Fourier expansion.

All the numerical results presented below were ob-
tained by integrating Eqs. (1) and (2) with N = 100 using
an order-four lunge-Kutta integration scheme. Finite
size effects have been investigated by comparing results
with N = 100 and N = 400. The coupling was fixed at
g = 1 and the free frequency was u = 5. The state of
the network was studied as a function of both the control
parameter o. and the intensity of the noise. Initial con-
ditions were chosen randomly, with uniform distribution
between 0 and 2'. The indices of the neurons were rear-
ranged so that at time t = 0, P;(0) & P~ (0) for i & j. The
time step was set at dt = 0.01 after carefully checking its
inOuence on the simulations.

at constant frequency u. This is in perfect agreement
with the stability analysis of the incoherent state for a
system described by (1) and (2).

For 0 & o. & 7r/3 the typical result that we obtain
is displayed in Fig. 1, where the successive times at
which the oscillators cross 2' are shown. The oscilla-
tors move periodically with constant frequency Oq and
are all locked in phase. The dependence of Oi on o. was
found to agree with the analytic expression given in the
Appendix. The transition at vr/3 corresponds to the limit
of stability of this one-cluster state.

For n/3 & n & a/2 the situation is different. Numer-
ical integration of Eqs. (1) and (2) indicates that start-
ing from random initial conditions, the system eventu-
ally converges to a state constituted of two macroscopic
groups of oscillators, the masses of which are in general
different. In each group of this two-cluster state, the os-
cillators are locked in phase and rotate at constant fre-
quency 02. The fraction of oscillators in the group in
advance will be denoted by p and the dephasing, con-
stant in time, between this group and the other group
will be denoted by L. Note that by convention L is pos-
itive. An example of a two-cluster state is displayed in
Fig. 2 for n = 1.25. In the following, the two-cluster
state with m = Np and dephasing L will be denoted by
(p &).

Many such two-cluster states exist (see Appendix), dif-
fering by the fraction of oscillators in each of the groups
and by the dephasing between the two groups. We have
investigated the possible selection of a particular pattern
in the large-N limit. This was done by integrating (1)
and (2) with 100 initial conditions to evaluate the dis-
tribution of p and L in the final state. Two values of o,
have been studied: o. = 1.25 and o. = 1.1. For o. = 1.25,

100

III. DETERMINISTIC DYNAMICS
OF THE NETWORK 92

A. The network dynamics at large time
90
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In this section we investigate the noiseless case consid-
ering first the dynamical states reached by the network
at large time for random initial conditions and various
values of n.

For vr/2 & o. & m the system converges to an incoherent
state, i.e, the distribution function of the phases at any
time is P(g, t) = —up to finite-size fluctuations. As a
consequence, the interaction term is of order O(l/v N)
for all the oscillators and they are rotating independently

FIG. 1. Times at which the phase of each oscillator crosses
2'. The time unit corresponds to 7 ms for a system of HH
neurons with an injected current of 50 pA/cm and coupled
with a synaptic interaction of 1 mS/cm . (See [3] for the
other parameters of the model. ) The abscissa corresponds to
the labeling of the oscillators, after appropriate ordering of
the initial condition (see Sec. II). Same conventions are used
in the following 6gures.
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FIG. 2. Times at which the phase of each oscillator crosses
2', for n = 1.25 and cr = 0.

the histogram of p for N = 100 has an average p, = 0.59
and a width v = 0.09 for N = 100. For N = 400 the
corresponding numbers are p, = 0.58 and v = 0.04. This
indicates that the system selects two-cluster states with
a particular fraction p 0.59 up to finite-size effects.
Corresponding to this value of p, Eq. (13) predicts three
possible values of 4: Li ——2.7, Lq ——1.14, and L~ ——0.7.
However, the histogram of 6 obtained in our simulations
(for N = 400) is rnonornodal around an average value of
4, = 1.15 and it has a variance 0.2. This suggests that
the state (p = 0.59, A = 1.14) is selected by the dynamics
at large time and large ¹

For o. = 1.1, which is closer to the transition than
o; = 1.25, finite-size effects were stronger. For N = 400
the histogram for p has an average value of p, = 0.66 and
the variance was v = 0.08. Moreover, the distribution of
A was very broad (variance of 0.4) and we were unable
to conclude about the selection of a particular state in
the vicinity of the transition.

