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The reunion and survival probabilities ofp random walkers in d dimensions with a mutual repulsive
interaction are formulated via appropriate partition functions of directed polymers. The exponents
that describe the decay of these probabilities with length are obtained through renormalization-group
theory O(e ), where e = 2 —d. The distribution function and the probability of n out of p walkers
meeting are also discussed. To first order, the distribution function is a Gaussian one modified by an
anomalous exponent of the length of the polymer, N. The procedure is generalized to multicritical
many-body interactions. For these multicritical cases, the exponents are obtained to second order
in the relevant e. At the upper critical dimension of the interaction, there is a logarithmic correction
other than the Gaussian exponent. An interesting consequence is a logarithmic correction for one-
dimensional walkers with a three-body repulsive interaction.

PACS number(s): 05.40.+j, 05.20.—y, 64.60.Ak, 36.20.Ey

I. INTRODUCTION

A problem that quite often arises, e.g. , in various
phase transitions, is to Gnd out how the probability of
reunion of a set of mutually interacting (generally re-
pulsive) random walkers decays with the length of the
walk. We are familiar with such phenomena occuring
in nature. One known example is the commensurate-
incommensurate (CI) transition [1, 2). The dislocations
present in the medium are responsible for the creation
and annihilation of the domain walls [1—5]. This phys-
ical picture in terms of formation of loops of walkers
helps in visualizing the nature of wetting transitions [1,2],
melting of commensurate phases [1, 2], the Ising model
[6], etc. Such loops are also relevant in the context of
self-organized criticality as in Ref. [7], where they study
the critical behavior of directed Abelian two-dimensional
(2D) sandpile model and 1D voter model. These repul-
sive walkers have been called vicious walkers in literature
[1,4]. See Refs. [1,2] for more on one-dimensional inter-
acting walkers.

The particular class of problems we like to address in
this paper involves the reunion and survival probabilities
for a set of p random walkers. Given that p walkers start
at, say, the origin in the d-dimensional space at time zero,
we want to know the probability that they will all meet

(reunite) at some point r at length (or time) K, K be-

ing very large [8]. For reunion anywhere, an integration
over the end point coordinate is required. Another quan-

tity to consider is the survival probability where at time
N the walkers can be anywhere in space. This requires

independent integrations of the end point coordinates,
thereby encompassing the reunion case. Asymptotically
for large N, power-law decays are expected. Such power
laws generally signify universality in the sense of irrele-

vance of microscopic details of the walks. Therefore, for

these universal asymptotics, one can choose a continuum
description —and this is where directed polymers (DP)
come out quite handy.

By treating the time or the length of the walk as a

special dimension, a d-dimensional random walker can be
viewed as a (d + 1)-dimensional DP. Defined in a general
way, directed polymers in d + 1 dimensions are random
walkers directed in a particular direction with entropic
fluctuations in the transverse d-dimensional space. This,
in turn, means that a walker cannot come back to its
previous d + 1 dimensional positions, signifying a self-
avoidance built in by its construction.

The relevance of directed polymers (DP) in the con-
text of many physical phenomena has made them an alive
topic of an extensive research in statistical physics. For
example, the fluctuating domain walls in the uniaxial CI
transition can be identified as directed polymers in two
dimensions [1]. The Aux lines in high-T, superconductors
[9], polymeric nematics [10], etc. are examples of DP's
in three dimensions. DP in a random medium is a topic
of interest in the context of surface growth [11] arid as a
simple model random system [12]. It is known already
that several properties of interacting DP's can be stud-
ied exactly using renormalization-group (RG) theory [13,
14]. We have shown elsewhere that even a randomly in-
teracting system can also be treated exactly [15].

The reunion probability of p interacting walkers in one
dimension [equivalent to (1+1)-dimensional DP] was de-
rived using diffusion theory methods [2], but the whole
approach was restricted to one dimension only. In fact,
the development of an approach for higher dimensional
systems was remaining as an open problem.

Our main intention is to achieve results for arbi-
trary dimensional systems using the renormalization-
group technique. This is not really beyond reach. The re-
union probability for a system of two interacting walkers
can be calculated exactly in the renormalization-group
approach. It is, indeed, possible to resum [16] the whole
perturbation series in interaction, instead of renormaliz-
ing it. The solution obtained through this exact calcula-
tion is, therefore, applicable to any dimension. However,
it appeared that for a system of more than two chains
such an exact resummation is not feasible, and, there-
fore, RG approach turns out to be unavoidable. Such
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an effort has been made here for a system of more than
two chains using e (= 2 —d) expansion. Though it is not
possible to proceed exactly, formula up to O(e ) could
be obtained. Some of these results have already been
reported [17]. We provide the details and several new
results.

The natural tendency, infused by the success in the
interacting-walker problem, is to extend the above prob-
lem to polymers interacting with multicritical many-body
interaction [18,19]. We ask the same question of reunion
and survival for p chains with m (( p) body interac-
tion. The m = 2 case is the interacting walker problem.
It turns out that such a problem with many-body in-
teraction, which is relevant both in the polymer context
and in the wide regime of condensed-matter physics, pos-
sesses all the mathematical and physical aspects of the
interacting-walkers case in a much more general way. To
obtain results for arbitrary dimensions we again use the
renormalization-group technique.

%'hy RG? For noninteracting walkers, the exponents
follow (see below) from the classic single walk (or a DP)
result or purely from dimensional analysis. The exact
1 + 1 dimensional results for interacting walkers show
that the interaction do change the exponents (discussed
later). The diff'erence, to be called the anomalous expo-
nent, seems to violate dimensional analysis, and a length
scale is needed to take care of this. Here, the RG ap-
proach comes to our rescue. In this approach, the nonin-
teracting case serves as the starting point to explore the
effects of the interaction as a perturbation. The diver-
gences in this perturbation series are then cured through
renormalization by introducing a length scale that paves
the way for the anomalous exponents.

Once we know how to settle the divergence problem
through RG, many other questions can be answered.
Specifically, the distribution function for the reunion
point, the probability that out of p walkers any n can
reunite at time %. It is also possible to study the thermo-
dynamic limit where we want to know the probability of
reunion of say two walkers in a finite density of particles.
The last problem will, however, be discussed elsewhere.

