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Analytic and numerical study of stochastic resonance
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A detailed analytic and numerical study of stochastic resonance in the regime of small-amplitude
periodic modulation is presented. For the double-well potential, it has been suggested that the first-

passage time for hopping from one potential minimum to the other is exactly half the modulation period
at the value of the noise strength that maximizes the stochastic resonance profile. This explanation of
the phenomenon is critically assessed. We establish a criterion for the noise strength at which the sto-
chastic resonance profile is maximal.

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION portional to the Dirac delta function: 5(co—0). The
coefticient of this term is the amplitude of the Fourier
transform at co=A, and will be referred to below as the
stochastic resonance amplitude ( A sR ). For the parabolic
potential,

Stochastic resonance was originally introduced to ex-
plain the periodicity of the Earth's ice ages [1]. Almost
immediately, an experiment on a two-state Schmitt
trigger circuit was reported [2]. Five years later, a
second experiment with a ring laser was reported [3].
Since then, numerous theoretical papers have appeared
and an entire issue of the Journal of Statistical Physics [4]
was devoted to the proceedings of a stochastic resonance
conference that covered many new applications.

What is stochastic resonance? This is not so easy to
answer. It is not an ordinary resonance [5], and it re-
quires very special circumstances. Presented in this in-
troduction are the ideas required, before one can properly
say what stochastic resonance is. The basic ideas can be
introduced by examining a very simple system, the para-
bolic potential. This system does not exhibit stochastic
resonance, but it does serve as the standard against which
to judge for stochastic resonance, as will be done below
for the double-well potential.

The governing equation in the parabolic potential case

(3)

In this case, there is no resonance. Clearly, AsR is also
monotonically decreasing with increasing A.

Now, add an external noise to the governing equation:

(4)x = —Ax +ao cos(Qt +P)+g
dt

in which g is zero mean, Gaussian, white noise with auto-
correlation:

D is the mean-square noise strength. We may think of
—A,x as the force caused by the parabolic potential
U= —,'A,x . Since the dynamics only has the first-order
time derivative, it is said to be "overdamped. " More will
be said about this feature below. Even for general U, the
Fokker-Planck equation induced by the external noise is

1s

x = —kx +ao cos(Qt+P)
dt

8P =XP — ao cos(At +P)P
Bt Bxin which x is a dimensionless position variable, k is the

relaxation rate (we imagine, for later reference, that A, = 1

is taken at the end of a calculation), ao «1 is the small
amplitude of the periodic modulation, Q is the modula-
tion frequency (0 «1), and P is a uniformly distributed
random phase. For stochastic resonance, we focus on the
two-time position autocorrelation function, which, in this
case, is

where

82
( U' )+D

C)X

X is the Fokker-Planck operator and the dots indicate
where to put the objects upon which it acts. Its
eigenvalue-eigenfunction properties are

UXW=O with W=Ne px Dwherein the symbol I ] denotes averaging with respect to
The uniform phase average makes the averaged pro-

cess "stationary" in the stochastic sense, which means
dependent on t t' only (not on absolute t—or t') and does
not mean time independent. The Fourier transform of
the autocorrelation is a function of co. It has a term pro-

where 1V is the normalization constant and

X WP„= —X„W$„.
For the parabolic potential, these general equations yield

Ix (t)x (t')-]-= —ao
1 2 1

k+Q cos[ 0( t t' )]—
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DW= 2m—
—1/2

1
exp — A,x

temperature and K~ is Boltzmann's constant. Writing
(18) as

X„=nA, ,

(2n& I)
—I/2H

' 1/2

m d d 1x+ x=—(x —x )+—G
R dt2 dt R R

makes it patent that in the scaled time r = t /R

(20)

where (x )„ is defined by

(x)„=j dx xW(x)P„(x) .

(13)

At first sight this expression seems rather more compli-
cated than (3). However, for the special case of the para-
bolic potential, it simplifies greatly because

1/2

(x)„= — 5„,
D

(15)

so that

1
SR 2 0 ~2+~2 (16)

This is identical to (3) and, remarkably, independent of D.
The D independence is by virtue of a perfect cancellation
of factors of D. In the general case, we expect complicat-
ed D dependence because of more complicated, noncan-
celing D dependence in (x )„and A,„.