In this range of o., we have also found that the net-
work can also converge to cluster states with more than
two clusters (in particular stable three-cluster states in
which the network is broken into three subpopulations)
[15]. However, these configurations have very small basin
of attractions in comparison to the two-cluster states, and
to be observed the initial conditions have to be tuned to
the vicinity of these configurations. Similarly, choosing
iiutial conditions near a two-cluster state with p g p,
(but with similar stability properties, see Appendix), it
is found that the system converges to a state with such
value of p. It is nevertheless interesting to find a great
variety of attractors in spite of the high degree of symme-
try of the global coupling. Similar phenomena have been
previously found in other networks of globally coupled
units [6—10].

The existence and stability analysis of the various clus-
ter states can be easily performed. Results of this anal-
ysis are given in the Appendix. Applying these results
to the states found in our simulations, one finds that
the two-cluster states to which the system "converges"

In this section we show numerically that two-cluster
states are paired by heteroclinic orbits. More precisely,
we show that the state (p, A) is connected to a state (1—
p, A'), where p (respectively, 1 —p) and E (respectively,
A') satisfy Eq. (13).

For the sake of concreteness let us consider the case
n = 1.25 and the two-cluster state (p„A, ) defined in the
preceding section. (Similar arguments can be repeated
for other observed two-cluster states and for other values
of n without qualitative changes. )

In order to show that a heteroclinic structure con-
nects the state (p„,A, ) to another two-cluster state
(1 —p„A', ), we consider trajectories that start at t = 0,
from a point in the vicinity of the state (p„A„) and
that lies on its unstable manifold M„(p„A,). Numeri-
cally integrating the equations of motion one finds that
the network converges without oscillating to the state
(1 —p„A', ) where A', = 0.70. Note that this value sat-
isfies Eq. (13). The time of convergence is found to
depend logarithmically on the amplitude of the initial
deviation. This fact shows that trajectories connect the
state (p„A, ) to the state (1—p„A', ). These trajectories
belong to both the unstable manifold of (p„A, ) and to
the stable manifold (1 —p„A', ). By symmetry, similar
trajectories from (1 —p„A', ) to (p„A, ) exist. This en-
tails that heteroclinic cycles connect the two two-cluster
states (p„A, ) and (1 —p„A'„). lt is important to note
that in the two states (p„A, ) and (1 —p„A'„) the mass
of the largest group is the same.

The large-N limit is not necessary to find heteroclin-
icity. Actually heteroclinic connections exist for N ) 3.
In the case N = 4 the dynamics depends only on the
differences of the phases Pq —Pi, Ps —Pi, P4 —Pi. More-
over, by dimensionality argument, only one heteroclinic
orbit exists for N = 4 and it can be visualized in a three-
dimensional space. Figure 3 shows the heteroclinic orbit
for n = 1.25 and p = 1/2.

3 1

FIG. 3. The heteroclinic connection for n = 1.25, p = 1/2,
and N = 4. The symbols A, B indicate the locations of the
two two-cluster states, the unstable manifolds of which are
also displayed.
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C. Stability of the heteroclinic connection
(4)

x„eoexp(A„t).

After a time o —
& n 0

'er '
To —

& inc it will be of order 1 and non-
linear efFects will start to be important. At the same time
the stable perturbation x, [that is decreasing according
to x exp( —A t)] will have decayed to a value of order:

0
200 400

FIG. 4. Difference h (rad) between the average phases o

th two clusters as a funct o
d t small random perturbation aroun t etion correspon s o a sm

= 100 .two-cluster state (n = 1.25, p = 0.57, N = ).

In order to solve the apparent paradox of Sec. IIIA

when they are linearly unstable, a crucial remark con-
cerns the transients observed when starting near a two-
cluster state (p, E) (see Fig. 4 for an illustration). e-
fore stabilizing, the system oscillates several times e-

observed oscillations depends on the numerical integra-
tion accuracy y ypicaatypically three or four oscillations . e

evolvetime nee e o ed d t l ave one two-cluster state an to evo ve
to the other state increases at each oscillation. os o
this time is spen in e vt ' th vicinity of the two-cluster states
and the transition between the neighborhood of these two
states is very as . oreof t Moreover at each oscillation the time
spent near the two-cluster states increases [16]. An ex-
ample of such a transient behavior is depicted in ig.

T = 1.4 where T„ is the nthNumerically one has T„+i/T„- l.
sojourn imn time near a two-cluster state.