This paper is arranged as follows. In Sec. II the model
for p interacting walkers is posed. For convenience the
relevant quantities to be evaluated and the procedure fol-
lowed for the evaluation are formally presented here. In
Sec. III the exponents for reunion probability are derived.
Section IV discusses the distribution function for the re-
union point, and the survival case is taken up in Sec. V.
The general problem of n out of p walkers meeting at a
point is discussed in Sec. VI. Section VII contains the
description of the model for many walkers with many-
body interaction and the solution for the reunion prob-
lem. Conclusions can be found in Sec. VIII. Mathemati-
cal details are presented in the two appendices.

II. MODEL

gral formalism, describing p DP's with mutual repulsive
interaction is given by [9]

(Br,(z) 5 ).z
dz b(r;, (z)),

ZR„(0) = Dr e [8 (r, (0))6 (r, (%))]. (2.2)

Here I' Dr takes c'are of the sum over all possible paths
in this constrained partition function. For simplicity
the reunion is assumed to occur at the origin of the d-
dimensional space. This partition function is basically
the total weight of all possible walks starting from origin
and reuniting again at the origin. The reunion at any ar-
bitrary point r, and reunion anywhere are described by
the partition functions

(2.1)

where r;(z) is the d-dimensional position vector of the
ith chain at the contour length z measured along the
chain. This z is the steplength for the random walker
or the ordinary polymer formed after projection of the
directed one in the transverse d-dimensional space. Here
r,~(z) = r, (z) —r~. (z) and %is the'total length of the
polymer. The first term, which implies the chain con-
nectivity, contributes the entropic part of the Gaussian
chains. The second term causes the interaction of the
chains through a mutual equal time ~51-function repulsive
interaction (vo ) 0). If we consider this Harniltonian as
that of particles (quantum or random walker [21]), then
z plays the role of time. The first term produces the
Wiener measure for random walks (or the kinetic energy
of the quantum particles), while the second term is the
interaction among the particles.

Interaction, as introduced here by a b-function repul-
sion, allows intersection of the polymers though at a cost
of finite energy. Apparently this cost of finite energy
does not support, in the true sense, the required mu-
tual avoidance which can be recovered only in the limit
vp M oo. A simple dimensional analysis tells us that
vp should always occur in the combination vpN ", so
that for d ( 2 this quantity goes to infinity as K —+ oo,
even for finite vp. In the RG approach, this scaling limit
is taken care of by introducing a renormalized coupling
constant that approaches a nontrivial fixed point (g 0)
value in the large length scale limit. In other words, the
RG approach shows that the finite energy cost does not
affect the conclusions as long as we are interested in the
macroscopic behavior of the system.

The quantity of interest is the weighted number or the
partition function for p walkers to be reunited once they
start together (i.e. , z = 0) from some spatial point consid-
ered, for simplicity, to be the origin in the d-dimensional
space. Formally this can. be written as

Since we are actually interested in the asymptotic be-
havior (large length scale limit), we adopt the continuum
approach. Following the Edwards approach for conven-
tional polymers [20], the Harniltonian, in the path inte- and

ZR „(r) = 'Dr e ~ [b"(r;(0))8"(r, (N) —r)],
i=1
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+R,p = d"rZ~ p(r). (2.3)

Without the end point constraint imposed by the b func-
tion for r, (N), the above equation yields the partition
function Z~ „(survival probability). These partition
functions, for large N, show power law decays like

Zgp X (2.4)

A. Noninteracting chains

A noninteracting Gaussian chain is described by the
normalized partition function ("propagator")

G(r
~
z) = (2nz) " exp( —r /2z), (2.5)

where r is the end to end spatial distance at length z
along the chain. Z~ z(r), and Z~ „(0) are just products
of such p propagators with same r for all the chains. Since
G is normalized,

where g stands for B and S. These decays define the
exponents g~& and v/rs „. For Z~~, reunion anywhere,
the exponent is denoted by O' R „.

whole series apart from the renormalization of the cou-
pling constant. This multiplicative renormalization con-
stant is the origin of the anomalous exponent gz, remi-
niscent of what happens in, say, the P theory.

Let us give the general argument in support of the
presence of the anomalous dimension from RG [22], tak-
ing Z~„(0) as an example. We define a dimensionless
coupling constant uo = voL where e = 2 —d and L is an
arbitrary length scale. The renormalized coupling con-
stant u and the multiplicative renormalization constant
RR „(u) are defined in such a way that the renormalized
partition function Z~ „~„(L,u, N) = R~ „(u)Z~ „(vo, N)
is finite and has a well defined e -+ 0 limit. (We have, for
the time being, suppressed 0 but made the dependence
on the coupling constant, L, and N explicit. ) The price
we pay (or the bonus we gain) is the L dependence of
Za, J )~ ~

The renormalization-group equation, that originates
from the condition of L independence of the bare the-
ory (i.e. , L BZ~ „(vo, N)/OL = 0), is

0 8+&() — »~() i ~~i( (o ) )=o
BL Bu

(2.9)

Zgp = [d"r,G(r, [ N)] = 1, (2.6) where

giving gs „=0. The "Gaussian" exponents are, there-
fore,

P(u)—:L
Vp

and 2»„(u) = P(u) lnB~„(u).Btl

gg,„=0, g~ z
——pd/2, and 4~ „=(p —1)d/2. (2 7)

(2.10)

These exponents, though following from the free propa-
gator Eq. (2.5), can also be obtained from the definitions
of the partition functions, Eqs. (2.2) and (2.3), by di-
mensional analysis. These are therefore the cannonical
dimensions of the partition functions. These "Gaussian"
numbers are to be compared with the exact d = 1 results
for interacting walkers [1]

The solution of the above equation at the fixed point
u = u', determined by P(u*) = 0, has a form

Z~ „i„(L,u*, N) = L ~ 4(N, u*), (2.11)

where p* = » J (u*). From the dimensional analysis
argument and the above solution, the N dependence can
be found out as

, gR„=, and 4R„= . (2.8)
p(p - 1) = p'-' ZR,„i,(L, u*, N) (2.12)

We write g~ „=pd/2 + g„itwh il„as the anomalous
exponent. Since @s ~ = 0 for Gaussian chains, this expo-
nent is the anomalous part by itself.

