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Fluctuations in solidification
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We present an analytical treatment of (i) the incorporation of thermal noise in the basic con-
tinuum models of solidification, (ii) fluctuations about nonequilibrium steady states, and (iii) the
amplification of noise near the onset of morphological instability. In (i), we find that the proper
Langevin formalism, consistent with both bulk and interfacial equilibrium Huctuations, consists of
the usual bulk forces and an extra stochastic force on the interface associated with its local kinetics.
At suKciently large solidification rate, this force aKects interfacial Quctuations on scales where they
are macroscopically amplified and, thus, becomes relevant. An estimate of this rate is given. In
(ii), we extend the Langevin formalism outside of equilibrium to characterize the Quctuations of a
stationary and a directionally solidified planar interface in a temperature gradient. Finally, in (iii),
we derive an analytic expression for the linear growth of the mean-square amplitude of Buctuations
slightly above the onset of morphological instability. The amplitude of the noise is found to be
determined by the small parameter k&T&dolT /pA, where p is the surface energy, do is the chemical
capillary length, lT is the thermal length, and A is the critical wavelength. Possible applications to
experiment are discussed.

PACS number(s): 61.50.Cj, 05.70.Ln, 64.70.Dv, 81.30.Fb

I. INTRODUCTION AND SUMMARY

A. Background

Thermodynamic fluctuations (thermal noise) inherent
in bulk matter are, in most situations, much too weak to
afFect the dynamics of patterns which arise spontaneously
in nonequilibrium systems. However, they can have an
important effect in situations where they become ampli-
fied to a macroscopic scale by intrinsic linear instabilities
[1]

In solidification, the pronounced sidebranching activ-
ity observed during dendritic solidification of alloys is of
considerable metallurgical relevance. The intricate tree-
like structure which results Rom this activity determines
the solute microsegregation pattern of the solidified ma-
terial which in turn largely controls its mechanical prop-
erties. This activity, according to our present theoretical
understanding [2—7], seems remarkably to result in the
vast majority of experiments in both pure materials [8]
and alloys [9] (but not all [10]) from the amplification of
tiny perturbations of the interface triggered by some form
of noise. Another important place, pointed out recently
by Warren and Langer (WL) [11],where noise seems to
play an important role is in the selection of the primary
spacing of dendritic arrays in directional solidification
[12—14]. There, the noise determines indirectly the initial
wavelength of a transient cellular array structure which
evolves via a complicated cell elimination (coarsening)
process towards a stable dendritic array structure [11].

The precise physical origin of noise in these examples,
or even its relevance, remains uncertain. In the case of
dendritic sidebranching, the present uncertainty in its
origin is due to a quantitative calculation by Langer [5]
which has indicated that purely thermal noise is probably
not strong enough to account for the observed sidebranch

amplitude in the experiment of Huang and Glicksman [8].
In the case of directional solidification, the present situ-
ation seems somewhat less conQictual and the theory is
more tractable. This is due to the fact that calculations
of noise amplification involve Buctuations about a planar
interface and do not suffer the complications associated
with three-dimensional anisotropic needle crystals. In
a quantitative calculation using thermal noise WL have
found a relatively good agreement with experiment [12,
13] for the initial wavelength of the transient cellular ar-
ray structure. It should be mentioned, however, that in
the related problem of the onset of the dendritic insta-
bility the role of thermal noise remains less clear [15,16].
In one experiment [15], an initially stationary planar in-
terface between a cold and a hot contact (i.e. , effectively
in a temperature gradient) was progressively undercooled
by lowering the temperature of the hot contact, thereby
allowing a morpholgical instability to develop. On the
basis of a rough theoretical estimate, gian et al. [16]
first concluded that thermal noise was of about the right
magnitude to account for the rise of the instability in
this experiment. However, a more rigorous calculation
mentioned in a note added in proof by the same authors
[16] led to the opposite conclusion, namely, that ther-
mal noise was several orders of magnitude too small to
account for this rise.

Eventually, it will probably become necessary to con-
sider other sources of noise which could be related, for
example, to the presence of grain boundaries, to the pres-
ence of small foreign particles including microbubbles [17,
18], or to other extrinsic effects inherent in the experi-
mental setup. It remains that thermal Quctuations, in
contrast to the above sources, represent the most natu-
ral and "unavoidable" source of noise. For both funda-
mental and practical reasons, it therefore seems essential
at present to invest some effort in developing a better
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theoretical understanding of these fluctuations. In this
paper, I shall present the results of analytical studies in
this direction which have three main goals.

(1) The first is to develop a self-consistent Langevin
formalism for incorporating thermal noise in the usual
continuum models of solidiffcation [19] deffned on a hy-
drodynamic scale with a sharp two-phase boundary (a
summary of this formalism was reported in Ref. [20]).

(2) The second is to provide a detailed characteri-
zation of the nonequilibrium fluctuations (in particular
the fluctuation spectrum ((g( I,)) of a stationary and
a steady-state moving planar interface in a temperature
gradient. At a practical level, this characterization is an
essential prerequisite to study the amplification of fluc-
tuations by morphological instability [21] in directional
solidification, both in the example considered by WL and
other experimental situations. At a more fundamental
level, it also provides a basis of comparison with (i) a po-
tential calculation of nonequilibrium (long-wavelength)
interfacial fluctuations starting &om a fully microscopic
model which could serve as a check of the validity of the
Langevin formalism outside of equilibrium, and (ii) ex-
perimental measurements of this spectrum.

(3) The third is to provide an analysis of the ampliffca-
tion of thermal noise near the onset of morphological in-
stability in directional solidification. This analysis yields
an analytical prediction of the linear growth (in time) of
the mean-square amplitude of interfacial fluctuations. In
an experimental setting, this prediction could be used to
determine the amplitude of the noise by measuring the
time necessary for fluctuations to become macroscopi-
cally amplified and, hence, infer its origin.

The present procedure [5, 11] used to incorporate ther-
mal fluctuations was first introduced by Cherepanova [22]
and consists of adding to the diffusion equations stochas-
tic Langevin forces, uncorrelated in space and time, cho-
sen to reproduce the known bulk equilibrium fluctuations
of temperature and concentration in each phase sepa-
rately. For this procedure to be correct, it must also
reproduce the known equilibrium interfacial fluctuations
that is, the fluctuations of the boundary separating the
two phases on scales much larger than the microscopic
interface width. Two somewhat separate issues arise in
relation to the first goal outlined above.

(i) The first, raised recently by WL, pertains to the
fact that the procedure of Cherepanova assumes that the
boundary has no net effect on bulk forces. While this
seems at least intuitively correct for the symmetric model
where both phases have the same bulk thermodynamic
properties it is not a priori obvious why the same should
be true of the more general case where the two phases
have distinct thermodynamic properties.

(ii) The second pertains to the fact that the usual
Gibbs- Thomson condition implicitly assumes that the in-
terface adjusts its position instantaneously in response to
a given temperature or concentration fluctuation. Atom-
ically rough interfaces (to which we restrict our atten-
tion) relax exponentially in time via a first order kinetics
usually incorporated by adding a term linear in veloc-
ity to the Gibbs-Thomson condition. Such a term was
actually included in the basic equations considered by

Cherepanova. However, what was not included is an
extra stochastic force, separate from bulk forces, which
seems necessary to compensate for the extra source of dis-
sipation associated with the relaxational kinetics of the
interface. Since the effect of the latter becomes progres-
sively more important with increasing velocity one would
also expect the effect of this extra force to increase with
velocity. However, when precisely does it become rele-
vant'? This question is particularly relevant in view of
the fact that dendritic sidebranching, for example, is ob-
served to persist over velocities ranging from a few mi-
crometers per second to several meters per second [23].