The double-well potential U = —
—,'x + 4x gives an ex-

ample of complicated D dependence. This potential is
the prototype for stochastic resonance. The governing
equation is

d 3

dt
x =x —x +a cos(Qt+P)+g .

If this is viewed as overdamped motion in the double-
well potential, then it must be noted that the external
noise g is not the noise connected with the damping con-
stant through the Auctuation-dissipation relation. To see
this, imagine that the underlying dynamics is

in which H„ is the standard Hermite polynomial of order
n In. particular we have A, , =A, and P, =(A, /D)'~ x. The
position autocorrelation is computed with respect to both
g and P. That is, we compute [(x (t)x (t') ) ] wherein ( )
denotes averaging with respect to g. The Fourier trans-
form is taken to obtain AsR. We will show in Sec. II of
this paper that for arbitrary potential U, to order a 0, 3 sR
is given by

(A, „A, +n')((x )„)'((x) )'

D (A, +0 )(A. +0 )

x =(x —x )+G(Rr)
d7

(21)

in the overdamped (R ~~ ) limit. Moreover, the noise
autocorrelation now reads

( G(R r)G (R r') ) =2k~ T5(r r')—, (22)

14.0—

12.0—

10.0—

8.0—
CO

05

6.0—

2.0—

i.e., the noise correlation, in scaled time, is R times small-
er than before, but not vanishing. In a real experiment,
the residual internal noise must be accounted for when
external noise g is added.

Unlike the parabolic case in which explicit, closed-
form expressions exist for all A.„'s and all P„'s, the
double-well analysis does not go through so easily. High-
ly accurate numerical construction of finite sets of A.„and
P„ is possible using matrix continued fractions [6]. Jung
[7] has pioneered and implemented this procedure for the
double-well potential. He presented the first, highly ac-
curate, published computation of A sR [8]. The A sR
profile (for 0=0.1) is shown in Fig. 1 [we have plotted
(2/irao)AsR instead of AsR]. For fixed 0, the profile
shows a Inaximum as a function of D at D =DM. In the
parabolic case, (2/rrao ) AsR was independent of D, with
the constant value 1/(1+0 ) which is less than 1 (having
set A. = 1 as we said we would earlier). The maximum in
Fig. 1 has a value larger than 12. In this sense we have a
"resonance" with respect to D at D =DM. Notice that
this phenomenon does not imply that AsR has a max-
imum as a function of Q for fixed D. In fact, for fixed D,
A sR is monotonically decreasing with increasing Q.

With the double-well potential, a new time scale ap-

m x = —R x+(x —x )+Gd 3

dt

where

(18)
I

/

I I I I I I

0.0 0.05 0.1 0.15 0.2 0.25 0.3
D

( G(t)G (t') ) =2Rk& T5(t t')—(19)

expresses the Auctuation-dissipation relation. T is the
FIG. l. (2/~ao) Asa for 0=0.1 and D R[0.01,0.3] redrawn

from [4].
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pears, the mean first-passage time (FPT) for the particle
to hop from one minimum to the other. There exists a
moment hierarchy of mean FPT, mean squared FPT,
mean cubed FPT, etc. Each such moment depends on
both the starting point and on the ending point, as well as
on D. In this paper, we will be especially interested in the
mean FPT to go from —1 to 0, Ti( —1,0,D), and the
mean squared FPT, Tz( —1,0,D). The D dependence is
of central interest.

Jung and Hanggi made the remarkable observation
that DM has an additional significance. Let D~ denote
the value of D for which

In Sec. III, we present our numerical results and
confirm the validity of the Kramers condition (26). We
also present concluding remarks.

