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We present in this paper a systematic nonperturbative cluster-cumulant method for deriving thermal
averages of operators in quantum many-body systems. The method combines the advantages of the cu-
mulant expansion scheme of thermodynamic perturbation theory, the approach of thermofield dynamics
as a finite-temperature field theory, and the time-dependent coupled-cluster theory extended to "imagi-
nary time. " We have generalized the concepts of cumulants in a nonperturbative manner and have po-
sited on the statistical operator an exponential-like ansatz containing connected, size-extensive operators
in the exponent. These latter cumulantlike operators have been termed "cluster cumulants" by us. For
a compact treatment, we have derived an alternative thermal field theory in which a time-ordered prod-
uct is expanded in terms of "thermal normal products" of operators and thermal contractions —leading
to a "thermal Wick's theorem. " The thermal normal products are the finite-temperature analogs of the
ordinary normal products and have zero thermal averages. Operators in these products commute (an-
ticommute) under permutations for bosons (fermions). This thermal representation is shown to be uni-
tarily related to the traditional thermofield dynamics formulation, but has the advantage of using only
the physical variables. The imaginary-time evolution of the statistical operator is treated by our recently
formulated time-dependent cluster-cumulant theory. The partition function is evaluated as an exponen-
tial of a connected quantity. As an illustrative example, we have computed the partition function of an
anharmonic oscillator with equally weighted cubic and quartic perturbation for a wide range of cou-
pling, extending to the strongly nonperturbative regime. We study the behavior of free energy in the
low-temperature limit and verify numerically the validity of the Kohn-Luttinger theorem [Phys. Rev.
118, 41 (1960)] for this system. We also show that our formalism is a natural nonperturbative analog of
the thermodynamic perturbative theory by showing that a perturbative solution of the thermal-cluster-
cumulant equations generates a variation of the Bloch—Balian —de Dominicis theory.

PACS number(s) 05 30.—d 03.65.Ge

I. INTRODUCTION

The problem of systematically computing equilibrium
thermal averages of quantum-mechanical observables has
always remained a formidable challenge ever since the in-
ception of quantum statistical mechanics. For interact-
ing many-particle systems, there are two interrelated lev-
els of complexity: (i) discerning the hierarchy of a scheme
for systematic inclusion of the subset of interactions of
gradually diminishing importance and (ii) development of
a compact method of performing the thermal average
(i.e., the Boltzmann trace) of the set of terms generated in
the process (i) above. Most of the earlier developments
were based on a perturbative construction, using the ap-
paratus of field theory at finite temperature [1—3].
Several independent formulations were put forward, for
example, of computing the grand partition function of a
system of bosons or fermions or both, starting with the
"equation of motion" of the statistical operator
e ~' " ' [2,3]. The relationship between them is far
from trivial, and there is vast literature in this subject.
We mention a few selected references, viz. , of Bloch, Bali-
an, and deDominicis [4—6], following the earlier leads by
Lee and Yang [7] and Montroll and Ward [8]. Although
widely used, the perturbation method has two obvious

limitations: it behaves poorly in the strongly correlated
regime and it offers no systematic method of selectively
summing important classes of terms (or diagrams, in the
diagrammatic formulation) to all orders. Variational for-
mulations have been suggested from time to time to
bypass this difficulty [9]. In another line of development
the method of thermal Careen's functions was developed
by Bloch [4], Matsubara [10], and Thouless [11]and has
been extensively used since by many workers [1—3] in
many different contexts. There are also the cumulant
methods [12,13] and the imaginary-time convolution
methods [14,15] which had been mainly invoked to study
the micro-macro correspondence and the high-
temperature limits, and for simulating classical baths.
The path-integral methods have been exploited [16,17] by
computing partition function, inspired by the earlier
works of Feynman [18]. More recently, there has
emerged the methodology of the thermofield dynamics
[19—21]. Most of these methods exploit in one form or
another the striking similarity of the time-evolution
operator and the statistical operator and replace the
thermal trace by either an integration over a suitable
measure [16,17] or a true quantum-mechanical expecta-
tion value in an expanded Fock space [19—21]. The rela-
tion between the Matsubara formalism and that of
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thermofield dynamics has been explored, too [22,23].
While both the path-integral formalism [16—18] and

the approach of thermofield dynamics [20,21] provide
general methodologies of finite-temperature field theory,
their use hitherto has been rather limited in practical ap-
plications. The path-integral formalisms were mostly
confined to variational approximations with perturbative
corrections; no systematic nonperturbative avenues seem
to have been explored. The methods of thermofield dy-
namics can go beyond the perturbative regime exploiting
the selective summation techniques of the Feynman-
Dyson strategy, but their use for systems with many de-
grees of freedom is rather complicated owing to the so-
called "doubling" of the degrees of freedom.

