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Structure of a Langmuir-Hinshelwood reaction interface
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We have performed Monte Carlo simulations to investigate the structure of the interface between
the two reactants in a Langmuir-Hinshelwood reaction. A square lattice-gas model is employed in the
simulations. The time evolution of an initially flat interface between two domains of the reactants
is studied. It is found that the particle density, averaged in a direction parallel to the initial, flat
interface, obeys a diffusion equation. We provide an argument to show that the effective diffusion
coefficient in this reaction model is the same as that in a diffusion model in which one of the reactants
is considered to be a diffusing particle and the other reactant is considered to be a vacant site on the
lattice. This implies that the average concentration profile of the reactants can be described by a
diffusion equation even though the system consists of particles which are reacting but not diffusing.
The appropriate diffusion coefficient is equal to the square of the lattice constant multiplied by the
reaction rate for a reactive nearest-neighbor pair. The fractal dimension of the external perimeter
of the reactant domains is found to be 1.33 + 0.01, which suggests that it is equal to the fractal
dimension of % of the external perimeter in diffusion. It is found that the fractal dimension of the
external perimeter depends upon whether the adsorption rate is infinitely higher than the reaction
rate or vice versa. The roughness of the external perimeter in our reaction model scales with time
as t?, where B8 ~ 0.45+ 0.01. This roughening is faster than in the case of diffusion where B = %
and is a consequence of the correlation in site occupancy between particles of the same species. The
roughening exponent here is also larger than that in the Ising model where 8 = i, and we argue
that this is responsible for the slow poisoning (i.e., loss of reactivity) of this reactive lattice gas.
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I. INTRODUCTION

The study of interfaces has been one of the most active
areas in statistical physics in recent years [1-6]. In par-
ticular, the structure of a nonequilibrium interface and
the dynamics of its roughening are interesting issues. An
interface between two phases, one of which is growing
into the other, can be described by the Kardar-Parisi-
Zhang (KPZ) equation, which is a stochastic equation
obtained by appealing only to symmetry and conserva-
tion laws [4,5]. The KPZ equation includes an effective
surface tension, the dependence of the interface veloc-
ity upon the slope of the interface, and noise which is
é-function correlated in time and space. It has been used
successfully to understand various deposition models [7].
In these models, the noise is the result of the stochas-
tic nature of adsorption and desorption, and it describes
the random addition or removal of single particles at the
interface. There are, however, interfacial phenomena in
which the noise results from the addition or removal of
clusters of particles at the interface. An example which
has been investigated in an interesting paper by Sapoval,
Rosso, and Gouyet is the evolution of the diffusion hull
[8]. It was shown that the hull in the case of diffusion
has the same fractal dimension as the percolation hull.
The noise that occurs in the evolution of the hull results
from clusters joining or breaking away from the hull and
has been called intercalation noise [9]. Since these events
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involve the addition or removal of clusters with a variable
number of particles, the nature of the noise is different
from that appropriate for the deposition models in which
single particles are involved.

Another type of interface in which intercalation noise
is expected to play an important role is the interface in
a Langmuir-Hinshelwood reaction. In a previous study
we have investigated the time evolution of a model of a
surface reaction on a square lattice in which particles of
two species react (and the product immediately desorbs)
if they are nearest neighbors to each other [10]. There
we treated the case in which the reaction rate is infinitely
higher than the adsorption rate. Thus, at the interface
of two domains of the reactants, a zone of vacant sites
forms and this is where the surface reaction occurs. By
including an attractive interaction between particles of
the same species, the reaction rate of a nearest-neighbor
pair can be made dependent upon the neighborhood of
the pair. It was shown that with such an attractive in-
teraction the interface roughens with time as t1/4, and
it is possible to understand this phenomenon using the
KPZ equation [10]. When this attractive interaction is
not present, the interface roughens faster, scaling with
time as t? with 8 ~ 0.5. In this case, intercalation noise
is important in the interfacial roughening.