II. DERIVATION OF A SR

For the double-well potential, the Fokker-Planck equa-
tion is identical with (6) with the Fokker-Planck operator
given by (7) with U= —

—,'x + —,'x in this case. The
eigenvalue-eigenfunction equation

(27)

T( —11D )=—1 2~
2 Q

(23)
cannot be solved in closed form, but there are several ac-
curate, approximate approaches that are useful. Clearly,
(8) still holds with

For this value of D, the stochastic hopping period to go
from —1 to + 1 and back to —1 exactly equals the modu-
lation period 2'/LI Jung .and Hanggi [8,9] observed that

N '= f dxexp
QO 2D

x'
4D

(28)

DR DM ~ (24)

which, for this phenomenon, confers a dramatic alterna-
tive sense to the word "resonance. "

We tested this claim by determining DM from Fig. 2 of
Jung and Hanggi [8], and then using this DM in a sto-
chastic, numerical simulation [10,11], which determines
T, ( —1, 1,DM ). For 0=0.1, the agreement with (24) was
remarkably good. It is not unusual to hear the equivalent
of (24) given as the explanation for stochastic resonance
[8,9,12].

Identity (24) poses the following puzzles. Can
D~ =DM be deduced analytically from general formula
(13)? Can it readily be seen that the factors in (13) are
connected with the mean FPT, T~ ( —1, 1,D)'?

A tantalizing clue is the often stated approximate con-
nection [6,8]

One may solve the eigenvalue-eigenfunction problem in
the "backward" picture:

X W$„= —
A,„WP„, (29)

W(x)P„(x)P„(x')=5(x —x') .
n=0

(31)

The asymmetry in x and x' on the left-hand side of (31)
corresponds to the conventions: for arbitrary f (x), the
eigenfunction expansion is

which is equivalent to saying that the P„s satisfy the
backward Fokker-Planck equation [13]. This means the
orthonormality and closure are expressed by

f dx P„(x)W(x)P (x)=5„ (30)

and

1

T, ( —1,0,D) f (x)= g b„W( x)P„( x)

n=0
(32)

for small enough D. Furthermore, the explicit D depen-
dence is reasonably well approximated by the Kramers
formula: k&=(&2/m) exp[ —1/4D]. These facts make it
seem very likely that (24) could be obtained from (13) as a
formal identity.

In Sec. II, we present the details required to obtain (13)
and establish connections closely related to (25). We will
show that the condition for stochastic resonance, (24), is
only approximately true for A=O. 1 and gets worse as Q
is decreased. Instead, a remarkably good equation for
determining DM(Q) is given by what we will call the Kra-
mers condition

with coefficient formula

b„=f dx P„(x)f(x) . (33)

f dx'5(x —x')f (x')=f (x) (34)

and

Therefore, the 5 function defined in (31) is properly two
sided:

D (0)=—1M 4 1
2 exp

(26) f dx P„(x)5(x —x')=P„(x') . (35)

2@2

(Note that X is not Hermitian in this backward picture
[14].)

The following identity is especially useful later:
a transcendental equation for DM. Only for a particular
value of 0, a bit larger than 0.1, is Dz =DM exactly true,
by accident. Otherwise, the difFerence becomes increas-
ingly significant as Q decreases.

X WP„=D W P„=—
A,„WP„.a a

This implies:

(36)
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—
A,„f dx P„WP„=f dx P„XWP„

dxD „8
and

g(s)=ao cos(Qs+(t}) . (42)

2

= —D dx 8'x „~0.
Clearly,

(X)„=f dx P„XWP = —k„6„ (43)

Therefore,

(37)

A,„~O for every n . (38)

The solution to the full Fokker-Planck equation (6) uti-
lizes the expansion

P(x, t;y, t', P)= g c„(t,t', y, g)W(x)P„(x)
n=0

(39)

(40)

wherein exp T denotes the leftward, time-ordered ex-
ponential, with later times to the left, summation over the
repeated m is implicit, and JR is defined by

M„=(A,)„=f dx P„WP (41)

in which P is the conditional probability density, such
that P dx is the probability for the position to be between
x and x +dx at time t given that the position value was
precisely y at time t', all of this with phase P. The formal
solution to (6}is expressed as

c„(t,t', y, P) = expT f ds[X g(s)—JN] , P (y)
nm

It is known [6], and obvious, that A.O=O with go= 1, and
that A,„)0for n ~1. Thus it is possible to obtain the
asymptotic values for the cn's. In particular, if we re-
place the upper limit t by t' and the lower limit t' by —~
in the integral on the right-hand side of (40), then we get