B. B.esults

In Sec. II of this paper, we develop a Langevin for-
malism, consistent with both bulk and interfacial fluc-
tuations, which resolves these two issues. We find that
bulk forces, alone, sufFice to reproduce the correct equi-
librium interfacial fluctuations in the absence of interface
kinetics; and, hence, that the interface has effectively no
net effect on these forces. An expression for the noncon-
served "interface force" necessary to generate the correct
fluctuations in the presence of interface kinetics is de-
ri.ved.

In Sec. III, we investigate the relevance of the inter-
face force to the formation of solidification patterns. This
analysis is not specific to any particular experiment but is
aimed at estimating, quite generally, at what velocity v
this force starts to affect interfacial fluctuations on scales
where they are selectively amplified by linear instabili-
ties. This velocity can be interpreted as the velocity of a
dendrite tip in the context of sidebranching. To do so we
first calculate the crossover scale A* below which the in-
terface force affects the equilibrium fluctuation spectrum
(see Fig. 1). We then determine v* by comparing this
scale to the usual stability length Ap which sets the scale
of the short-wavelength cutoff below which fluctuations
are not amplified.

For the case of a pure substance, this procedure
yields the value 4* cDz/pL and the estimate, v*

p2pT~/cDz, where p (m/sec K) is the kinetic coeffi-
cient, p (J/m ) is the surface energy, c (J/K m ) is the
specific heat per unit volume, L (J/m ) is the latent heat
per unit volume, TM (K) is the melting temperature, and
Dz (m /sec) is the thermal diffusivity (an analogous ex-
pression for the case of alloys is also derived). For ma-
terials with fast kinetics, such as monatomic metals, the
value of v* obtained using current theoretical estimates
of p [24] is on the order of m/sec. While, for materi-
als with large molecules and slower kinetics, v* could be
considerably smaller (perhaps as small as in the 1—100-
pm/sec range). However, it is presently diflicult to give
a reliable estimate for these materials given the lack of
precise knowledge of the kinetic coefIicient. The main
conclusion is that the interface force should be relevant
in rapid solidification of metallic alloys, potentially being
responsible for sidebranching, and perhaps even at slower
growth rate for materials with slow kinetics.

In Sec. IV, we study the fluctuations of a stationary
and a moving planar interface in a temperature gradi-



48 FLUCTUATIONS IN SOLIDIFICATION 3443

1.0- 100.00-

0.8 10.00

0.6
1.00 =

0.4

0.2
0.10 =

0 .0 s ~ wI ms J v I ~ I I Il ~ ~ I I ~ I ~ I IIII I I ~ tl I ~ ~ I I

10 10 10 10 10 10 10

0.01
10-10

I

10

I

10

I

10 10

d.k
FIG. 1. Plot of Fn(dok; p, ) (solid line) and Fy(dok; p)

(dashed line) for the symmetric model of the solidification of
a pure substance with P = pI'/DT = 5 x 10 . The equilib-
rium interfacial fluctuation spectrum ((g( m) = kaTM/pk
with both bulk and interface forces. With only the former

($i,( i, ) = (kaTM/pk )Fa(dok; p) and with only the latter
((i,( i, ) = (knT~/pk )FI(dok; p). The consistency of the
Langevin formalism requires F~(dok;p) + FI(dok; P) = 1.
The crossover wavevector k* is determined by the intersec-
tion of the two curves.

ent. To do so we extend the Langevin formalism out-
side of equilibrium by making the usual assumption that
the magnitude of the local forces is determined by the
local values of the corresponding thermodynamic vari-
ables (temperature and concentration). Outside of so-
lidification, Tremblay, Siggia, and Arai [25] have actu-
ally tested the validity of this assumption for a single
bulk phase in a temperature gradient, and a particular
choice of microscopic model. In the case of solidification,
performing a fully microscopic calculation would repre-
sent a formidable task which we do not undertake here.
We expect that the extension of the Langevin formal-
ism should be quite accurate to characterize interfacial
fiuctuations at relatively small growth rate (in the 1—100-
pm/sec range). At large solidification rate, this extension
is likely to break down. However, at present, we cannot
tell at what growth rate this breakdown may occur and
how nonequilibrium fluctuations will become modish. ed.
Answering this question, which is crucial for a funda-
mental understanding of rapid solidification, remains a
difBcult challenge for future investigations.

The Ructuation spectrum, ((k( k)~, of a stationary
planar interface in a temperature gradient is shown in
Fig. 2. This plot is for the symmetric model [19] of a
pure substance; the analogous spectrum for a model of
alloy solidi6cation that includes both temperature and
concentration fields is essentially identical. This spec-
trum can be shown analytically to have the asymptotic
forms ((i,( i,)~ = k~Tg/p (k + a ) for k &) b, and

((q( I,)~ = kg/2 ck for k (( b, where b = T@/G and
a = (pT~/LG)i/2. The first form refiects the pinning
effect of the temperature gradient on scales larger than
a. It is directly analogous to the effect of gravity on a

d.k

FIG. 2. Interfacial Quctuation spectrum of a stationary
planar interface in a temperature gradient (SCN with G = 100
K/cm).
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FIG. 3. Interfacial Quctuation spectrum of a directionally
solidi6ed planar interface below the onset of morphological
instability for v/v = 0.0, 0.5, 0.8, 0.9, and 0.99. (SCN-0. 10
wt% acetone alloy with G=38.2 K/cm).

liquid-gas system and can be alternatively derived using
fluctuation theory. The second form reflects a fluctua-
tion enhancement on scale larger than b which originates
from the temperature dependence of the bulk Langevin
force associated with the temperature Beld.

For typical experimental values of G in the 1.0—
100-K/cm range, b is in the mm to cm range, a
(pT@/LG)i/2 is in the micrometer range, and the range
of wavevector which becomes amplified by morpholog-
ical instabilities falls inside the plateau of the fluctua-
tion spectrum in Fig. 2. This is clearly seen in Fig. 3,
which shows a typical plot of the fluctuation spectrum
((i,( k)„of a steady-state moving planar interface. In
the small velocity limit, this spectrum reduces to that
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of the stationary case of Fig. 2 and, slightly below
onset, it exhibits the usual enhancement of fluctuation
(((g ( g )„1/[v, —v]). Trivedi and Somboonsuk, in a
directional solidification experiment [12], have observed
a second spatial periodicity in the transient cellular ar-
ray structure with a wavelength Az (in the 0.2—0.5-mm
range) which is about an order of magnitude larger than
the wavelength Ao usually associated with the Mullins-
Sekerka instability. This observation, however, cannot be
explained in terms of the present small k enhancement
of the fluctuation spectrum shown in Fig. 2. This is be-
cause, in their experiment, the corresponding value of 6

( 5 cm) is about an order of magnitude larger than Ao.
Generally, 6 is always much larger than the scale over
which cellular structures are formed. Thus, the small k
enhancement, although interesting in itself, should not
play a significant role in directional solidification.

Finally, in Sec. V, we investigate the effect of thermal
noise close to the onset of morphological instability. The
main result is an analytical expression for the "amplifi-
cation time" t~ necessary for thermal fluctuations to be-
come macroscopically amplified (i.e. , for the amplitude of
the cellular structure to become comparable to its wave-
length) after the pulling speed of the sample is suddenly
changed from a value vo, slightly less than the onset ve-
locity v, to a value vq slightly larger than v, . This time
is de6ned implicitly by the relation

D ln
&I & ] gtA/7D (1 +0/+&

(k~Tz/p)' (dolT)
A A

(2)

The first is directly analogous to the convection ra-
tio with length instead of energy and accounts for most
of the smallness of the parameter E. In particular, it
involves the ratio of a microscopic length (k~T@/p) ~

of the order of angstroms, which sets the scale of equi-
librium interfacial fluctuations and A . The second fac-
tor is the ratio of two mesoscopic lengths a = (dolT) ~,
which is the same scale a which enters in the fluctuation

+
1 —v~/vy )

which is valid for t~/7D )) 1/c2[1 —v /vq] and c2 [1—
v, /vq] (( 1. I" = k~T@doIT/pA, is a small parameter
typically in the range 10 —10 x6 which js a dimension-
less measure of the amplitude of the noise, do and lT are
the chemical capillary length and thermal length (Sec.
IV 8), and c2 is a constant which is determined by the
form of the linear growth rate of instability near onset
[i.e. , w(k„v) 7 ~ = c2 (1 —v, /v) ].