B. RG analysis

where A is the cannonical dimension for the partition
function. The factor p* (in the exponent of N) is com-
pletely an outcome of the renormalization-group analysis
and is not predictable by the dimensional analysis argu-
ment. This is the anomalous dimension gz. Let us repeat
that an anomalous dimension can occur if and only if the
quantity in question requires a multiplicative renormal-
ization constant.

Renormalization group in statistical mechanics is used
to understand the long distance behavior of a system in
arbitrary dimensions. Since our interest is basically in
the N —+ oo, the field theoretic renormalization group
can be adopted [22].

The partition functions are evaluated by a perturba-
tion expansion, done diagrammatically, in the coupling
constant vo. The coeKcients are divergent at d = 2.
These divergences are identifi. ed by evaluating the terms
by analytic continuation in d (dimensional regulariza-
tion). The systematic removal of these divergences re-
quires a multiplicative renormalization constant for the

III. AN ENSEMBLE OF INTERACTING
WALKERS

For a detailed investigation we first study the case of
reunion (at origin) of interacting walkers. The partition
function ZR „(0), Eq. 2.2, is expanded perturbatively in
the coupling constant vo [13, 14]. The two-chain prob-
lem can be solved exactly and is discussed in Ref. [15].
The diagrams up to second order in the perturbative se-
ries are shown in Fig. 1. The rules for evaluating the
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(a.l) (a..3)

n,

V
(b. l) (b.2)

FIG. l. (a.l)—(a.3) Second-order

p chains. For clarity, only four chains
order diagram for reunion of n chains
chains free at z = K. (b.2) and (b.3)
diagrams.

(b.3)

diagrams for reunion of
are shown. (b.l) Zeroth-
with the remaining p —n
Two possible first-order

diagrams corresponding to the terms in the perturbative
series are given below. 'The evaluation of the diagrams
will be performed in detail in Appendix A.

among the walkers and its contribution is (2vrN)
This gives the Gaussian exponent.

In the first order in vo there are two mutually interact-
ing walkers other than p —2 Gaussian walkers. Following
the prescription given above, its contribution is

I'21 —d 2-(2 N)-"& N-"&'()(4 )-'&'' ""
(2vr—N)

P"~ (2) ~

—+ 21nx+ O(e) ~, (3.1)
4m. )

where uo ——voL', x = 4aN/L, and as before e = 2 —d.
Here the symmetry factor (P2) is to take care of all possible
combinations of walkers forming the interacting pair.

C. Second-order diagrams

In the second order there are three different kinds of
diagrams. The one in which the interaction forms a lad-
der type configuration [Fig. 1(a.l)] is simply the higher
order extension of the first order one. The analytical
expression for this is

A. Diagram rules

The rules for the diagrams are as follows. (i) Each
solid line is identified as a directed polymer represented
by the Gaussian propagator G(r ] z) of Eq. 2.5. (ii) Each
of the dashed lines represents the equal time b-function
interaction and contributes —vo to the expression. At
the point of interaction, the two polymers have the same
position and z coordinate. (iii) All the internal coordi-
nates (spatial), i.e. , the space coordinates of the points
of interaction are to be integrated over. (iv) Integrations
over the z coordinates of the interaction points are to be
done. (v) Each diagram has a symmetry factor coming
purely from combinatorics.

The two integrations of steps (iii) and (iv) are needed
because the polymers can interact anywhere in space and
at any point along the chain. The ordering of interaction
points along the chain is to be preserved in doing the z
integrals. Such a time ordering cancels out the factorial
one gets from the expansion of the exponential.

All integrations are to be done by analytic continua-
tion in d. A little re8ection shows that the integrals are
divergent for d ( 2 (see Appendix A). In the analyti-
cally continued form, such divergences show up as poles
at d = 2. A I aurent series expansion is done in ~ = 2 —d
to identify the poles.

B- Zero and first-order diagrams

With the above rules we now evaluate the diagrams
for Z~„(0). The first one is the case of no interaction

'(2 N) '"' "(".)(4 )
" I'3(& i2&

r(3&/2)

= (2nN) ' i*
(
—') (;) ~

—,+ —inn+ 0(i) ~.
r7l k

E' e

(3.2)

There is another diagram in the second order that has
two separate mutually interacting pairs [Fig. 1(a.2)). The
contribution of this diagram (in a way square of the first
order one) to the perturbation series with the proper
symmetry factor is given by

I'41 —d 22 (2 N)
—(pd/2) 1 (p) (p

—2)N2 —d(4 )
—d ( / )

I 2(2 —d)

2

= (2nrr) nn&'
( ) (;)(;-*)

~

—-', + -' in *+ O(i)'~

(3.3)

Double counting is avoided by dividing the symmetry
factor by 2.

The most crucial contribution comes &om the diagram
that involves three chains connected by the interaction
[Fig. 1(a.3)]. Evaluation of such diagrams requires a bit
of technicality. The details are relegated to Appendix A.
The final expression for this connected diagram is given
by

r' .-
6vo(2~N) " ~ (Ps)N'(47r) " sP2(e, 1 —e, e; 3e, 1 —o; 3/4)

s Ep (e, e, 1;2e, 1 + e; 3/4)
r'3i r(—.) r'(.)

(4) I' 1 —e I' 2e
(3.4)
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where e = e/2, and st is the generalized hypergeometric
function [23, 24]. Extracting the poles in e requires a
careful handling of the singularities of the hypergeometric
functions. The technicalities can be found in Appendix
A. The relevant e expansion is

(2vrN) " — 6(~s)
~

———ln —+ —lnx+ O(1)
~

.lup „C8 2 3 8
4vr ye e 4 r

(3.5)

D. Partition function

We are now in a position to evaluate the P and the p
functions of Eq. (2.10). The P function, which physically
means the variation of the coupling constant with the
macroscopic length I, can be formally evaluated as

P(u) = ue [1 —u/(2vre)]. (3.ii)
This P function is known exactly. The 6ow of the cou-
pling constant with the change in the length scale can
be studied by looking at the stability of the fixed point
u = 2me in different dimensions [13, 14]. Following the
prescription of Sec. III A the anomalous exponent can be
computed from the multiplicative renormalization con-
stant. Using Eq. (2.10)