I

c""(t',P) = expT f ds[X —g (s)A, ] P (y)
00 mp

I

expT f ds [X—g (s)At] (44)
mO

because expansion of the ordered exponential and execu-
tion of all of the time integrals allows one to see that each
term with A, )0 in it vanishes. This means that

P""(y,t', P)= g c""(t',P)W(y)P (y)
m=0

(45)

can be used for the initial-value probability distribution
for averaging over the initial position value y. In the un-
modulated situation, this distribution is time indepen-
dent, but not in this case in which the periodic modula-
tion, with fixed phase P, is applied forever. Thus there is

P dependence in P"" Neverth. eless, (39) and (40} enable
one to verify the Chapman-Kolmogorov identity which is
a consistency requirement for a Markov process.

For a Markov process, the position autocorrelation
function with respect to g is expressed [8,13] as

(x(t)x(t')) = f dx f dy x P(x, t;y, t', P)yP""(,t', P)

g c„(t,t', y, P)f" dx xW(x)P„(x)c""(t',P) f" dy yW(y)P (y),
n =Om =0

(46)

where the second equality follows from substitution of
(39) and (45) into the first.

We are interested in the results for small ao. By ex-
panding c„and c" to second order in a0, rather compli-
cated expressions are obtained. Nevertheless, a straight-
forward (albeit lengthy) calculation of the P average
makes the process stationary. This provides
[( (tx) (tx'))], which only depends on t —t', and the
Fourier transform of which contains 5(co—0). The
coefticient AsR is found to be, to second order in ao,

(x )„=—f dx x WP„= f dx O'WP„
n n

d- . '
n Bx n

(48)

This identity does not depend on the explicit form of U,
only on the form of X in (7). Substitution of (48) into (47)
produces the general formula (13).

Define R (0), a generalization of the response function
introduced in [9],by

(49)

Therefore,

AsR= —ao~R (Q)~ (50)

wherein (x )„ is defined by (14). We find from (14) that Moreover, R (0) is the Fourier transform (at co=A) of
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—(dldt)K(t) where
oo

K(t)= —g exp( —A,„t)((x)„)
D „

(51)

This expression has a simple interpretation. Imagine that
there is no modulation, i.e., ao=0. Setting t'=0 and
ao =0 in (44) implies

DW ' W T, (x, O, D) = —1, (55)

equality k„k ~ X„+A,

Connections between the mean FPT (and higher FPT
moments) and DM, the D value for which A sR is max-
imum, are established as follows. Recall (36) and com-
pare it with the equation for the mean FPT to go from x
to 0, T, (x,O, D), which is [13]

asy
m m0

Doing the same in (40) implies

c„(t,O, y) = exp( —A,„t)P„(y) .

Equation (46) becomes

(52)

(53)

with boundary conditions T&(O, O, D) =0 (absorbing at 0)
and (8/Bx)T, ( —~,O, D) =0 (refiecting at —~ ). We will

work in the interval x H( —~,0]. The exact solution to
(55) is

(x (t)x (t') ) = g f dy y W(y) exp( —
A, „t)P„(y)

n=0

T, (x, O, D)=—f dy W '(y) f dz W(z) .
D x oo

An integral equation exactly equivalent to (36) is

(56)

X dxx8' x „x
exp( —

A,„t)((x)„)
n=0

(54)

P„(x)=P„(—1)— f dy W '(y) f dz W(z)P„(z)

(57)

Thus DK(t) is the position autocorrelation obtained in
the absence of external modulation.

That Asl is monotonically decreasing with increasing
0 can be seen from (13) by differentiation with respect to
0, summand by summand, and application of the in-

for x (0 and P„(x)=—P„(—x) for x )0 if n is odd. [In
(13) we only need expressions for the odd-parity states be-
cause of the ubiquitous appearance of (x )„ factors. ]
Equation (57) may be iterated to obtain an implicit
infinite series solution to (36):

P„(x)=P„(—1) 1 — " f dy W '(y) f dz W(z)

+
D f dy W '(y) f dz W(z) f '

dy'W '(y') f dz'W(z')+ (58)

Similarly, the mean squared FPT, T2(x, O, D), satisfies the equation

DW ' W Tz(x, O, D) = —T&(x,O, D), (59)

with the same boundary conditions as for (55), and has the exact solution

Tz(x, O, D)= f dy W '(y) f dz W(z) f dy'W '(y') f dz'W(z') .
x oo Z oo

(60)

1 — f dy W '(y) f dz W(z)+ f dy W '(y) f dz W(z) f '
dy'W '(y') f dz'W(z')+ . =0 .