In the Be'nard convection analog [27, 28], the small pa-
rameter I" = k~T/pdv is the ratio of a microscopic ther-
mal fluctuation energy k~T and a macroscopic dissipa-
tive energy (pd )(v/d), where p is the mass density, v
the kinematic viscosity, and d the plate separation. Here,
the physically meaningful quantity is actually the square
root of F which can be written as the product of two
ratios of length scales

A. Equilibrium Quctuations

The static thermodynamic properties are described
by the grand potential

0 = —PL, (T, p, l, ) VI, —Pg(T, pg) Vs + pA, (3)

where the subscripts S and L refer respectively to the
solid and liquid phases, p, (v = I, S) denotes the chem-
ical potential of the solute in each phase, p denotes the
surface energy, V (v = L, S) denotes the volume of each
phase, and A denotes the interfacial area. There are
two important relations, directly derivable from Eq. (3),
which we shall use here. The first is the usual Gibbs-
Thomson interfacial equilibrium condition

Tl ——TE —I'

obtained by requiring that bO = 0 at fixed total volume
Vg + VL,

——V. Here, TI denotes the interface tempera-
ture, TE ——T~ —mECL, the equilibrium melting temper-
ature of the alloy, TM the equilibrium melting tempera-
ture of the pure substance, CL, the equilibrium composi-
tion on the liquid side defined as the number of molecules
per unit volume, mE the absolute value of the slope of
the liquidus, K@ the partition coeKcient, I' = pT@IL
the Gibbs-Thomson coefEcient, and L the latent heat of
melting per unit volume. The second is the Glausius-
Clapeyron relation for dilute alloys

mE
1 —KE (5)

derived by differentiating Eq. (3) along the solid-liquid
coexistence line [19].

According to the basic principles of statistical physics,
the probability of a given fluctuation is given by

1 f W[n] i
p(n) = —exp ~—

Z ( kgb) (6)

where Z—:f 'Dn exp( —W[n]/k~T@), and W[n] repre-

spectra ((k( ~)G. and ((~( ~)„,and A . Physically, it ac-
counts for the fact that the temperature gradient reduces
dramatically the amplitude of interfacial fluctuations on
scales larger than a (Figs. 2 and 3). This ratio is typi-
cally in the range 10 —10 in directional solidification
experiments.

Equation (1) is the main result of this paper with re-
gard to experiment. It provides a rigorous basis to test
if thermal noise is the dominant noise source in a pre-
cise directional solidification experiment near onset by
measuring the time necessary for fluctuations to become
macroscopically amplified. This result is not easily appli-
cable to standard experiments on binary alloys because
the velocity window close to v where it is strictly valid
is in general too narrow to be studied reliably. Nonethe-
less, a theoretical estimation given at the end of Sec. V
indicates that this window ought to be experimentally ac-
cessible with extremely dilute solutions or liquid-crystal
systems.

II. LANGEVIN FORMALISM
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sents the minimum work required to carry out reversibly
changes in thermodynamic quantities (n) from their aver-
age equilibrium values (n*). The fluctuations of temper-
ature and concentration in a small volume LV are then
obtained by expressing W in terms of these variables [29].
The appropriate relations are

We conclude by recalling that the mean-square interfacial
displacement diverges logarithmically with the size of the
system

2

k T2
(bT )= v=L S

cv

N„(Bp„/BC„)
(8)

where L~ = L„=Lo is the linear dimension of the sur-
face, A is some short-wavelength cutoK scale compara-
ble to a molecular diameter which fixes the maximum
wavevector in the integral. As examples, for succinoni-
trile (SCN) and Al, the root-mean-square interfacial Ruc-
tuations of a 1-cm crystal face are given by

where C = n„/N denotes the solute concentration in
each phase defined as the ratio of the number of solute
and solvent molecules, and c the specific heat per unit
volume of each phase (v = L, S). Expressed in terms of
the concentration per unit volume which we shall use in
our calculations, Eq. (8) becomes

(((2))~)2 12.2A for SCN
6.4 for Al

where we have used A = 1 A and the materials parameter
given in Ref. [30].

((&C-)') = C v=L, S.
B. Langevin forces

The minimum work required to deform the boundary
between the two phases is given by

(10)

where bA is the total change in surface area of the bound-
ary. This work can be written in the form

~I(I = ~ j d*~ (v'~ + l~~((~) I' —&), (»)

where ((r) denotes the vertical displacement of the inter-
face from a reference (x, y) plane perpendicular to the z
axis chosen such that (((r)) = 0; r and ~& denote re-
spectively the two-dimensional position vector and gra-
dient in this plane. We choose positive values of ( to
correspond to freezing (i.e. , increasing Vs).

In general, interfacial fluctuations are suKciently small
such that only the first term in an expansion of the square
root in Eq. (11) needs to be retained. The probability
distribution of equilibrium interfacial fluctuations is then
given by

"=D AT„—~ q"' (R t), v=LS

s D& ~Tg —cl, DL, ~TI,T T

+ n cL, q~ ~(p) —cs qs' (p)

"=D AC —~.q ' (R, t), v=L, S
Bt (19)

We start by writing down the basic continuum equa-
tions describing the solidification of a dilute binary alloy,
including all the necessary I.angevin forces. We then in-
vestigate the consistency of this formalism with equilib-
rium fluctuations and discuss the physical relevance of its
constitutive forces. These equations consist of the usual
difFusion equations of heat and solute in each phase to-
gether with the respective conservation conditions and
Gibbs- Thomson boundary condition at the interface:

Next, using the definition

((r) =,e' ' (g

Cr, (1 —KE)v„= n Ds p'Cs —Dg p'CL,

+n [q ' (p) —q' (p)],

+n
TI(p) = TM —mECI. —I'z ——+ g(r, t),

p

(20)

(21)

to Fourier transform the integral appearing in Eq. (12),
we obtain after performing simple Gaussian integrations
the mean-square interfacial fluctuation spectrum which
takes the usual form

((g(g ) = (2~) h(k + k') kQ TE 1

or

d k' kgTE 1
((~(-~) =

( ), ((~(k) =

where TI denotes the interfacial temperature, D„and c„
denote the thermal diAusivity and specific heat of each
phase, D the solute difFusivity of each phase, and p is
the linear kinetic coeKcient. Also, K = x x+ yy+ z z is
the three-dimensional position vector and r = ~x+ yy
is a two-dimensional vector in the (z, y) plane with the
coordinate of the interface parametrized by p = xx +
yy + ((r, t) z. The three- and two-dimensional gradi-
ents are denoted, respectively, by ~—:0~ x+ 0„y+~ &

and ~~ = 0 x+ B„y. L denotes the three-dimensional
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Laplacian. The curvature v and normal velocity v of
the interface are de6ned by

B((r, t)
Ot

(23)

(
i(1+ l~ &(, t)l'1") (22)

Finally, the Gaussian random variables q(R, t) and
q(r, t), representing respectively the bulk forces and in-
terface force, obey the correlations

(q,
' (R, t) q,

"' (R', t')) = 2D C (R, t) h(R —R') b(t —t') b;, , v = L, S (25)

(26)

with 8 (R —R')—:8(x —x') b (y —y') 8(z —z'), b (r —r') =
$(x —x')$(y —y'), and the factor of 1 + ~~z((r, t)

~

in the denominator of Eq. (26) is necessary to ensure that
the net force on a small area dS of the interface is inde-
pendent of its orientation with respect to the (x, y) plane.
Our present parametrization requires ((r, t) to be single-
valued but the generalization to the more general case
where ((r, t) is multivalued is straightforward. In equi-
librium, the variances of the forces are constant with,
respectively, TI(p) = T(R, t) = T~, CL, (R, t) = C, and
Cz(R, t) = K~C, where C denotes here the alloy
composition in the bulk liquid. Outside of equilibrium,
they are determined by the local values of temperature
and concentration, as denoted in Eqs. (24)—(26), follow-
ing the usual assumption of local thermodynamic equi-
librium.