Combining all the terms, we obtain the following per-
turbative series in terms of the dimensionless coupling
constant uo. p~ „(u) = (2) —+ 3(s) ln(3/4) 2 + O(u ), (3.12)

Z~„„K1 lnx&

(2~1V) &"~ (~e 2m )
+up i

— ln(3/4) + lnx
i

3(s) C' &4~'e' 4~'e 47r2e j
+ (3.6)

where C = (~2) [3 + (p —2)(p + 1)].
The removal of the divergences requires renormaliza-

tion of the coupling constant used in the bare theory.
Such a renormalization had already been done in connec-
tion with previous studies of virial coeKcients of directed
polymers [13,14]. The second virial coefficient is related
to the connected partition function for two chains with
the same Hamiltonian as in Eq. (2.1) but with all ends
free. Since it is the same system with identical two body
interaction, the renormalization of the coupling constant
remains the same. We, therefore, straightaway quote the
series for the coupling constant from Refs. [13,14] as

up ——u(1 + aiu + a2u + . ) with a„= (2m e) ",Vp.

(3.7)

This renormalization of the coupling constant is nec-
essary but not sufEcient to remove the divergences of the
partition function in Eq. (3.6). The presence of diver-
gence in the very first order term in uo indicates that an
overall multiplicative renormalization constant, given by
the series

which at the stable fixed point gives the anomalous di-
mension up to O(e ) as

~,„(u*) = (",) e+ 3 (",) ln(3/4) e'+ O(e )

(3.13)

An important feature is that the three chain connected
diagram in Fig. 1(a.3) is only responsible for the O(e2)
contribution in gR „. The other second order processes
where two chains talk to each other pairwise are impor-
tant for renormalizability, but do not contribute to the
exponent. For second order, three chains should collec-
tively be airfare of their existences We beli. eve that this
collective feature will be carried over in higher orders
also. The exponents are

QIr „=pd/2+ rI„, and @It„=(p —1)d/2+ l„r(3.14)

with rt„given by Eq. (3.13).

E. Digression on RC

Beyond the simple algebra, there is still something that
is of significance and can also be used as a method for
cross checking or self-consistency. Using the P function
of Eq. (3.11), and Eqs. (2.10) and (3.8), pR „(u) can be
written formally as

2pR„(u) = eu[bi + (2b2 —bi(2me) —bi)u+ ..].
BR p

——1+blu+ 62u + (3.8) (3.i5)
has to be introduced. Since the divergence of Z~ p in the
first order in uo is not touched by the renormalization of
u, bl can be obtained without much ado by the require-
ment of the minimal subtraction of the pole. Replacing
uo by u, we get

In general, 6 s are expected to have expansions of the
type

(3.16)

bi = (2) (~e) (3.9)
p=l

(2) (p' —p + 1) + 3(".) 1„(3/4)4~2 C2 4~2 (3.10)

In the next order, uo is to be replaced by the series in
terms of u, Eq. (3.7), and demand that R be such that
the poles are removed minimally. This gives

2b22 —b„—(2~) bi i ——0 (3.17)

because of the condition of minimal subtraction of poles.
Now, the finiteness condition of pR „(u) as e ~ 0 puts
stringent constraint on the coeKcients 6;p. For example,
substituting the expansions for bi and b2 in Eq. (3.15),
we require
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for the coeKcient of O(e ) term to vanish. This leaves
behind only O(e ~) coefficient that can stay in the O(u)
term in the square brackets of Eq. (3.15) remember
the e outside in this equation. In other words, a conse-
quence of the restriction of finiteness of pR „(u) is that
only O(e ) terms can survive in the coeKcient of each
order of u in Eq. (3.15). This, furthermore, guarantees
that to find out q to O(e ) it is sufficient to know only
the coefficient of O(u ) term, and so on for higher orders.
We can now turn the table around and use the finiteness
criterion to predict or check the next term in A& p The
renormalizability of a model, therefore, means that the
leading divergence in e at a particular order in the per-
turbation series has to be completely determined by the
lower order terms in the series. The universality class,
as governed by the exponents, is determined only by the
O(e ) residues.

Of course, the above identity is satisfied by bq and 62
of Eqs. (3.9) and (3.10).

IV. DISTRIBUTION FUNCTION

An important quantity is the distribution function,
Z~ „(r), for the reunion point of p interacting walkers.
This can also be thought of as the propagat, or, in a com-
bined fashion, for p interacting walkers meeting at r.

Had the walkers been noninteracting, the partition
function is just G"(r

~
N). The correction up to first or-

der in the coupling constant can be obtained with slight
modification of the steps for the evaluation of the parti-
tion function ZR„(0). The only change required is the
replacement of the last part of the propagators in the
evaluation of a diagram by G(r —rq

~

N zq) which k—eeps
r. It is straightforward to show that the divergence in the
first order is identical to that of ZR „(0).So, to O(u) the
renormalization constant R~ „(u) will be determined by
the same b] as given in Eq. (3.9). Actually, it is expected
that the renormalization constant would be the same for
Z~ „(0) and Z~ z(r) to all orders. The simplicity of the
first order graph is that the r dependence comes out as a
G(r

~
N) as for the zeroth order term. This is a feature

that does not survive in higher order connected diagrams.
We have already seen that to first order no renormaliza-
tion of the coupling constant is required. No harm is,
however, done by replacing the coupling constant by u.
We skip the details. The renormalized partition function
is given by

u 4~%
Za, p~ (r) = G"(r

I N) 1 —(2) (4.1)

Reexponentiating the logrithmic term, we obtain at the
fixed point; u = u* = 27re,

ZR „(r) = (27rN) "" (47rNL ) ' 'exp ~—
pr')

,ul
=

~ 2N
(4.2)

a Gaussian function modified by the anomalous expo-
nent. This O(e) form is exact for two chains (p = 2) for
all e ) 0. From exact results of Ref. [2], we see that this
is also exact for all p at d = 1.

We have not attempted to go to second order mainly

because of the complexity of the diagram of Fig. 1(a.3).
It is, however, easy to check that r dependence is no
longer in the simple exponential form. Previous results
on the virial coefficients showed that the r does not re-
quire any anomalous dimension, neither does %, essen-
tially because of the absence of any self-interaction. We,
therefore, expect a scaling form

(4.3)

where rj„ is given by Eq. (3.13). This immediately gives
the result for @R„as quoted in Eq. (3.14).