It is extremely important to notice the similarities and the differences (especially the integration limits) between (56) and
(58) and between (58) and (60). The desired connection follows from the property of odd-parity states that P„(0)=0 [6].
Imposing this on (58) produces the eigenvalue equation

D

(61)

The mots of this equation are the eigenvalues with odd
index n. When such a root is inserted into (58), the expli-
cit solution, for odd n, is obtained. By adroitly manipu-
lating the limits of integration, (61) can be rewritten
[using the shorthand T, = T, ( —1,0,D) and T2
= T2( —1,0,D) ] with the help of (56) and (60)

1 —T, A,„+(T,——,'Tz)A2+ =0 .

The two lowest roots are

T1 T2+ + ~ 0 ~

T T

(62)

(63)
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0:25

0.2

0. 1

0.0,&
—-I

is the reciprocal of the mean FPT. For 0=0. 1 and for D
in the vicinity of DM, the second term on the right-hand
side of (63) is not ignorable, although still small (see Fig.
2). Also note that Ti( —1, 1,D)= Ti ( —1,0,D)
+Ti(0, 1,D), but that Ti(0, 1,D)) Ti( —1,0,D), so
that Ti( —1, 1,D)=2Ti( —1,0,D) is only approximate.
This is shown in Fig. 3. While the difference between
Ti( —1, 1,D) and 2Ti( —1,0,D) is very small for the D
values explored in this paper, we have nevertheless used
T, ( —1, 1,D) in our assessment of (24).

It may appear that we have barely begun to evaluate all
of the A, „'s and P„'s needed in (13), but it turns out that it
is possible to find very good upper and lower bounds for
AsR that only depend on A, i and A, 3 and on P, (x) to the
second order as given by (58). These bounds follow from
the sum rule:

0.0 0.05 0. 1 0.15 0.2 0.25 0.3 (x ) = f dx f ™
dy xy&(x)5(y —x)

FIG. 2. The lower solid curve is the first-order approxima-
tion to (63) and the upper solid curve is the second-order ap-
proximation to (63) as functions of D E [0.01,0.3]. The dashed
curve is the Kramers formula.

= f dx f dyxyW(x) g W(y)P„(y)P„(x)
QO OO n=1

)„(y&„= y (& &„)'
n=1 n=1

T1
~3=

2
1 2

(64)

=((x ), )'+ y ((x )„)' .
n =3

We may write (2/mao ) 2 s~ in the form

(65)

These results are meaningful if the second term on the
right-hand side of (63) is small. For the D values ex-
plored in this paper, this is the case, and it serves to
confirm the rapid convergence of expression (58).

Several points need to be noted. For small enough D
(in practice D (0.1), the first term on the right-hand side
of (63) is an excellent approximation, and this is the basis
for the simple statement that the first nonzero eigenvalue

10.0

2
Asl —S1+S2,

ma0

where

- X'„(&x&„)' 1
- nX„(&x&„)'

(A, +n) Dg i (k„+n)

(66)

(67)

The sum rule is used to obtain the inequalities as follows:

6.0—

4.0

2.0—

1 &', (&x &, )' 1
" ~'„(&x &„)'

Si =— +-
(A, , +0 ) D „=3 (A,„+0 )

A, ,((x ), ) +— 1—
D (X', +n')

+—[(x')—((x ),)']
A, ,((x ), )

D (X'+n')

(&x &„)'
D „~ (X'+n') (68)

I I

/

I I I I

f

I I I I

/

I I ! I

j
I I !

0.0 0.05 0.1 0.15 0.2 0.25 0.3
D

FIG. 3. The lower curve is log, o[T, ( —1,0,D)] and the upper
curve is log, o[T, (0, 1,D}]as functions of D C [0.01,0.3].