There are two difFerences between the above equations
and those originally written down by Cherepanova [22]
which are worth pointing out. Firstly, in Cherepanova s
formulation, bulk forces were omitted from the heat and
solute conservation conditions. However, there is no a
priori reason for their omission and, as we shall see be-
low, their inclusion is needed for the formalism to be con-
sistent with equilibrium fluctuations. Secondly, an extra
stochastic interface force, absent in Cherepanova's for-
mulation, has been added to the right-hand side of Eq.
(21). This force is essential to compensate for the ex-
tra source of dissipation associated with the relaxational
kinetics of the interface. A simple, albeit nonrigorous,
way to see this is to consider the interfacial Huctuations
generated by Eq. (21), alone, with the temperature and
concentration frozen to their bulk equilibrium values. In
this case, Eq. (21) once linearized about a fiat interface
simply becomes

C. Connection with equilibrium fluctuations
by direct calculation

We now explore the first issue of whether the bound-
ary has an effect on bulk forces. One of the most direct
ways to resolve this issue is to calculate the interfacial
fluctuation spectrum using the equations written above
and check if it agrees with the equilibrium spectrum. For
simplicity, we perform this calculation for the isothermal
case without temperature fluctuations and without inter-
face kinetics. The separate issues associated with the in-
terface force are addressed in Sec. III. The corresponding
equations are then given by Eqs. (19) and (20) togehter
with the Gibbs- Thomson condition

(28)

and the noise correlation defined by Eq. (25) with
Cl, (R, t) = C and Cs(R, t) = K~C . The analogous
calculation for a pure substance is essentially identical
and the one for the coupled thermal-solutal problem is
unnecessarily complicated for the present purposes. Also
for shortness of notation, the superscript referring to the
concentration field is dropped on the definition of the
diffusivities and bulk forces.

To calculate the Huctuation spectrum we proceed as
follows. We rewrite the basic equations of the model
in terms of two coupled integral equations (one for each
phase) using the standard Green's function boundary in-
tegral method. We then linearize these equations about
a stationary planar interface and calculate {(g~(~~ ) by
Fourier transform using the definition

1 0(——= I' V~ & + n(r, t),
p Bt (27)

1
((r, t) d2k I(k r+~t) ( (29)

which, using Eq. (26), is trivially shown to generate
the correct interfacial Quctuation spectrum given by Eq.
(15). A more rigorous analysis presented in Sec. III,
which takes into account simultaneously bulk and inter-
facial Quctuations, yields the same result.

The static spectrum is then obtained via the identity

(30)
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(&~&-k) = . [F~(dpk p) + Fz(dpk p)]
ka TM
pk2

where

( Fz(dok; P) ) (27r)4k~TM

&(a„.a„.)/[s,.s, .]l
(~.~.)/[~~.~k. ] )

(40)

(41)

Fzz(dpk, p) = 1,

Fz(dok, p, ) = 0,

for k (( k*

Fzz(dpk, p, ) = 0,

Fz(dpk, p) =- 1,

(48)

(4S)

give the contribution of each noise source, dp ——1"c/I
is the usual capillary length, and we have defined the
dimensionless kinetic coeKcient:

for k )) k*, and

F~ (dp k*, p) = Fz (dp k*, p, ) p « 1 (50)
pI'

P=D (42) where the crossover scale A* = 2m/k* is given by

F~(dpk; p, ) =
+ dO

Re [1/g(O)], (4
m hO

2dpk + dA 1 Re [1/g(A)]
P ~ h(A) Re 1/(1 + iO) '~2]

With this choice of definition (kzzTM/pk ) Fzz(dpk; p)
gives exactly the interfacial Buctuation spectrum that
would be obtained with only the bulk force, and
(k~T~/pk2) Fz(dpk; p), the spectrum obtained with only
the interface force.

Finally, by making the change of variable 0
u/(DT k ), using Eqs. (36)—(3S) and further manip-
ulations we can express the functions F~(dpk;p) and
Fz(dpk; p, ) in the form

4m dp

P

4' DDT
pL

Interfacial fluctuations of wavelength A* (corresponding
to the intersection of the two curves in Fig. 1) are af-
fected equally by both forces while those on scales larger
(smaller) than A* are affected only by the bulk (interface)
force.

The physical origin of the crossover scale A* can be un-
derstood by noting that, following some perturbation, the
interface relaxes by the eÃect of surface tension which, it-
self, acts via two different processes: (i) diffusion of heat
in the bulk phases and (ii) interfacial kinetics. The relax-
ation rates of these two processes are given, respectively,
by the poles of Sp in the limit p —+ oo and DT —+ oo:

with the definitions

(44) ~ 2cD I'
(dg = —Z

L (52)

g(A) = 2dpk (1+ iO/p) (1+ iO)'~ + iO,
h(O) = 1 — (1 + 0 )'i —1 /p, .

(45)

(46)

There are several properties of the functions
Fzz(dpk; p) and (Fzdpk; p) of relevance here. These can
be derived by a combination of residue integrals in the
complex 0 plane and numerical integration. The details
of those calculations need not be reported here and we
only quote the results. As a useful guide, we have plotted
in Fig. 1 Fzz(dpk; p) and Fz(dpk; p) as a function of dpk
for a typical value p = 5 x 10 . Note that the present
result are only valid for dpk « 1 (when dp k, the fluc-
tuation scale becomes comparable to the interface thick-
ness at which point the hydrodynamic description breaks
down).

The first property is given by the relation

(53)

As k increases, ~~ increases as k faster than ~I which
increases as k . Therefore there exist a crossover scale,
determined by u~ ~1, at which the two processes have
exactly the same decay rate. This relation yields at once
1/k* 2 dp/P which concurs with Eq. (51). On scales
much larger than A', perturbations associated with inter-
face force relax much faster than those associated with
bulk force (i.e., wz )) ~zi). Hence interfacial fluctua-
tions are dominated by the latter. On the contrary, on
scales much smaller than A* these perturbations relax
much slower than those associated with the bulk force
(i.e. , ozz « u~) and, hence, interfacial fluctuations are
dominated by the interface force.

A. Physical relevance

Fzz(dpk;P) + Fz(dpk;P) = 1 (47)

valid for all values of dpk and p, . Combined with Eq. (40),
it is directly seen to be an independent verification of the
consistency of the I angevin formalism with equilibrium
fluctuations.

The other properties, of direct interest here, determine
the crossover between the two regimes dominated respec-
tively by the bulk and the interface force. They can be
expressed in the form

dp D~
(54)

In principle, to study the efFect of the interface force on
sidebranching we should perform a detailed calculation of
noise amplification analogous to that of Ref. [5]. How-
ever, without embarking in such a calculation, a crude
order of magnitude estimate of the growth rate at which
this force becomes relevant can be obtained by comparing
A* to the usual stability length of the planar interface
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The interface is stable on scales shorter than Ag, such
that only fluctuations on scales larger than Ap become
amplified by morphological instabilities. In dendritic
growth where the interface is nonplanar, Ag provides a
relatively good estimate of the scale above which fluctu-
ations are amplified. It is therefore reasonable to assume
that the interface force should become relevant when
the stability length becomes shorter than A*. When
this occurs, part of the band of wave vector which be-
comes selectively amplified by morphological instabilities
is strongly affected by the interface force (cf. Fig. 1).
Since As decreases with velocity, this crossover will oc-
cur when the velocity exceeds the value v* p DT /do
obtained by setting As A*. In terms of physical pa-
rameters, this velocity takes the form

2
p QTM

(55)cDT
It should be remarked that to determine v* we have

implicitly assumed that we can use the equilibrium spec-
trum, in particular the expression for the crossover scale
A*, to infer when fluctuations outside of equilibrium are
affected by the interface force. This assumption should
be valid at low velocity —in which case the fluctuation
spectrum of the moving interface on scales shorter than
As can easily be seen (by performing a calculation anal-
ogous to that of Sec. IVB for pure materials) to be
close to the equilibrium one—but should start to break
down when the diffusion length DT/v becomes signifi-
cantly shorter than As. However, for pure materials, the
velocity at which this occurs is much larger than the val-
ues of v* estimated below. We therefore expect Eq. (55)
to provide a relatively good estimate for these materials.