V. SURVIVAL PROBABILITY

2

&s,,(u) = 1+ (",) + (",)

3 & u 3
(2vre)2

(5.1)

The coefficients again satisfy the condition of Eq. (3.17).
The crucial point to note is that A~ z ——R&„and hence

ys,, = gs,, = q„/2. (5.2)

Using the critical exponents 4~ „and Qs„ it was previ-
ously found in Ref. [17] that the critical number of inter-
acting walkers (p ) that are sure to meet is 2 for d ( 2
up to O(e2) [25].

The above scaling relation, especially the connection
between the two renormalization constants, has actually
been proved to O(u ). We believe that this is true to all
orders. One way of justifying this is to cut the diagrams
of the reunion case at the middle to produce two dia-
grams of the survival type. The reunion diagram is then
a product of the two "survival" type diagrams with an
integration over the glued points. This remains to be es-
tablished yet. A more significant outcome would be that
one can associate Bs ~ as the renormalization constant
for a "vertex" from where p chains emanate.

VI. REUNION PROBABILITY
FOR A SUBSET OF WALKERS

So far we have been considering the situation where
all the chains meet. A variation on this theme is a case
where, as before, p walkers start together at time 0 but we
want to know the probability of mating of any 2. Com-
plicacies arise here because, before their reunion, each
might have interacted with any of the remaining p —2

Survival probability as defined in Sec. II is the total
weight of all possible confi. gurations of the interacting
walkers originating from the origin but free at the other
end. Because of this, the diagrammatics also go through
necessary changes in fact, the diagrams are much easier
to calculate.

The zeroth order diagram is simply unity because of
the normalized propagator. Similarly, the contribution
from the nonintersecting chains is also unity in any di-
agram. The procedure is identical to the reunion case.
We just give below the renormalization constant
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chains. The difference comes out even in the first order
in e and we stop there.

The perturbative expansion in vo has the diagrams as
shown in Figs. 1(b.l)—(lb.3), in which the third one is
the important one. Its contribution is

~)—d C no /2 (&/2)' 4~ I'(I + ./2)
(b)

x 2' (1 —s/2, s/2; e/2 + 1; 1/2), (6.1)

where the combinatorial factor C2 ——2(~2) (p —2). When
combined with the other terms, the partition function
Z~ ~ 2(0) is given by

(c)

(6.2)

Since the coeflicient of the O(u) term of the multiplica-
tive renormalization constant is identically equal to the
magnitude of the coefficient of O(u) term in the above
series, the former is given by

p —1
1 + (6.3)

rI = s(p —1) + O(s ). (6.4)

This agrees with the result of Eq. (3.13) for p = 2. It
is possible to go to higher orders, and unlike the p = 2

case, the exponent does not stop at O(e)
An extension of this analysis to meeting of n(( p)

walkers is rather trivial. The only change required is
the replacement of (2vrN) " and C2 by (2vrK) "~ and
C = (")n(p —n), respectively. The renormalization con-
stant turns out to be 1+n(p —1)u/(27re)+O(u ) yielding

rI = en(p —1)/2+ 0(e ), (6.5)

which agrees with Eq. (6.4) for n = 2 and with Eq. (3.13)
for n = p to O(e).

VII. REUNION WITH MANY-BODY
INTERACTION

This is the case where only m, number of chains can
have repulsive interaction. There is no interaction at
points of encounters of less than m chains. Here also the
aim is to evaluate the exponent QR „. g, ~ follows from

g~ „as discussed in Sec. V. For simplicity, we use the
same notation as for the m = 2 case. The Hamiltonian
is now given by

(cIr;(z) l
dz

ciz )
m —1

+U )
(i2}

dz ~(r*,'„,(z)) (7.1)

where the summation is over all possible m membered
sets from p chains. From dimensional analysis using

The anomalous exponent can be evaluated using
Eqs. (2.10), (3.11), and Eq. (6.3) and it is

FIG. 2. (a) First-order diagram for m, -body interaction.
(b) and (c) Two ladder type second-order diagrams. (d) A
nonladder diagram involving m+n chains. Here m = 4, n = 2.
For clarity, noninteracting chains are not shown. The dashed
lines represent m, -body interactions.

the dimensionless Hamiltonian it is transparent that the
coupling constant v becomes dime nsionless at d
d = 2/(m. —1) which is the upper critical dimen-
sion for this multicritical problem [18, 19]. To derive an
e = 2 —(m —1)d—:(d —d) (m —1) expansion for
the anomalous exponent we again perform perturbation
expansion in the coupling constant v . As before dimen-
sional regularization is performed to identify the poles at
the upper critical dimension d

The generalized approach follows identically the pro-
cedure for p interacting walkers, i.e., the two-body in-
teraction case. Not much technicality is involved in the
evaluation of the erst order diagram in v [Fig. 2(a)].
In higher orders there are complexities arising out of the
connected diagram that appears first in the second or-
der. As shown in Figs. 2(b) —2(d), in the second order,
the important diagram involves I, + n chains with n go-
ing from 1 to n „=min(m —1,p —m). At the end
we need to do a summation over all possible values of n.
Finally, the result can be verified with the known results
for m = 2. Another elegant check is to use the con-
vergence criteria for the anomalous exponent as a tool
and observe whether the magic cancellation, mentioned
before Eq. (3.17), occurs here also, as it should.

A. Ladder diagrams

We now proceed to the evaluation of the ladder type
graphs [Figs. 2(a)—2(c)] corresponding to the perturba-
tion series. The first order graph with m chains and
the two graphs in the second order involving m and 2m
chains, respectively, do not require any new computa-
tion. The basic structure of these graphs is identical to
those of Sec. III, except for the replacement of the two
interacting chains represented by G (r

~
z) by G (r

~
z)

[see Appendix 8].We shall skip the details and state the
results straightaway with proper symmetry factors. The
contribution &om the first order diagram is
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(P )
~

(2 ~)—Pd/2(4 ~)E~/z ( ~/ )
r(. )

(7.2)

where 0 = mm /l 1/2, which is vr for m = 2.
The second order graph, in which two independent

groups of m walkers are connected by interaction [Fig.
2(c)], gives

in the case of vicious walkers in Sec. III C and Appendix
A. With some special care, this problem can be tackled
to extract the leading singularities.