In order to pursue the connection between the inter-
face in the Langmuir-Hinshelwood reaction and the inter-
face in diffusion, we have performed Monte-Carlo simula-
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tions of a slightly different Langmuir-Hinshelwood reac-
tion model. In the previous model that we investigated,
the reaction rate is infinitely higher than the adsorption
rate. Hence vacant sites are present on the lattice. In the
model studied in this paper, the adsorption rate is chosen
to be infinitely higher than the reaction rate, i.e., each
time a nearest-neighbor pair of particles reacts and leaves
the lattice, the vacated sites are filled immediately by ad-
sorbing particles. Here it is appropriate to mention work
that has been done on a related Langmuir-Hinshelwood
model [11-13]. Each half of a lattice can be populated by
a lattice gas of low density of each species. The lattice-
gas particles are then allowed to diffuse, and reaction
occurs upon the “collision” of two particles of different
species. The width of the reaction zone has been found
to scale with time as ¢'/¢ [11-13]. In this model the in-
terface where the two domains of lattice gases meet is
difficult to define since the fractional coverage in the do-
mains occupied by each of the lattice-gas species is not
high. In our investigations, each domain is occupied with
a fractional coverage of unity. Hence the interface can be
defined rather unambiguously.

II. MODEL

The model that we investigate here is described by the
following chemical equations:

A(g) +v — A(s),
B(g) +v— B(s),
A(s) + B(s) = AB(g) + 2v.

The first two steps are adsorption events and the third
step is the reaction between two adsorbed reactant par-
ticles. Vacancies on the lattice are denoted by v, the gas
phase by (g), and adsorbed particles by (s). The simu-
lations begin with a square lattice one half of which is
initially populated with A and the other half of which is
initially populated with B. The interface between the A
and the B domains is initially flat and chosen to be along
one of the principal axes. In the long time limit, we do
not believe that the results depend upon this particular
choice of initial conditions. The horizontal axis is chosen
to be the z axis and the vertical axis the z axis. The
initially flat interface is parallel to the z axis.

The simulations are performed as follows. A nearest-
neighbor pair is picked at random. For each such at-
tempt, time is incremented by one Monte Carlo step.
This is repeated until an AB pair is picked. Then reac-
tion occurs and both the picked A and B particles are
removed from the lattice. The two vacancies thus formed
are filled immediately. Each vacancy is filled with A or
B, with an equal probability of 0.5 for each reactant. The
procedure is then repeated. Using this simulation proce-
dure implies that we take the adsorption rate to be in-
finitely higher than the reaction rate. Any vacant site on
the lattice is filled immediately, i.e., the total fractional
coverage of adsorption on the lattice is always unity.

We also performed simulations with the above proce-
dure except that each chosen AB pair is not removed
from the lattice but rather flipped with a probability of

0.5, i.e., AB changes to BA or remains as AB with equal
probability. This simulates diffusive particle hopping if
we consider A to be particles and B to be vacancies. The
simulations of this diffusion model are performed in order
to provide a comparison with the reaction model.

III. RESULTS AND DISCUSSION

When the reaction proceeds, the originally flat inter-
face between the two domains becomes rough. Clusters
of one species will be formed in the domain of the other
species. Thus, the reactive zone, which was originally
limited to the two neighboring rows at the interface, now
becomes wider. Note that there are two kinds of bound-
aries between A and B particles. The first kind is the
interface between the two domains of A and B, and the
second kind are the interfaces formed by clusters of B
particles in domain A or clusters of A particles in do-
main B.

One quantity which is of interest is the width of the
region where the concentrations of both A and B are
nonzero. For the reaction-diffusion model studied in
Refs. [11-13], this width was shown to scale as t'/2. We
can measure this width simply as follows. Assign spin
+1 to particles of species A and spin —1 to particles of
species B. Then, following Swendsen [14], the gradient
of the magnetization perpendicular to the interface can
be defined as

9(z) = VM (z)/[M(o0) — M(—o0)], (3.1)
where M (z) is the magnetization at height z averaged
over all z. The width w, is then defined as the root-
mean-square interface position given by the distribution
g(2). The simulation results for w, for both the reaction
model and the diffusion model are plotted in Fig. 1.