For monatomic metals (Al, Cu, Ni, etc.), a good order
of magnitude estimate of the kinetic coeKcients p, consis-
tent with a large body of rapid solidification experiments,
is given by the expression [24]

"=~T2' (56)

where Vs is the speed of sound in the bulk (on the order
of 2000 m/sec), L is the latent heat per mole, and R is
the molar gas constant. This relation yields large values
of p on the order of a few m/sec K. This in turn yields
values of p, in the range 10 —10, A* in the range of a
few hundred nm to 1 pm, and values of v* in the range
of several cxn/sec to a few m/sec.

For transparent organic materials with large molecules

(SCN, pivalic acid, etc.), the value of p, is not precisely
known, but is believed to be much smaller and fall within
the range 10 s—10 i m/sec K. For p = 10 m/sec K and

I

f ~~ ((r, t) —G ((r, t)

[47rDT(t —t')] &

material parameters corresponding to SCN, p, = 6x10
A* = 7 @m, and v* = 1.5 mm/sec, while, for p = 10
m/sec K, v* = 15 pm/sec. Although firm conclusions
cannot be drawn without precise measurements of p,
these estimates suggest that the effect of the interface
force may become relevant at much smaller velocities for
this class of materials.

IV. NONEQUILIBRIUM STEAD% STATES
A. Fluctuations about a stationary planar

interface in a temperature gradient

We first examine the fluctuations of a stationary in-
terface in a temperature gradient. We present an exact
calculation of this spectrum for the symmetric model of
a pure substance and then discuss its extension to bi-
nary alloys. As we shall see, part of this spectrum can
be recovered more directly using fluctuation theory. This
alternate derivation provides additional physical insight
and is included at the end.

The equations of interest are given by Eqs. (17) and
(18) together with the interface boundary condition

TI = TM —G( —I'r. . (57)

The Langevin formalism is extended outside of equilib-
rium by making the usual assumption that the magnitude
of the bulk force is determined by the local value of the
temperature:

(q, (R, t) q~(R', t'))~ 2DT kg) Tss(R)

x h(R —R') b(t —t') b;, , (58)

where Tss(R) is the steady-state temperature profile

Tss(R) = TM + Gz .

We introduce the subscript G on all averages to distin-
guish them fIom the equilibrium averages of Sec. II.
The fact that the magnitude of the force varies spatially
via the steady-state profile complicates tremendously the
calculation of the nonequilibrium bulk fluctuations [25].
This is due to the fact that the Fourier transform of Eq.
(58) in the z direction couples difFerent modes. However,
in the present situation, we are interested in calculating
fluctuations about an interface which is perpendicular to
the z axis. Equation (58) can then be Fourier trans-
formed in r and the z dependence of the magnitude of
the force can be integrated out exactly via the projection
of the force onto the interface.

The analog of Eq. (34) is given by

x dr exp — — +q p —q p
I.a((r', t')

4Dz t —t' ) c Bt'

I 2+ I2 - 0 OO

d r'exp —, dz'~' q R', t' + dz'~' q R', t'
4DT (t —t') ) '

o
(60)
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The temperature gradient enters in the problem in two distinct ways: (i) via the interface boundary condition [G(
term in Eq. (60)], and (ii) via the projection of the bulk force on the interface. The first damps out intermediate scale
fluctuations while the second enhances large scale fluctuations. The physical origin of this enhancement is directly
related to the fact that the strength of the noise is proportional to the square of Tss(R). This implies that the
projection of the temperature fluctuations on the hotter liquid side outweighs that of fluctuations on the colder solid
side. If the noise strength was linear in temperature, this effect would be completely absent.

To calculate the fluctuation spectrum we again Fourier transform Eq. (60) following steps identical to those outlined
in Appendix A. To see where the large scale fluctuation enhancement originates Rom, we write down the intermediate
result

(2vr)s b(k+ k')b(~+ ~')
4Dz, (Zi, Zi )'~ dzexp —(Z„+Zq, , )lzl k + (Zi, Zk ) ~ F(z), (61)

where

2DT k~TM Gz ( Gz i1+2 +
c TM (TM j (62)

I

in Eq. (67) is a microscopic length do. The form
of the spectrum on scales smaller and larger than 6 can
be calculated directly from Eq. (65). The two limits of
interest take the form

and ((i, (i, „)a= (Bi, Bk )a/Si, Si, with

L z(d +I'k + G.
2cDT Zk~

(63)

ka TM((i(—i)a —=

y

kg 1(4(—i )a =
2c k'

1
kb)& 1k2+a —2 ' (69)

G 5' 1
k'+ (Zi Zi )'~'

(64)

where (Bi, Bg~ ~) is the equilibrium value given by Eq.
(37). Finally, using Eq. (30) and making the change of
variable 0 = a/(DTk ) we obtain

((i,(—i)a = k~TM + dO 1

p (k'+ n —') vr g(O)

(kb)x 1+ 1+ (1+A2)i&2

The term proportional to Gz/TM in E(z) is odd and gives
a vanishing contribution once integrated in Eq. (61). The
term proportional to (Gz/T~) gives a flnite contribu-
tion which corresponds precisely to the aforementioned
fluctuation enhancement. This enhancement only affects
long-wavelength fluctuations since the diffusion kernel
decays approximately as exp( —2klzl) at small k. Hence
the contribution of the term proportional to (Gz/TM)2
only becomes significant when k G/TM. After inte-
grating Eq. (61) over z we obtain

(Bi Bi )a

or, in real space,

R(r)(("))a - ~0(lr —r'i/a)

for lr —r'l « 6 (71)

kg 1
for lr —r'l )) 6,c r —r'

where Ko denotes the zeroth order modified Bessel func-
tion. The temperature gradient therefore screens the log-
arithmically diverging equilibrium correlations on inter-
mediates scales and induces long-range correlations on
very large scales induced by the projection of bulk tem-
perature fluctuations onto the interface. As an illustra-
tion, a plot of the complete spectrum is shown in Fig.
2.

For binary alloys, results are identical to those of Eqs.
(69) and (70) with the only difFerence that the melt-
ing temperature TM should be replaced by the equi-
librium temperature T@ ——TM —m@ CL,. in particular,
the two crossover lengths become o, = (pT@/LG) ~ and
6 = T~/G. Also, a calculation of the spectrum of the
one-sided model yields the result

with the definition ((i(—k)a =
(1 —K~) (G+ I'k2)

2(g k + a

and the two crossover length scales

(ATM l
qLG)
TM
G

(66)

(67)

(68)

which, together with the Clausius-Clapeyron relation
[Eq. (5)], reduces exactly to Eq. (69). This model only
misses the long-wavelength part of the complete spec-
trum [Eq. (70)] since it does not include temperature
fluctuations.

Fluctuation theory r eeieited

Although b decreases with G faster than a, it is always
several orders of magnitude larger since the ratio p/L

There is a more direct way to derive the result of Eq.
(69) which does not require using the Langevin formal-
ism and applies equally to pure materials and binary al-
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loys. It is based on the observation that, on scales much
smaller than b, the entire two-phase system can be con-
sidered to be in local thermodynamic equilibrium with
respect to the temperature gradient, in which case fluc-
tuation theory can be applied. The role of the tempera-
ture gradient, on these scales, becomes completely anal-
ogous to that of gravity on a liquid-gas system. The only
"truly nonequilibrium" effect of the gradient is via the
aforementioned fluctuation enhancement on scales larger
than b which is not describable by fluctuation theory.