Hence

Since

(69)
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we also get

3+

(( &„)'

„~, (X'„+Q') X', +Q' „,
(70)

Because A,„Q~
—,
'

( A,„+Q ), we obtain

QAi((x &i) 1 QAi((x &i)2
S (

(X'+Q') ' D (X'+Q')

+ f( '& —(( &, )'] . (72)

D (A. , +Q ) D (A2s+Q2)

(71) Therefore, we get the bounds

I

A,2i((x &, )'

D (A, , +Q )

A, ,((x &, ) A, , (2A, , +Q)((x &, )

(Ai+Q )
(73)

The upper bound involves only X, and P, whereas the
lower bound also requires A,3. These facts enormously
simplify our numerical work.

III. NUMERICAL RESULTS

dDsr(Q)
dA,

(74)

14.0

Figure 4 shows plots of the upper and lower bounds for
(2/irao)AsR for Q=0. 1 and DH f0.01,0.3]. Figure 5

shows the same for f4=0.01. For 0=0.01, note how
much larger the AsR value is at D~. For 6=0.1, the
agreement with Jung and Hanggi is excellent. In Table I,
the D~ values for QK 0f. 0 01,0. 1] are presented. We
note that

Also in Table I are the Dz(Q) values determined by (23).
The difference between D~ and Dz is relatively small,
lending credence to (24). However, the exponential
dependence of T, (

—1, 1,D) on D, suggested by the Kra-
mers formula for A, i and by Ti —1/A, i, leads to
much larger differences between T, ( —1, 1,DM ) and
Ti( —1, 1,Dz )=sr/Q. Thus (24) is not true for arbitrary
Q. This is shown in Table II.

The procedure used to calculate the results just
presented was to use (i) (56) and (60) to numerically com-
pute T, and T2, (ii) (63) and (64) to compute A, , and A, s, or
by directly finding the roots to (62) expanded to second
order; (iii) (58) to compute P,(x), using A,„=A.i from (ii);
(iv) (14) to obtain (x &,; and (v) (73) to yield AsR upper
and lower bounds. We found that Pi was very well ap-
proximated by the double integral in (58) and that in-
clusion of the fourth-order integral only made very small

12.0— 100.0

00.0

O. o
CO

cd

6.0

4.0

h0. 0

c5

40 0

00 ~ I I
f

I I I I

f

I I I I
f

I I I I

f

I I I I

f
I I I T

00 005 01 015 02 025 03
D

FIG. 4. The solid curves are the upper and lower bounds {73)
for (2/mao)Asa for 0=0. 1 and DR[0.01,0.3]. The dashed
curve is simply the n = 1 term in {13).

20.0

0.0 +I I I I

[

I I I I I I I~) I I I I

f

I I I

00 005 0 1 0 15 02 025 03
D

FIG. 5. Same as in Fig. 4, except that Q =0.01.
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TABLE I. The first column is the frequency 0, the second
column is the DM value determined from the upper bound in
(73), the third column is the DM determined from the lower
bound, the fourth column is the D& determined by (23), and the
fifth column is the DM value determined from the Kramers con-
dition (26).

terms in (13) and (73). The leading term in both the
upper and lower AsR bounds

&', (& &, )'
A sR

——ao (75)
D (A, +0)

DM D
does vanish for vanishing D. This is evident from the
Kramers formula so that

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090
0.100

0.047
0.053
0.057
0.060
0.063
0.066
0.068
0.070
0.072
0.074
0.089
0.100
0.109
0.117
0.125
0.132
0.139
0.145
0.151

0.047
0.053
0.057
0.061
0.064
0.066
0.069
0.071
0.073
0.075
0.090
0.101
0.111
0.119
0.127
0.134
0.141
0.148
0.154

0.0385
0.0432
0.0466
0.0493
0.0516
0.0537
0.0556
0.0573
0.0590
0.0605
0.0734
0.0838
0.0933
0.1023
0.1110
0.1195
0.1279
0.1363
0.1447

0.0465
0.0526
0.0568
0.0602
0.0632
0.0657
0.0681
0.0702
0.0722
0.0741
0.0888
0.0998
0.1091
0.1171
0.1244
0.1310
0.1370
0.1427
0.1479

changes. We also tested our numerical integration of (56)
against a stochastic simulation [10] and found better than
1% agreement.