It is clearly seen that the interface width measured
by w, is the same in the two models. This implies the
interesting result that the average magnetization M (z)
in the reaction model obeys the diffusion equation even
though the interface evolution is driven by a Langmuir-
Hinshelwood reaction and the reactants are not mobile.
As will be shown below, the diffusion coefficient describ-
ing M(z) in the reaction model is the same as in the
diffusion model.

This result can be rationalized as follows. In the re-
action model nearest-neighbor AB pairs react and are
removed from the lattice. The two vacancies thus cre-
ated are each filled with A or B, with equal probability,
0.5, for each species. Thus, the reaction causes nearest-
neighbor AB pairs to be replaced by AA, BB, AB, or BA
with equal probability. Replacement by B A is equivalent
to a particle hopping into a nearest-neighbor vacancy if
we take A to be a particle and B to be a vacancy. In our
diffusion model nearest-neighbor AB pairs are replaced
with AB or BA with equal probability. Thus, the re-
action model is equivalent to the diffusion model with
the addition of the two types of events AB — AA and
AB — BB. Now consider a strip of the lattice of height
Az parallel to the z axis. On average the number of
events AB — AA and the number of events AB — BB
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will be the same. We can consider any particular pair of
such events to be made up of one AB — AB event and
one AB — BA event plus an exchange 4 +» B between
the two nearest-neighbor pairs. Except for this parti-
cle exchange the reaction model is thus ezractly the same
as the diffusion model. Since the exchange in the strip
that we are considering occurs in a direction parallel to
the z axis, it does not affect the average magnetization
M (z), which therefore obeys the diffusion equation with
the same diffusion coefficient as in the diffusion model.
Since the average magnetization M(z) obeys the same
diffusion equation in both the reaction model and the
diffusion model, we expect the width of the profile w,
to be identical for the two models. This is confirmed by
the results shown in the inset of Fig. 1. Therefore, we
conclude that the average concentration profile for the
reaction system is simply described by a diffusion equa-
tion with a diffusion coefficient D equal to A2I', where A
is the lattice constant and T is the rate of reaction for a
nearest-neighbor AB pair.

Another quantity which characterizes the structure of
the interface between the two reacting species is the
roughness of the interface between the two domains of
A and B. In order to obtain the roughness of the in-
terface, we make use of the external perimeters of the
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reactant domains. For the A domain this is defined as
the set of all A particles that are connected by nearest-
neighbor A particles to z = —oco and are also connected
by nearest-neighbor B particles to z = +0o. The analo-
gous quantity for the B domain gives its external perime-
ter. The roughness w, of the interface is then taken to
be the root-mean-square position of the particles which
constitute the external perimeter. Another way to de-
fine the interface is to consider the hull of each of the
reactant domains. For the A domain, the hull consists
of all the A particles which are connected by nearest-
neighbor A particles to 2 = —oco and are also connected
by next-nearest-neighbor B particles to z = +o0o. The
external perimeter is more relevant than the hull for the
Langmuir-Hinshelwood model that we are considering.
This is because all the particles constituting the exter-
nal perimeter are in a position to react, since they each
have at least one nearest-neighbor particle of the other
species. This is not the case for the hull.

Since the concentration averaged along the z axis is the
sanie for both reaction and diffusion, it is of interest to
determine the fractal dimension of the reaction interface
and compare it to the fractal dimension of the diffusion
front. The fractal dimension of the external perimeter of
the diffusion front has been found to be equal to 4/3 [15].
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Note that the fractal dimension of the external perimeter
is different from the fractal dimension of the hull, which is
equal to 7/4 [8], i.e., the fractal dimension of the diffusion
front is sensitive to the fine details of its definition. As
has been pointed out earlier [8], the diffusion front is
fractal only on the length scale of its roughness. Thus,
the fractal dimension d may be obtained from Nw./L ~
w?, where N is the number of particles belonging to the
external perimeter in a system of width L. In Fig. 2 we
plot the results of our simulations of the reactive interface
and we find that d is equal to 1.33 + 0.01. Therefore,
the fractal dimension of the external perimeter of the
reaction front is equal to that for the external perimeter
of the diffusion front.