In the presence of a temperature gradient, the mini-
mum work W necessary to carry out reversibly a fluc-
tuation of the interface has an additional contribution
associated with the work of the pressure forces. The dif-
ference of pressure across the interface PL, —Pg is no
longer zero but varies with z as

terface are given by

8CI. t9CI
Bt Bz

=v +DL 6CL —~ q (Rt))

CL(l —Kg)v„= —n DL p'CL + n q (p),
CL -CL

(7s)

(79)

(8o)

(q, (R, t) q. (R', t'))„= 2DL Css(R) h(R —R')
xh(t —t') b;, (sl)

where the magnitude of the force is determined by the
local concentration

/BPs )
( BT )

Gz =

(74)

and Css(R) represents the steady-state profile of the pla-
nar interface

Css(R) = C (1/Kz —1) exp( —v z/DL) + C

(s2)
The analog of Eq. (10) becomes

hVs

W = (PL —Ps) dVs + PhA,
0

(75)

The three basic length scales of the model are the ther-
mal length lT, the chemical capillary length do, and the
difFusion length jt deflned by

where we have used the total volume conservation con-
dition dVI, ———dVS, and be denotes the total volume

change during the fluctuation.
Combining Eqs. (74) and (75) we obtain at once

wjil = f dr zdz + ~(~~((r)('
(T@ 0 2

(76)

l~ = IIm@AC )/G,
d; = I'/(m~SC'),

l = 2DL/v,
(s3)

a = (do lT ) ~

where AC = C (1/K~ —1) is the miscibility gap of
the steady-state planar interface and C is the nominal
compositi. on of the alloy. The crossover scales a and b

expressed in terms of lT and do take the form

After performing the integration over z, the probability
distribution of Gaussian fluctuations becomes li= (T@/m@AC ) lT,

(s4)

1
p = —exp

Z kii T@ ( T@ 2
where TE now denotes the temperature of the planar in-
terface given by

+—l~~&(r) I'
2

(77)
CTE:: TM —mE

E
(s5)

This distribution yields at once the spectrum of Eq. (69).
In a liquid-gas system [32] the probability distribution of
interfacial fluctuations is identical to Eq. (77) with the
substitution l. G/TE -+ (pL —p~)g (g being the acceler-
ation of gravity and p the mass density).

B. Fluctuations about a moving planar interface

BG8ic equatioA8

It is also customary [19] to define the dimensionless con-
trol parameters

v = 2lT/l,
(86)

V = do/l,

in terms of which the growth rate w(k; v) of sinusoidal
perturbations of the planar interface resulting from the
usual Mullins-Sekerka analysis [21] can be written in the
form

We now extend the calculations of Sec. IV A to a situ-
ation where the interface is constrained to move at some
constant velocity v. Since we are primarily interested in
binary alloys, we restrict our attention to the usual one-
sided model of directional solidification [19]. The basic
equations in the kame moving at velocity v with the in-

(u(k; v) l2 1 V
A(kl) 1 ————(kl) —2 K

2 DL, v 2

where

A(kl) = Ql + (kl)2 —1 + 2K~.

(87)
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[Note that the above result is the growth rate obtained by
neglecting the term OCI, /Ot in Eq. (78) which is accurate
at small growth rate. ] In the limit V « 1, the onset ve-
locity v, and the critical wave number k are determined
respectively by the relations

for v —1 » V. Since v/(v —1) is always of order unity,
the condition that k;„becomes much smaller than b
becomes

(1 —K@)m@C
&0 1.

v, =l + 3(K@V/2) i

k l = (2K~/V, )
'~ (89} 2. Inter facial ftuctuations

where v, = lTv /Dl, and V = dov /2DI, .
As emphasized in Sec. III, using the one-sided model

neglects the effect of temperature fluctuations and, thus,
the enhancement of interfacial Huctuation on scales larger
than b. The question then arises as to whether it is safe
to neglect this enhancement. Here, we are mainly in-
terested in capturing the correct interfacial Huctuations
over the range of scale where these Huctuations become
amplified by morphological instabilities beyond the onset
velocity v . This question can therefore be answered by
determining where b lies in comparison to the mini-
mum unstable wave vector above onset. Very near onset,
the latter scales as k;„(dolT2) ~, which is always
much larger than b, and, further away from onset,

(v —1j lT

We define the fluctuation spectrum of a moving inter-
face by

C(k; v)—:((g( g)„. (92)

C(k; v) = f(kl; V, v),

where

f(q;V, v)
+ dO N(B, q)

vr /S~~ f2
(94)

To calculate this spectrum we start from the boundary
integral formulation of the one-sided model and solve the
resulting linear integral equation for ((r, t) by Fourier
transform. The calculations are presented in Appendix
B and the 6.nal result can be expressed in the form

1 V 2 1+i' —(1 —2K~) (1/v+ Vq /2)S~ ————1+ —q +
V 2 Yj./2

qQ

Yq~ ——q + 2iO+ 1,
q2 + Yq~ —2Re Y~ +1 Re Y~ —1+%@

N(O, q) =
14~1(~ —~~) («0;n ]

—~}«P;n I

(95)

(96)

(97)

The zero of Sz~ with 0 = 2DI, w jv determines the
decay rate of perturbations of the planar interface [in the
quasistationary limit where Yq~ ——q +1 this rate reduces
to the form of Eq. (87)]. There are two interesting limits
of this spectrum which can be extracted analytically. The
first takes the form

C(k;v m 0)
k~ T~ 1

k2+ a—2 (98)

and is essentially the consistency relation that, in the
limit of very small velocity [i.e. , l m oo in terms of Eq.
(93)], the spectrum reduces to that of the stationary in-
terface given by Eq. (69). The second takes the form

k T a2
C(k„v)

C

for 1 —v/v, « 1

(99)

and exhibits the usual divergence of the amplitude of Huc-
tuations slightly below the onset of instability. Here, ci
is a constant of order unity whose value can be extracted
analytically by examining the behavior of the function

f (kl; V, v) as v -+ v . In the limit V, « 1, cq is equal to
unity.

To illustrate the enhancement of fluctuations below
onset, we have evaluated the integral over 0 numeri-
cally and plotted the spectrum in Fig. 3 for several
values of v/v, = 0, 0.5, 0.8, 0.9, 0.99, and parameters
corresponding to a succinonitrile —0.10 wt% acetone al-
loy with G = 38.2 K/cm. The onset of morphologi-
cal instability for this particular alloy and growth con-
dition has been studied experimentally by Eshelman and
Trivedi [26]. The necessary material constants are given
by 1/c = 23K, I' = 0.64x10 ~ Km, m~ = 2.8
K/wt%, and K~ = 0.1. For this value of G, these yield
v, = 1.97 pm/sec, V = 1.92 10, v, = 1.0137, do =
2.8x10 m, do = 2.53x10 m, and dok = 4.6x10
We have purposely used the dimensionless combination
dok to allow a comparison of Fig. 2 and Fig. 3. The Huc-
tuation enhancement below onset falls on the right-hand
portion of this plateau, far from the small k enhance-
ment due to bulk temperature Huctuations. Also, note
that the magnitude of the maxima of the spectra for dif-
ferent v remain well described by Eq. (99), even beyond
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its range of strict validity [max(C(k; v)f = 1, 2, 5, 10, 100
for v/v, = 0, 0.5, 0.8, 0.9, 0.99].