The existence of these heteroclinic trajectories allows
us to understand the apparent stability of the two-cluster
states observe or o.b d f ) sr&3. We consider an initial con i-
tion that differs from the two-cluster state (p, 4) by a dis-
tance of order eo (( 1 along the direction with eigenvalue
A ( t ble direction) and a distance of order 1 along
direction with eigenvalue —A, (stable direction~. e e-

As will be considered below. (See the Appendix for the
definition of the eigenvalues and eigenvectors. ) Lineariz-
ing the equations, we nh t find that the unstable perturbation
x„grows according to

At that time a rapid motion along the orbit and to-
wards the state (1—p, A') will occur. This "reconnection"
is the result of nonlinear effects but due to its brevity it
affects very little the distance to the heteroclinic orbit.
Now we can reiterate the argument but this time around
the state —p,jl — L'). The distance to the fixed point in
the unstable direction is now o or~ ~ ~

er e " while the
distance in the stable direction is of order 1. The time
needed to escape &om the two-cluster state is

Ti —lnsi/A Tp(A /A ),

where the eigenvalues A, and A„now re ere er to the fixed

The eigenvalues A, and A„differ from A, and A„since
ral the

same. After escaping from the state (1—p, A') the system
will come back again in the vicinity of the state (p, )
d t f it on the unstable direction by e2eviating rom i
where

(6)

If the exponent p is larger than 1, th pthe erturbation will
be reduced after one cycle.

After 2n switchings (n cycles) the time spent around
the fixed point and the distance to it will be

T„-To(A. /A„)" (A, /A„)",
(A, /A„)"(A, /A„) (8)

)

to p = 1.82. The escape time &om state p„ to
the state —p„(1 —,E', ) increases therefore at each cycle
by a factor of 1.46 to be compared with Fig. 3 where

What are the effects of an initial condition with a com-
ponent along the direction with the third eigenvalue (de-
noted by rI)? Near the fixed point this perturbation will
evolve according to g oc exp Ast . , yNext the s stem will
switch to the other state. Assuming as before that this

third mainfold is independent from the other ones (as is
observed in the numerical simulations), it is possible to
show that after one cycle the perturbation in this irec-
tion will have changed by a factor exp[(A3+ 3 w
As' refers to the state (1 —p, A'). If As+ As' ( 0, the per-
turbation wi ecay o zero.ii d t ro. In all the two-cluster states
that were obtained in our simulations this condition was

One can wonder what happens at the transition poin
&3. Numerical integration of the equations in i-

cates that at that point the typical state reached y e
system is e on-t th one-cluster state in which all t e osci a-
tors are in p ase.h The one-cluster state is margina or
that value of o.. It should be noted that even below this
transition, some two-cluster states do exist and the in-



3474 D. HANSEL, Cr. MATO, AND C. MEUNIER 48

100

~ 44 ~ ~ oe hoe ~ hooe ~ ~ NONO ON 444 ~ OHON ~ 44 ~ OH 4 44444 ~ 4 44 I I~ ~ 44 ~ ~ ~ ~ ~ ~ 44 ~ ~ 44 ~ ~ ~

one-cluster state, at variance with what is found above
the transition.
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PIG. 5. Times at which the phase of each oscillator crosses
2', for o. = 0.85 and o. = 0.000 22.

ear stability analysis around these states reveals exactly
the same characteristics as above the transition (provided
that 0.70 & o. & 7r/3). However, any trajectory starting
in the vicinity of such a two-cluster state ends on the

In this section we investigate the effects of a small noise
on the dynamics of large networks. For n & vr/3, the dy-
namics is not much modified, as illustrated in Fig. 5.
The one-cluster state is now replaced by a highly coher-
ent state: the distribution of the phases is peaked with
a width of order O(o'). This is in contrast with the sit-
uation for n/3 & n & vr/2 where introducing a small
noise changes dramatically the behavior of the system.
To the overall periodic and global motion of the clus-
ters at frequency 02, a slower motion is superimposed
that exchanges the two clusters (see Fig. 6). We call
this situation a 8mitt"hing state. A noticeable fact is that
only one cluster is destroyed at a time. After complete
destruction this cluster is rebuilt in such a way that the
order of the clusters is inverted. The process then repeats
itself but this time with the other cluster.
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FIG. 6. Times at which the phase of each oscillator crosses 2', for o,' = 1.25 and cr = 0.00022. Each of the four frames
displays the evolution during 20 units of time of the system.
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A d wa to analyze the behavior of the system is
to consider the two complex ord.er parameters e
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oscillations increases exponentially with time.
Several interesting questions remain to be solved or

understood.
(1) The system can display a great variety of clus-

ter states. Numerical integration indicates that among
these, two particular two-cluster states are selected at
least far from the transitions at 7r/3 and vr/2. Is there
any simple argument that would allow us to understand
this selection?