It is also useful to compare the fractal dimension of the
external perimeter found here with that in a similar re-
active lattice-gas model which has been previously inves-
tigated [16]. In that model the reaction rate is infinitely
higher than the adsorption rate, while in our model the
opposite is true. It was found that the fractal dimen-
sions for the hull and the external perimeter are both
equal to 1.47. From our simulations the fractal dimen-
sion of the hull in our model is also approximately 1.47,
although the external perimeter has a fractal dimension
of 4/3. This difference can be explained as follows. In the
model previously investigated, each vacant site has the
same probability of being picked for adsorption. Upon
adsorption a particle reacts immediately with any one of
the nearest-neighbor particles of the other species with
equal probability. Hence a reactant particle at the end
of a narrow channel has a probability of reaction (and
subsequent removal from the lattice) equal to 1/3 of the
reaction probability for a particle at a flat part of the
cluster surface, i.e., a particle at the end of a narrow chan-
nel has effectively 1/3 of a vacant nearest neighbor. On
the other hand, each nearest-neighbor AB pair is picked
with equal probability in our model. Hence we expect
narrow channels to develop with a greater probability in
our simulations. From the definitions of the hull and the
external perimeters, we would expect the fractal dimen-
sions of these structures to be different if narrow channels
are present at the interface. Thus, the results presented
here imply that narrow channels play an important role
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in the structure of the interface for our model. It is also
clear from this example that the mechanistic details of
the reactive lattice gas can significantly affect the fractal
dimension of the interfacial structure.

Even though the fractal dimension and the average
concentration profile of our reaction front are the same
as the corresponding quantities in the diffusion front, it
is clear that the behavior of these fronts cannot be iden-
tical. This is because, in the reaction model, there is
a tendency for clusters of like particles to form, since
nearest-neighbor pairs of particles of different species are
continuously removed form the lattice. Starting with an
initially randomly populated lattice, clusters of particles
of the same species are expected and observed to form
[17]. This is not the case in the diffusion model. Such
a positive correlation in the occupation of sites by parti-
cles of the same species implies that the clusters of A and
clusters of B formed in the reactive zone are larger than
those found in the neighborhood of the diffusion front
after the same length of time in the simulations. Since
the roughness of both fronts can be expected to grow
as the size of these clusters, we expect the roughness of
the reaction front to increase with time faster than the
roughness of the diffusion front.

In Fig. 3 we plot the roughness of the external perime-
ter for both the diffusion and the reaction models as a
function of time in Monte Carlo steps per site. In the
case of the diffusion model, w, scales with time as t?,
with 3=0.28 £+ 0.01. This result is expected from Sapo-
val, Rosso, and Gouyet’s work on the diffusion front [8],
although there the roughness is measured by the root-
mean-square position of the particles that constitute the
hull of the diffusing particles. Even though the fractal
dimension of the hull is different from that of the exter-
nal perimeter, it is apparent that their roughness scales
with time with the same exponent. From the definitions
of the external perimeter and the hull, it is also clear that
the external perimeter is really a subset of the hull. If
the spatial distribution within the hull of particles that
constitute the external perimeter is invariant with time,
then the roughness of the hull and the external perimeter
will both scale with time with the same value of 3. Our
results suggest that this is indeed the case.
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The roughness of the external perimeter in the case
of the reaction model shows a much larger exponent,
3=0.455 + 0.005, than the value expected and obtained
in the diffusive case; cf. Fig. 3. This value of 8 is also
larger than the roughening exponent obtained for the in-
terface in a Ising model. There 8 was found to be equal
to 1/4 below the critical temperature, and at the critical
temperature a value of approximately 0.47 was obtained.
We have previously investigated the interface roughness
in a slightly different model of a lattice-gas reaction [10].
There the reaction rate was set to be infinitely higher
than the adsorption rate such that in addition to 4 and
B particles on the lattice, the lattice also contains va-
cant sites in the reactive zone. For that model, an effec-
tive surface tension can be obtained by including attrac-
tive interactions between like lattice-gas particles. When
there are no attractive interactions between like lattice-
gas particles, as is the case considered here, the roughness
was found to scale as t'/2. Therefore, the scaling of the
interface roughness with time is apparently dependent
upon whether the reaction rate is infinitely higher than
the adsorption rate or vice versa.