For very small D, AsR does not vanish. This fact, ob-
served in [8,9], and explained with a phenomenological
argument, is, for us, a systematic consequence of the A, 3

TABLE II. The first column is the frequency 0, the second
column is T, ( —1, 1,D) determined from the second column of
Table I, the third column is T&( —1, 1,D) determined from the
third column of Table I, and the fourth column is simply the
right-hand side of (23).

22~1 1
»m A sR

—ao D' 0'

1
P

D2 (76)

1.0

However, near the maximum, at DM, (75) is a very good
approximation for determining DM because the two
bounds on Asa are so close together (see Figs. 4 and 5).
If we use (75) together with the Kramers formula for A,„
then we obtain (see below) the "Kramers condition" for
D~, already given in (26). Also shown in Table I is the
DM value determined by the Kramers condition (26).
The agreement is remarkable, especially for small D, i.e.,
D ~ 0. 1 (this is the region defined by 0 ~ 0.03).

The qualitative features overall, and the quantitative
features of the maximum associated with A sR at
D =DM, are modeled very well by the simple expression
(75), especially so for 0~0.03. By comparing (75) with
(16), an appreciation for the dynamical basis for stochas-
tic resonance can be reached. Two factors are important:
(i) the properties of A, , and (ii) the properties of & x &, .

For the parabolic potential, X,=k. The conditional
probability distribution P(x, t;y, t, P) relaxes with the
time scales 1/A, „=1/n k, the slowest of which is associat-
ed with k, . There is no sharp separation of time scales
between the faster ones and the slowest one. There is no
D dependence in A, 1. The distribution settles down to a
small-amplitude oscillation about the parabolic
minimum. For the double-well potential, the asymptotic
time distribution describes small-amplitude oscillations
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0.010
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0.040
0.050
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554. 1
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352.3
268.7
226.0
203.1

183.7
167.1
152.8
88.88
66.27
54.43
46.83
41.03
37.01
33.69
31.30
29.22

T, ( —1, 1,DM )

996.3
554. 1

402.0
304.6
253.2
226.0
193.0
175.1
159.7
146.3
86.29
64.73
52.32
45.24
39.80
36.00
32.85
30.22
28.28

Tl( 1 1 Dg )

3141.6
1570.8
1047.2
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523.60
448.80
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31.416
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FIG. 6. The dashed curve is (x~) and the solid curve is

( (x ),), as functions of D.
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about a bimodal distribution with equal densities concen-
trated at +1 and —1. The relaxation to this asymptotic
state requires equilibration between the two probability
maxima, which takes place on the time scale given by
T, ( —1, 1,D) since hopping between potential minima is
required. For small D, this is nearly the same as 2/A, „as
we have already seen, and 1,, = (&—2/tt) exp[ —1/4D].
Thus there is a sharp separation of time scales, since
A, , ((A,„ for n )2 [6]. These facts bring T, (

—1, 1,D) into
the picture.

The differences between the two cases is also marked
for (x )&. For the parabolic potential, the maximum
probability density is located around x =0. Consequent-
ly, (x )

&
vanishes as D ~0, since the probability density

approaches a Dirac 5 function around x =0. In fact,
(x ),~0 as D ~0, as given by (15) so that there is an ex-
act cancellation of D and A, factors in AsR [see (16)]. For
the double-well potential, however, the probability densi-
ty is concentrated around both + 1 and —1 equally, and
in the limit D~O, (x ),~1. This is shown in Fig. 6.
The overall factor A, , /D is retained for 0(0.03 (i.e.,

7T 2 1 ~12

asR ——ao'
2 'D2 (A2+A2)

(77)

When the Kramers formula for A,
&

is used, differentiation
of this approximation with respect to D yields (26), the
Kramers condition for DM.
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D~0) rather than perfectly canceling with ((x ) &), as it
does for the parabolic potential.

These differences exhibit the importance of the role of
(x )

&
in the difFerences in the AsR's for the parabolic and

double-well potentials. They show that for Q(0.03 the
value of DM is very accurately determined by the approx-
imation to 3sR, which is excellent for determining D~:
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