The O(e 2) term turns out to be n independent and is
equal to 8e . The summation over n is then just a sum
over the combinatorial factors as

) (" .)(.'")(.) = (")' —(". )(' ) —("),
n=1

(7.3)

The ladder type diagram [Fig. 2(b)] in the second order
involving a group of m chains yields

B. Nonladder diagrams

There is one more graph in the second order which
involves m+n chains. Details of its derivation are given in
Appendix B. This graph ends up with identical diKculty
related to the convergence of hypergeometric functions as

where the first term on the right-hand side is just the
free combinatorics for the two vertices while the last two
terms subtract out the two types of second order ladder
graphs discussed above. The cancellation of the coefFi-
cient of O(e 2) in p~ p(u) now turns out to be obvious.

From the previous RG analysis after Eq. (3.15) it is
clear that the contributing parts to the exponent are ba-
sically the e terms in the second order diagrams. As
we expect, the O(c i) term comes from the connected
nonladder diagram. The magnitude of this residue is
also the coeKcient 62i of the renormalization constant.
The O(e i) term of the coeKcient of u2 is rp /(40—e )
where

( 1 l (= -', m(m+1)(", ) q+g l l+lnl 1—
(m —1) ( m')

+-', ) ("+„)(-„+")(„-)&+pl (m —1j (7.4)

where p is the Euler gamma, Q( ) is the polygamma func-
tion,

m+n
7@i(n, m) =, sI'z

(") +r„+0( ). (7.6)

For p = m, , the exponent stops at O(e ) [16], and, in
fact, like the p = m = 2 case, the RG is exact.

x
l

1, 1, ;2, 2—&' 'm —1' '
n —1 '1—
m —1

n2 )
m')

n —1
~1+1' m —1'

(1 —n n
7@2(n, m) = B

l

(n —1 n
x zEi )(m —1 m—

m2

(7.5a)

n2 )
m2)l

.

(7.5b)

C. d=d

u (L) = 'lip

1+ (up/2cr) ln(L/Lp)
' (7.7)

where up ——u (Lp). For large L, u decays as
(ln L/Lp) The RG equat. ion then produces

At d = d, the fixed point diagram and the stability
analysis show that the coupling becomes marginally ir-
relavant. The integration of the P function tells us the
length dependence of u, and at d = 2, we find

For I, = 2 we get back the interacting walker results
because of the fact that g(1) = —p.

The renormalization of the coupling constant is, again,
known from virial coeKcients [18, 19]. Taking u as the
renormalized coupling constant (defined as v L' ), it
is given by a series of the type Eq. (3.7) with ap
(2ue ) ", and the P function is given by Eq. (3.11)
with u/2' replaced by u/2o and e by e . As a matter
of fact, once we are satisfied with the cancellation of the
O(e ) term, the details of renormalization need not be
carried out. The anomalous exponent follows as

Z„p - K-p/&--'& [up ln(2V/%p)]-l'-1. (7.8)

Even though the coupling goes to zero in the long length
scale regime, the behavior is not that of a noninteracting
case. The logarithmic correction, which does not aBect
the Gaussian power law, is the remanent of the repulsive
interaction.

For m=2, the result agrees with Ref. [17], and also
with the exact result for p = m [16]. An interesting
consequence is the logarithmic correction for p walkers
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in 1+1 dimension because d = 1 for m = 3. The
RG prediction that follows from the P function and p
is Z~ p N "/ (lnN) l'l. This could be checked easily
on a lattice numerically.

VIII. SUMMARY

APPENDIX A: EVALUATION OF A FEW
DIAGRAMS FOR INTERACTING %ALKERS

In this Appendix we evaluate the diagrams shown in
Fig. 1 with necessary details. The mathematical expres-
sion corresponding to the first order diagram, as per the
rules of Sec. III A, is

Using the analogy with directed polymers, we have ob-
tained the decay exponents of the reunion and survival
probablilities or the partition functions of the interacting
DP's, to second order in e = 2 —d for two-body inter-
action. This has also been generalized to multicritical
many-body interaction for which the expansion parame-
ter is e = (m —l) (d —d), where d = 2/(m —1). We
expect in this case, as explained in Sec. IV, the survival
exponent to be half of the reunion one of Eq. (7.6). For
the two-body interaction we have also studied the distri-
bution function and the question of reunion of a subset of
walkers. These are done to O(e). For the subset reunion
case, the O(e) correction does not enjoy a simple com-
binatorial interpretation unlike the case of reunion of all
the chains. Our analysis also yields the logarithmic cor-
rections to the exponents at the upper critical dimension
d . Explicit results are given for two-body interaction
in two dimensions and three-body interaction in one di-
mension.

It would be interesting to get these exponents on frac-
tals. Since our procedure can be extended without much
difBculty to higher orders, this gives a rare opportunity
of comparing results of e expansion based on the idea
of analytic continuation to nonintegral dimensions and
on fractals which are well defined nointegral dimensional
entities.

ACKNOWLEDGMENTS

We thank K. Srinivasa Rao for providing us with use-
ful information on multiple variable hypergeometric func-
tions. We are indebted to Deepak Dhar for many helpful
discussions and critical comments.

Ji ———vo (27rN) dzy d&1 G'(ri
~

N zi)

«'(»
I
zi) (»)

The symmetry factor (2) which counts all possible pair-
ings is not considered. This expression can be simplified
by using the following identity for the Gaussian propa-
gators:

G"(r
~
z) = (27rz) " p G(r

~
z/p).

We use the Markovian property for the propagators

(A2)

G(ri r
~

z] )G(r r2
~

z2) G(ri r2
~
zi+z2)

(A3)

Ji ———vo(2mN) lp l"/ G(0
~

N/2)(4m)
N

dzi(N —zi) / z,

(2 N)
—Pd/2N1 —d/2(4 )

—d/2 ( / )
1 (2 —d)

(A4)

as quoted in Eq. (3.1).
Next, we evaluate the ladder type diagram involving

only a pair of walkers with two succesive encounters. This
can be written as

to perform the integration over the space coordinate in
Jq. Finally we are left; with the task of evaluating the
integration over length z as

J = (27rN) dz1 dz2 dri dr2 G (ri
~

N —zi)G (ri —r2
~
zi —z2)G (r2

~

z2).