In these reactive lattice gases, the reaction rate per
unit area of the lattice decreases with time if we begin
with an initially randomly populated lattice. This is be-
cause clusters of like particles grow and reaction can only
occur at the periphery of these particles. It has been ob-
served that such “poisoning” occurs rather slowly with
time, and the reaction rate scales with time as t =7, where
the exponent v is rather small. One would expect that
this slow poisoning is related to the observation of the
large (i.e., close to 1/2) roughening exponent 3 in these
models, an issue we are pursuing further.

The diffusion front has been shown to be geometrically
similar to the surface of a percolation cluster [8]. Con-
sider a particle which is at some distance from the average
position of the front. There is a correlation length cor-
responding to the average density of particles p at that
position. If this correlation length £ is less than or equal
to the distance of the particle from the average front po-
sition zf, then the particle is likely to be part of the front,
ie., we + K¢(25 + we), where K is a constant of order
unity. Using an argument by Sapoval, Rosso, and Gouyet

[8], it can be seen that the roughness scales with time as
we ~ t*/2(04%) | In two dimensions v, which is the expo-
nent for the scaling of the correlation length with particle
density £ ~ (p — pc) Y, is equal to 4/3, so that we would
expect the roughening exponent g to be equal to 2/7. We
find that this is the case for both the external perimeter
and the hull of the diffusion front, but, as we have seen,
it is not true for the reaction front. We only have data
for the external perimeter, but the hull would also be
expected to have a roughening exponent 3 equal to ap-
proximately 0.455 [17]. It is probably not the case that v
is different for the reaction model. Rather the argument
used to arrive at the equation w. =K¢&(z5y + w.) and
thus w, ~ t*/2(04%) is probably not valid in the reaction
model where there is a positive correlation between the
occupancy of sites by particles of the same species.

IV. CONCLUSIONS

We have investigated the structure of an initially flat
interface between two reactant domains A and B in a
square lattice-gas model of a Langmuir-Hinshelwood re-
action. Reaction occurs between nearest-neighbor AB
pairs. Adsorption occurs immediately into any site va-
cated by reacting particles with equal probability of A
and B. We compare the particle density profile in the re-
action model with that in a diffusion model. In the latter,
we simply regard A as diffusing particles and B as vacan-
cies on the lattice. An argument is provided to show that
the particle density profile in the reaction model is ex-
actly the same as if species A were diffusing on a lattice
and species B were vacancies. Particle-density profiles
obtained from the simulations show this to be the case.

We also obtained the fractal dimension of the exter-
nal perimeter of the reaction front. This is equal to 1.33
£ 0.01 and is the same as that of the external perime-
ter of the diffusion front so that the reaction front and
the diffusion front are geometrically similar. It is, how-
ever, different from the fractal dimension of the external
perimeter in a slightly different reaction model. We show
that the microscopic details of the model can account for
this.



48 STRUCTURE OF A LANGMUIR-HINSHELWOOD REACTION INTERFACE

Even though the reaction front and the diffusion front
are geometrically similar, there is a difference between
the reaction model and the diffusion model. This is be-
cause a positive correlation exists in the site occupancy
between particles of the same species in the former. As
a consequence of this correlation, we expect the clusters
formed in the reaction zone to grow faster than the clus-
ters formed in the neighborhood of the diffusion front.
Thus, the reaction front roughens faster. The exponent
for this roughening is found to be 0.455 £+ 0.005. We
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speculate that the large value of this roughening expo-
nent is related to the slow poisoning which occurs in this
and other similar reactive lattice-gas models.
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