V. NOISE AMPLIFICATION NEAR ONSET

We consider the situation where the pulling speed
of the sample in a directional solidification experiment is
changed abruptly &om an initial value vo ( v, to some
value vi ) v:

from which the "observable" mean-square amplitude

d2k
K(t) ) = C("'t) (103)

can be constructed. To calculate C(k, t) we follow the
same procedure as in Refs. [11, 28], which consists in
writing down a stochastic evolution equation for each
Fourier mode

vp & v fort&0
vq ) v fort) 0. (100)

d(i, (t) (k' (t)) ~ (t) + ~(t) (104)

There are two essential time scales. The first is the
solutal difFusion time 7~ = 2DL, /vi mentioned in the
Introduction. It fixes the duration of the dynamical tran-
sient (typically several wD) during which the interface ad-
justs its boundary layer of solute and, hence, its velocity,
to the new pulling speed vq. A detailed study of this tran-
sient and a comparison to the WL boundary-layer anal-
ysis is given in Ref. [33]. The second, wi

——1/w(k, ; vi),
fixes the time scale over which fluctuations become ampli-
fied. In the generic case of metallurgical relevance vo ——0
and v~ is significantly larger than v . In this case, wi is
comparable to or smaller than wo which, in turn, imply
that the interface becomes unstable during its transient
response to the change of pulling speed.

Here, we consider the opposite limit where both vo and
vi are close to v, and, in addition, wri = 2DI, /v, ~ ri.
The latter condition is additional since vq being close
to v does not necessarily imply that 7D && wi. In this
limit, the interface relaxes to its new velocity vz before
fluctuations are significantly amplified, which allows us
to neglect the dynamical transient of the interface. It
should be noted that there is a second critical velocity
v,' (commonly referred to as the absolute stability limit)
beyond which the interface is again restabilized. For
typical alloy composition, this velocity is very large (in
the cm/sec to m/sec range), and not accessible by the
standard Bridgman directional solidification technique,
except for extremely dilute alloys where v,' (in the 100
pm/sec to mm/sec range) becomes accessible. Although
our analytical treatment will be presented within the con-
text of the lower limit v, the expressions that are derived
also apply to the upper limit with the simple substitution
v —+ v' and the subscript, of vo and v~ interchanged.

and projecting the fluctuation spectrum at t = 0. The
latter requires choosing the stochastic force f (t) such that

C(k, t = O) = C(k, v, ), (105)

t
xexp 2 dt" ~(k; v(t"))

tl
(106)

Furthermore, the interface velocity satisfies the two limits
v(t) = vp for t & 0, v(t) = vi for t )) rD. Since we are
interested in the amplification of fluctuations on a time
scale which is itself much larger than 7D, we can make the
approximation that v(t) = vi for t ) 0 which corresponds
to neglecting the effect of the transient on a time scale

~D. Substituting these forms of v(t) into Eq. (106) we
obtain after simple integrations:

C(k, t) = C(k; vp) )
1 + '

~

exp [2~(k; vi) t]u(k; vp) )
cd k;vi j

(1o7)

where we have defined the dimensionless amplification
rate u(k; v) = w(k; vp)&L& and dimensionless time t
t/wri For v close. to v„w(k; v) can be expanded in the
form

cs fk —k, l
u(k; v) —= ur(k„v) ——

i2 q k.
with

(108)

where C(k, vp) is given by Eq. (93) derived in Sec. IV.
Equation (104) has an exact formal solution which to-
gether with the above constraint on f (t) yields at once
the solution

t
C(k, t) = 2 C(k, vp) ~ii/(k, vp)

~

dt

A. Theory u(k, ; v) = c2 (1 —v, /v) (109)

Formally, the interface position can be written in
the form

h(r, t) = hp(t) + ((r, t), (101)

where hp(t) represents the dynamical transient response
of the planar interface whose velocity is simply v(t)
dhp/dt. As before, ((r, t) represents the linear response
of the interface to fluctuations. The essence of the prob-
lem consists in calculating the time-dependent fluctua-
tion spectrum

d2k
(((tg')=,C(k;t),

~min & A'& kmax
(11o)

and the constants c2 and cs generally defined by Eq. (87);
for V (& 1, they take the simple form ci —1, c2
(2K@/V, ) i~s, and cs = 6K@.

The mean-square amplitude can then be obtained by
noting that only wave vectors in the unstable band con-
tribute significantly to the integral in Eq. (103) which
can be rewritten in the form

C(»t) = (t' (t)~— (t)) (1o2)
where k;„and k „are the two zeros of cu(k; vi). Com-
bining Eqs. (107), (108), and (110) we obtain
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kdk
(((tQ ) = exp [2ur(k, ; v, ) t]

A'min +A'+ kmax

xC(k;vp)! 1+f ur(k; vp) 5

(uk;vi )
(

x exp —c~ t
k )

In the limit t && 1, the integrand is sharply peaked around
k and we can replace k by k everywhere except inside
the factor of the exponential. We obtain at once

There are two main difIiculties in performing such an
experiment that would need to be overcome. The first
is the constraint on vi imposed by Eq. (116). The sec-
ond is the magnitude of the diffusion time wD. There
is also the constraint (1 —vp/v, ) « 1. However, this
one can easily be met by choosing vo, for example, in
the range 0.7 —0.9v, . [Note that in Eq. (1) it would
be necessary to use the experimentally determined value
of v, which can differ slightly from the theoretical one. ]
The constraint on vq is precisely the one that allows us
to neglect the dynamical transient of the interface which
follows the change of pulling speed. Using the small ve-
locity expression for c2 it can be expressed in the form

erf /2~(k, ; vi) t exp [22(k, ; vi) t]
X

A4 Jest/4irs
(112)

g
i/s

!
1 —v, /vi (mzC [1 —K@]DL,)

V, ((1.
(117)

where erf is the error function, A, = 27r/k is the critical
wavelength defined by Eq. (89), and we have defined the
dimensionless mean-square amplitude

(((~2) (&(l)')
C

(113)

(~(t3 ) = ciI' ( 1

gc, /4~s (1 —vp/vc

exp (2 c2[l —v, /vi]t )

+ 1
1 —v~/vi )

(114)

where we have defined the small parameter

k~ T~dolT

~ p4 (115)

Also, our initial assumption that ~D &( w~ imposes the
constraint on vq

cq [1 —v, /vi] « 1 . (116)

B. Application to experiment

In principle, it should be possible to design a di-
rectional solidification experiment near onset to measure
the magnitude of I" directly using the result of Eq. (114).
An easily observable quantity is the amplification time t~
at which the interface becomes deformed on a scale com-
parable to A . Since E is very small, this time does not
depend sensitively on the value of (((t)2) which together
with the ratio ci/pcs/4ms can be approximated by unity.
The amplification time then takes the simple form of Eq.
(1) where c2 is defined by Eqs. (87) and (109).

With the above definition, the crossover from the lin-
ear ampliflcation regime to the nonlinear regime where
fluctuations become observable occurs when (((t) ) is of
order unity.

Finally, the above expression can be further simplified
by eliminating C(k„vp) using Eq. (99), using the defi-
nition a = dzl~, and restricting our attention to times
t )) 1/cq[1 —v, /vi]. We obtain at once the final form:

The practical difIiculty of satisfying this constraint is re-
lated to the smallness of the ratio raised to the 1/3 power.
This smallness in turn implies knowing v very precisely
and being able to tune vi accurately. For typical alloy
composition and values of v, on the order of 1 pm/sec
or less, the ratio (I'v, /m@C [1 —K~]DI, ) ~ is on the
order of 10 —10 and the diffusion time is on the or-
der of several minutes to an hour. Since, in the regime
in which Eq. (1) is valid, t~ )) ale, experiments of very
long duration would be required.

For typical alloy compositions the above practical dif-
hculties cannot easily be overcome. However, by us-
ing an extremely dilute solution it is possible to make
simultaneously the ratio (I' v, /m@C [1 —Kz]DI.) ~

of order unity, v, considerably larger (in the 20—100-
pm/sec range), and the difFusion time Dl, /v2 consider-
ably shorter ( sec). Using the material parameters of
the SCN-acetone system, one can estimate that the above
conditions would be met for acetone composition below
about 0.01 wt% . So far, the smallest composition used
in a controlled experiment is about an order of magnitude
larger [26] and the control of the purity of the sample may
be a limiting factor.