Performing the spatial integration over ri and r2 using Eq. (A2) and the Markovian property we obtain

J, = v'(2~N)-l -'~'/'(4~)-"/'G(O
~

N/2) dzl
Z1

dz2(N —zi) / (zi —z2) / z2

which finally gives Eq. (3.2).
Now let us turn to the third diagram which connects three chains. This diagram is

Js = vo(2vrN) " / N "(4') J = voG" (0
~
N)

Zl

dzq dz2 dry dr2
0 0

«'(ri
I
N —»)G(». I

zi.)G(» I zi)G(» I
N —z, )G'(r,

I
z2) (A7)

where z12 ——zi —z2. After completion of the spatial integration using the identities of Eqs. (A2) and (A3), we are
left with integrations over zj and z2, a bit complicated because of the connected nature of the graph. We obtain
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1

)
—d/2 1—d

0
dz2 z2 [1 —(3zq + 1)z2/4] (AS)

The integration over z2 is in the form of the Euler representation of the hypergeometric function so that

I'(1 —d/2)
' „, , d &d d d 3z, +1)

!1 = dzq(1 —zj) "
zz "2'

l
—,1 ——;2——;

I'(2 —d/2) o (2' 2 2 4 ) (A9)

Before proceeding further one should be cautious. Eventhough it looks tempting to substitute the series expansion for
the hypergeometric function and perform integration term by term, the problem at the upper limit of the integration
should be noted. The series expansion for the hypergeometric function is not valid when the variable becomes unity.
This problem can be bypassed by analytic continuation. Exploiting the following transformation formula for the
hypergeometric function [24]:

I'(.)r(. —
2'(a, b; c; z) = zFj (a, b; a + b —c + 1; 1 —z)

1 c —aI'c —b

sI'(c)I'(a+ b —c)+(1 —z)' 2'(c —a, c —b; c —a —b+ 1; 1 —z),r( )r(b)
(A10)

which renders the argument always less than unity through out the domain of integration, in Eq. (A9), the remaining
zq integrations can be carried out. The anal expression is

e//2

I'(e/2) f e e e 3e e 3 l (3) I'(—e/2) I'(e) / e 3 l
sF2 E, e, l;2e, l+ —;—=

1,(3e/2)
21

2
—

2 2 2
—

2 4 I 1&4)l 1,(1,/2) 1(2e)» 2 4)l (A11)

where e = 2 —d and sF2 is the generalized hypergeometric function [23]. The reward, after all this, is the immediate
retrieval of the O(e ) term. The subleading term is also not much of a problem now if the limiting forms

t'e e e 3e e 3)
sF2 !

—,1 ——,—;—,1 ——;— !
= 1 + —ln 4 + 0 (e )2 2 2 2 2 4) 6

(A12a)

/' e 3)
sF2 ! E) le;2 le+ —;—

!
= 1 + —ln4+ O(e ),2'4y 2

obtained from the series expansion, are used. The final result is given in Eq. (3.6).

(A12b)

APPENDIX B: CONNECTED DIAGRAM OF FIG. 2

This graph amounts to the following expression:

2 G(P —m —n)d/2(0
l ~) dz1

Z$

dr2[G (rg l
~ —zg)

xG (r&2
l

z&2)G (r2
l

K —z2)G (rz
l

zz)G (r2 l z2)], (Bl)

where rq2 ——rq —r2 and zq2 ——zq —z2. The identity in Eq. (A2) reduces the powers of the propagators to unity. We
furthermore use the following relation:

G(r
l
a)G(r

l b) = [2'(a+ b)] "/ G
l
r

l

ab

a+by '

which leads to the following form for the integrand in Eq. (Bl):
/

(2 )
—d(sm+n —s)/ ( )

—d/z[(~ z, )z, ]
— —'&/'[y' —z, )z,]

where

~(z )
—"~ —"—'&/'( v)"/2G! r~

l (~ —z~)z~p)G r~21 G(r2
I

(N —z2)z2v ) (B3)
m —n~

p = Nn —zion+ mzg,
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and

V = mN —mZ2 + nZ2.

Use of the Markovian property to perform the integration over the spatial coordinates r1 and r2 with rescaling of
zl, z2 by N, produces

V2
(27rN) " ~ (4rrN)' I,

16O.2

where o = arm ~i )/2 and

1 1
(1 i —d(m —1}/2 1—(m —1)d d (1 i —d(m —n —1)/2 —d(m —1)/2

Z1 ( —Z1) Z1 Z2( —Z2) z2
0 0

x(1 —zgzg) "&" [1 —z2(n + m zq —n zg)/m ]

The integration over z2 can be performed easily using the standard Euler type formula to get [2g]

1

dzx(1 —zq) z, Fq [,n, —;e + n ;z„z, ——d(~ —])/z 1—(m —l)d (em d d

0 ( 2 2 2

where F& is the first Appell function (multiple hypergeometric function) of two variables [24, 26],

A = B[e /2, (e + nd)/2], n = (n —l)d/2,

(B4)

(B5)

(B6)

z, = , + z,m' q m'y '

B(~,y) = I'(~)1'(y)/I'(*+y) being the standard beta function. The Appell function has the following series expansion:

(a, s+ t)(b~, s)(b2, t)
F1~a, b1, b2, e; X»X2~ = '

Z1&
c, s+ t s!t!

s, t=0
(B7)

«r
[ ~x [, [ &2 ~& 1. The shorthand notation (a, b) = I'(a+ b)/I'(a) is used. This integration requires special attention

since at the upper limit both the variables of the multiple hypergeometrlc function become unity Using a standard
transformation rule for hypergeometric function of double variables [26], namely

Fg(a, bg, b2', c; xg, x2) = (1 —xg) '(1. —x2)'I'(c)I'(a + b2 —c)