(2) Heteroclinic orbits are a priori structurally unsta-
ble. However, we have tested the robustness of the het-
eroclinic structure with respect to small perturbations
that preserve the symmetry of the global coupling. In all
the cases considered we have found no qualitative changes
of the dynamics. This apparent robustness of the hetero-
clinic junction needs to be confirmed. One can think that
it could be related to the high degree of symmetry of the
interaction that constrains strongly the dynamics. It has
been recently shown that some globally coupled phase
oscillators can possess a large number of constants of mo-
tion [of order O(N)] and even can be fully integrable in
special cases [18]. Has the model we have studied O(N)
constants of motion also? This could shed some light on
the stability of heteroclinicity in our model.

(3) A third question raised by the present work con-
cerns the generality of the observed phenomena in the
framework of globally coupled phase models beyond the
one-parameter family of models studied here. The ex-
istence of various stable clustering regimes is commonly
expected as soon as one considers interactions with more
than one-Fourier mode. The generality of the switching
state is much less obvious. However, we have checked
that adding additional Fourier components to the I' func-
tion, or even including in the dynamics terms that do not
depend on the difference of phases, does not change the
behavior qualitatively, as long as these changes are not
too large [17].

(4) The phase model we have studied here corresponds
to the weak-coupling limit of a network of Hodgkin-
Huxley oscillators coupled synaptically. The dynamics
of each of these oscillators is described by four highly
nonlinear equations of motion. Moreover, the synap-
tic form of the interaction makes the stability analysis
of the possible asymptotic dynamics very difficult (even
for the fully synchronized state). The phase reduction
is much more convenient to study and one can wonder
whether it can also give some insight into the dynam-
ics of the original model beyond the weak coupling limit.
We found by numerical integration that the original net-
work of globally coupled Hodgkin-Huxley neurons dis-
plays similar heteroclinic structures and noise-induced
slow oscillations for coupling strength that are beyond
the weak coupling limit.
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APPENDIX

0 & coso, . (A1)

In particular, at zero noise the incoherent state is un-
stable for n & vr/2 and stable for n ) m/2. This is in
agreement with the fact that we did not observe a stable
incoherent state except for n ) vr/2.

One-cluster state. The state in which the N oscillators
are phase-locked with zero phase shift exists for any value
of n. The frequency of the oscillation is Aq ——ur + I'(0).
One easily shows that it is stable for n & vr/3 and loses
stability at n = vr/3. This is in agreement with the
fact that random initial conditions lead to the one-cluster
state for n & vr/3.

Two-cluster state. We consider a two-cluster solution
in which the two clusters contain, respectively, Np and
N(1 —p) units. Inside each group the oscillators are
fully phase locked and synchronized and the dephasing
between the groups is constant in time and equal to L.
The relation between p and 4 can be simply obtained
from the equation of motion:

1.0

0.5

0.0

-0.5

We study here the existence and the stability of the
incoherent state of the one-cluster and of the two-cluster
states. States with n clusters can also exist, but they will
not be considered. We assume that g = 1 and r = 1/4.

Incoherent state. In the incoherent state the oscillators
are uniformly distributed on [0, 2vr]. This state exists for
all n and all intensity of the noise. Kuramoto [1] has
studied the stability of incoherent states for a general
phase interaction. Applying his results to our case, one
finds that it is unstable for
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FIG. 9. Eigenvalues of the two-cluster states as a function
of A for n = 1.25.
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r(o) —r(~)"=
2r(o) —r(~) —r(-~) (A2)

~, = pr'(o) + (1 —p)r'(~),
= (1 —p)r'(0) + pr'( —a),

(A3)
(A4)

For a given value of o., two-cluster states exist with p
ranging from 1—p to p . For instance, for o. = 1.25,
p „=0.68. For a given p in this interval, there are in
general three solutions corresponding to three possible
(p, A) states. In the frame rotating at frequency Oz ——

pI'(0) + (1—p) I (A), the two-cluster state (p, D) becomes
a fixed point and the stability analysis of this state can
be performed straightforwardly for a general r(P). The
eigenvalues of the stability matrix are

x, = pr'(s) + (1-p)r'(-~), (A5)

with multiplicity Np —1, N(1 —p) —1 and 1. One last
eigenvalue (with multiplicity 1) is 0 that relates to the
invariance with respect to translation along the limit cy-
cle (shift of time). The eigenvalues Aq and A2 correspond
to fiuctuations inside each one of the two clusters and A3
corresponds to a fluctuation in the distance between the
two clusters while keeping their structure intact. In Fig.
9 we have plotted the three eigenvalues versus L. We
can see everywhere that at least one of the eigenvalues
Aq and A2 is positive. This means that two-cluster states
are never stable. In the cases in which one of them is
positive and the other negative, the positive one will be
denoted by A„, and the negative, by —A, .
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