Another interesting possibility is to use liquid-crystal
systems [34—37]. For example, in the 8CB-1.2%%up mole
hexachloroethane alloy studied in Ref. [36] the ratio
(I' v, /mEC [1 —K~]DL, ) ~ is of order unity, v,
16 pm/sec, and DI./v, 1.5 sec (8CB denotes 4-n-octyl-
4'-cyanobiphenyl). However, for this system, elastic ef-
fects which are not included in the present theory may
play an important role. An indication that these effects
may be important is the fact that a value of surface en-
ergy (p) two to three orders of magnitude larger than the
bare physical value (which is very small due to the fact
that the nematic-isotropic transition is only weakly first
order) has to be used [37] in order for the value of v, pre-
dicted from linear stability analysis to match experiment.
A treatment of morphological instability in this system
that includes elastic effects and predicts v in terms of
basic physical constants seems to be first required before
extending the present treatment of fluctuation.

Finally, we remark that our present analysis is for a



48 FLUCTUATIONS IN SOLIDIFICATION 3455

spatially extended two-dimensional planar interface and
does not take into account the eÃect of 6nite sample
thickness. This effect can become relevant in experi-
ments where the sample thickness TV is comparable to
or smaller than A . A rough theoretical estimate yields
that the value of F in Eq. (115) should be increased by
a factor of A, /W in the limit W (( A .
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APPENDIX A: EQUILIBRIUM FLUCTUATIONS
IN THE TWO-SIDED MODEL

with C~P = C, CsP = K~C, and ACP ——(1 —Km)C
The interface boundary conditions become

r
ul, (p) (A2)

with us (p) = K@uI,(p), and

v„= n [Ds V'us —DI. ~uL, ]

+ n q (p) —q'(p) .
0

(A3)

(A4)

The boundary integral formulation of Eq. (19) takes the
form (in each phase, respectively)

It is convenient to define the reduced composition fields
in the two phases

C„—C.0
u~ = ) P=L)S

2
= Dl, dt dS uI p n'. + Gl pp —GL pp n + ul p

dt' d r'uL, p' GI, p p' — dt' d r'dz'Gl. p R' ~' q R', t',
Ot' 0

(A5)

2
= —Ds dt' dS' us p' n' ~'Gs p p' —Gs p p' n' ~'us p

+ dt' d r us p, Gs p p — dt' d r'dz'Gs p R ~'. q R', t'
Bt' 0

with the di6'usion Green's function

lr —r'I'+ [z —z'1'&

[47rD„(t —t')] ~' ( 4D (t —t') )

(A6)

(A7)

We then linearize Eqs. (A5) and (A6) about a planar interface. A major simplification comes from the fact that
terms involving the products u n. ~G and u„& do not contribute at linear order. We obtain

I 2 o~(r t) dt' f fr —r'/'

2m~ac. ~~~( ' ) ~Cp [4~Di(t-t')]'~2 i 4Di(t-t') ~

(A8)

dt'

2 m~DCp ACp [47rDs(t —t )]

with

( /r —r'/'
d'r'exp

/

—
[

c9, us(p'),
4Ds t —t' )

(A9)

dt' ~r —r'~' + z" l
o "(r, t)=, r' '

p i
—,

i
~' q" (K', t'). (A10)

The integral over z in the last equation runs &om 0 to oo in the liquid and from —oo to 0 in the solid. The next step
consists in solving the above linear integral equations by Fourier transform. To do this we define the intermediate
field

@"(r,t) = B,u (p) = B,u (x, y, z)i, p

and the Fourier transforms

(A11)
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( &(rt) )
0."(r, t)

(+ ( t))

( (~. )
d2k i(k r+mt) v

(2vr)s ( @"„) (A12)

The transforms of Eqs. (A8) and (A9) together with that of the mass conservation condition

i~(k = Ds'IIg —Dl, @g + q (k, ~, 0) —q (k, ~, 0)
p

(A13)

give three algebraic equations for (~, 4'z, and 4& . Eliminating the last two variables and solving for (~, we
obtain after lengthy algebraic manipulations

L ( k~ |r'au') ( k(u k'u') 5( k~ k'ru') ( k~ k'~')
k~ k'~'

(A14)

with

I' k2
SI, = DI, (Z~ )'~ + K@DS (Zp )'~

mg
+ C (1 —K@)i~,

Z„=k + i~/D„,
(A15)
(A16)

Integration by parts of the term B,I q, (k, ur, z') in the last
equation yields two boundary contributions (one for each
phase) involving the term q, (k, u, 0) which are canceled
exactly by the boundary contributions associated with
the term in square brackets on the right-hand side of Eq.
(A13).

„(2n)s b(k+ k')h(~+ (u')

8 D2 Re[(Z„)'&2]

Re[Z„]xl1+.+
(Zv Z" (A17)

APPENDIX 8: FLUCTUATIONS OF A
MOVING PLANAR INTERFACE

IN THE ONE-SIDED MODEL
OF DIRECTIONAL SOLIDIFICATION

E = 2DLC, and E = 2K@DgC . After further
manipulations, ((k (g ) can then be expressed in the
more compact form

((g (g ) = (2m) 6(k+ k')b(~+su')

As in Appendix A, we define the field

L +L
LCp

(Bl)

1
xRe (A18)

which yields at once the results of Eqs. (31) and (32).
One technical point should be mentioned. To calculate

o.k it is useful to separate the components of the bulk
force parallel and perpendicular to the z axis by writing u(p) = ———d; ~,

lT
(B2)

with the main difference that now C& ——C /K~, b, Co ——

C (1/K@ —1), and p [p'] denotes a point on the inter-
face with coordinate z = ((r, t) [z = ((r', t')] in a frame
moving with the interface. The interface conditions be-
come

q (R, t) = q~(R, t) + i:q, (R, t) .

After Fourier transforming Eq. (A10), we obtain

(A19)

[1+ (1 —K~)u(p)] v + —n z
0(
Bt

V d7 OO

d '
(4~D„~)»2

z'2
x exp —(D„k + iu) w—

4D ~
x [i k q~(k, ~, z') +0, q,"(k,~, z')] (A20)

DI, n. pu(p) +— n q (p) . (B3)
1

LCp

The boundary integral formulation of Eqs. (78) and (79)
takes the form

1 + = DL dt' dS' u p' n'-~'G pp' —G pp' n'-~'u, p'

dt' d r'u p' v +; G p p' — dt' d r'dz'G p R' ~' - q R', t'8(), , 2. . . 1

Ot') ACo

with the difFusion Green's function in the moving frame

(B4)
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1 ( [r —r'[ + [z —z' + v(t —t')]
[4~Dr, (t —t')] a~2

r4D,(t —t')

Linearizing Eq. (B4) we obtain

(1
doux I

((r t) =—
)

with

dt [r —r'[' + [z' —v(t —t')]' )

o.(r, t) dt' Ir —r'I'+ [v(t —t')]'~
AC [47rDr, (t —t')] ~ ( 4DL, (t —t') )

' + d r'exp [—x,' — g(r, t) —((r', t') joj((r', t') v

fl i C1—v
[

——Itz
i

~

——do(Vi)' [((r' t') — q. (P)
r &t~

(B6)

The fluctuation spectrum is calculated by Fourier transforming Eqs. (B6) and (B7). The analog of Eq. (A20) becomes

with

d7 V
dz exp z''

o (4~DI,~) ~~2
o 2DI,

/2

xexp (DL, k +—i~+ v /4DI, ) 7. —
4DI,~

i k q~(k, cu, z') + 0, q, (k, ~, z')j (Bs)

and

(q, (k, u, z')q, (k, w, z"))„= F(z') (2m) b(k+ k')b(u + cu')b(z' —z")

F(z') = 2Dr, C (1/K@ —1) exp( —v z'/Dl, ) + C (B1O)

As before, the boundary contribution originating from integration by parts over z of Eq. (B&) is canceled exactly by
the contribution of the last term inside the square brackets on the right-hand side of Eq. (B6).
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