1 —x2
xF~

~

c —abj, c —bg —bzc a b2+1& 1 x
1 —xy j

I'(c)I'(c —a —b2)+ F2(a b] b2 c bz 1 —c+ a + b2, ~y, 1 —&Q) ~I'c —al c —b2

F2 being the second Appell function [24, 26], we obtain I = Iq + I2, where

fe +nd e n'
Iq ——Aq dzq(1 —zq)' z~ Fj[,n, e; + n+ 1; 1 — z, 1 —zq [,

2
' ' ' 2 mz' (B9a)

and

I2 ——A2 dzj (1 —zq)' zz F2(e /2, n, d/2; e + n, 1 —e /2 —n; zq, 1 —zq) (B9b)

where

/2+n
nz 5

B[(e + nd)/2, —e /2 —n] (B9c)

and

A2 = B(e /2+ n, e /2). (B9d)

The erst term, I1, is free from the above mentioned problem at the upper limit of the hypergeometric function,
whereas the second term should be treated in a di8'erent procedure because of the first variable in the hypergeometric



3438 SUTAPA MUKHERJI AND SOMENDRA M. BHATTACHARJEE 48

function. The integration over zq in Iq gives [27]

I. .'(-)F",& -/2+-d/2:, ;=;,
'I'(2, )

"' ~e /2+n+1: 2e;; m2 m2&

where

(B10)

q. 2 q ( a :bg, b2, c; l (a, s + t)(bz, s)(b2, s)(c, t) x'

i,f : g i ~

' ) , (f, s + t)(g, s) s! t! (B11)

is the Kampe de Feriet function [26, 27]. The series expansion for Iz is

n ) I'( —e /2 —n)I'(e /2+ n+ 1)
m'y I'(n) I'(d/2)

s+t
I'(e /2+ nd/2+ s+ t)I"2(e + s)I'(n+. t) 1 ( n

I'(e /2+ n+ s+ t+ 1)I'(2e + s) s!t! ( m ) (B12)

This straightaway reveals the O(e ) singularity from the s = t = 0 term, but only for n = 1. All n's, however,
contribute to O(e ). The relevant expansion is

2 ( 1 5 (&+ @ I I
+ ln

I

1—
(m —1)

2
'R2(n, m) + O(1) (for n & 1),

&m

1 5
I + 7Zq(1, m) + O(1) (for n = 1)

m )
(B13)

where 7Zq(n, m) and 742(n, m) are defined in Eqs. (7.5a) and (7.5b).
In I2, the difBculty is with the first variable z1 which can be separated out into a hypergeometric function as

Eg(E~/ 2n, dj ,2e + n, 1 —e /2 —n, zz, 1 —zz) = ) ' ' 2F&(e~/2+ s, n;e~ + n;zz).(d/2, s)(e~/2, s) (1 —zi)'
1 —e 2 —ns s!

S

(B14)

The next step is to divide the range of integration into two equal parts, [0, 1/2] and [1/2, 1]. These two parts will be
denoted by I21 and I22.

For I21, one gets rid of the trouble in performing the series expansion in the hypergeometric function of variable z1
and can integrate term by term. This procedure leads to a sum of incomplete beta functions of variables e + t and

/2+ s where t is the summation index used for the expansion of the hypergeometric function. Using the connection
between the incomplete beta function and hypergeometric function, we finally obtain

I2y ——A2 ) E2g( ~e+t, 1 —e~ /2 — as~ + t+ 1; 1/2)
'

~

I—1 (d/2, s)(e /2, s+ t)(n, t) ( n2 ) 1

+t 1+ e 2 —n„s n„t ( m2) s!t!'

S )'t

(B15)

where n, = e +n.
As before, n = 1 and n & 1 cases are to be treated separately . The O(c ) term comes from s = t = 0. The

expansions are

4I21=, + 2
7Zq(1, m) + O(1)

&m
(for n = 1) (B16a)

)n —1)
~

—~, (n, m) +O(1)
(m —1) (for n & 1). (B16b)

For I22 involving t, we use the transformation rule for the hypergeometric equation that was used in the context
of p interacting walkers to avoid identical problem with the series expansion. The transformation formula leads to
two hypergeometric functions of variable (1 —zq) each of which is regular throughout the domain of integration. After
this substitution one can verify that

I22 I221 + I222) (B17)

where
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I (s )I'(n, )I22i = ) Aa (1 —&i)'+ ~i 2I"i(s~, n; 1 —s; 1 —zi),r(. )r(n+ . )
(B18a)

I22~ = ) . — r( )r(—-)
( &1) &i r, ,r, , 2+1(n+ s—,&;1+s; 1 —zi),

/2
(818b)

where

, =42 ' '
—,

~

1—,ands~=e /2+s.(d/2, s) (e /2, s) 1 f n2

1+e 2 —n„s s! ( m2 (818c)

At this stage use of series expansion is perfectly alright. The Anal result again comes out in terms of incomplete beta
function which after converting into hypergeometric function yields for the right-hand side of Eq. (B18c),

). I'(s )I'(n, ) (s+, q)(n, q) 2 ('++'i) W(q+ s+)
'1(e )I'(n, —s+) (1 —s, q) (q+ s+) q!

(81Sa)

where

I (n, )I'(—s ) (n, —s+, q)(e, q) 2 ' i W(e + q)
I'(s+)I'(n) (1 + s, q) (e + q) q!

(B1Sb)

~(~) = 2+i (~, 1 —e; 1 + x, 1/2) .

The useful observation here is that for leading singularity, i.e. , 0(e ), the first terms [= 1] in the expansions of the
hypergeometric functions are the only relevant ones. To search for the lower order singularity, i.e. , for 0(e i) terms,
one has to consider separately the higher order terms in the expansion. We quote the series retaining terms up to
0(e '),

8
I22i =

2 + 0(l)
~m

I222 ——0(l)
2

(for n & 1),

(for n = 1)
1

2~m

Combining all the terms we obtain

(n —1)p+ g ~ ~

—7Zi(n, m) + 0(1) (for n & 1).im —1)

(B2Oa)

(B2ob)

(B20c)

8I=
2~m

8

1 5 + 0(l) (for n = 1)
m )

(
W+y

~

I+in
I

1—
(m —1)

2 t'n —1)p+ g ] ~

—7Zi(n, m) —742(n, m) + 0(1) (for n & 1).im —1)

(B21a)

(B2lb)
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