We develop and illustrate in this paper an alternative
nonperturbative approach for systematically computing
thermal averages. The method combines the advantages
of the earlier thermodynamic perturbation theory [4—6],
the more recent formalism of the thermofield dynamics
[20,21], and the nonperturbative coupled-cluster theory
for treating time evolutions [24—26]. Inspired by the
perturbative ideas of a cumulantlike expansion of the sta-
tistical operator exp( I3H), we —propose a nonperturba
tive cumulant expansion involving connected cluster
operators (to be henceforth called "cluster cumulants").
On the other hand, in close analogy with the method of
thermofield dynamics, we shall interpret the process of
evaluating the Boltzmann trace as computing expectation
values by invoking the apparatus of field theory. Howev-
er, unlike in the traditional formulation of thermofield
dynamics, we shall work with the physical variables only
and thus shall not invoke "doubling" [19—22] of the de-
grees of freedom. For a convenient, eScient, and com-
pact formulation of our development, we shall find it use-
ful to introduce a "thermal normal ordering" of the
operators, associated with "thermal contractions" and
generate a "thermal Wick's theorem. "

Our finite-temperature field theory can be utilized in
two distinct physical situations: (a) the real-time prob-
lems involving systems in contact with a bath or trans-
port in a nonequilibrium steady state, and (b) the
imaginary-time problems as required in treating equilibri-
um thermal properties. It is thus quite general in its
scope. In the present paper, however, we shall concen-
trate only on the purely imaginary-time evolution of the
statistical operator, leading to the partition function.
Generation of the cluster cumulants in the statistical
operator will be achieved by extending our recently for-
mulated time-dependent coupled-cluster method
[24—26], generalized to "imaginary time".

In our cluster-cumulant formulation, we shall partition

our Hamiltonian into a one-body unperturbed component
and a perturbation and write a cluster expansion of
Z/Zo, with Z and Zo as the exact and unperturbed parti-
tion functions, respectively. Z/Zo will be written as a
thermal trace of a reduced statistical operator, written in
a cluster expansion. If we can introduce a thermally
normal-ordered product of operators such that their
thermal trace is zero, then computation of the thermal
trace of the reduced statistical operator can be con-
veniently performed if we write the cluster expansion in
terms of thermally normal-ordered products: only the
number component of the operator will survive while tak-
ing the trace to get Z/Zo. The thermal Wick's theorem,
to be employed by us, will facilitate precisely such an ex-
pansion.

This paper is organized as follows. In Sec. II we shall
develop the apparatus of thermal Wick expansion and
study the properties of the products of operators in
thermal normal order. In Sec. III, we shall formulate our
nonperturbative cluster-cumulant method and establish
the necessary working equations. In Sec. IV, we shall an-
alyze the structure of the perturbative theory generated
by the perturbative expansion of our nonperturbative
cluster-cumulant operators in the partition function and
show the natural emergence of one version of the
Bloch —Balian —deDominicis thermodynamic perturba-
tion theory [4,5]. In Sec. V, we shall apply our formalism
to compute the partition function of an anharmonic oscil-
lator with equally weighted cubic and quartic perturba-
tion for a wide range of the coupling constant. We sha11

also introduce there suitable diagrammatic techniques for
generating the working equations and discuss the atten-
dant diagrammatic rules. With our numerical illustra-
tion, we shall show numerically that the free energy ap-
proaches ground-state energy in the zero-temperature
limit, i.e., we verify the validity of the Kohn-Luttinger
theorem for this system. Section VI contains concluding
remarks.

II. NOTION OF THERMAL NORMAL ORDERING
AND THERMAL WICK EXPANSION

A. Motivation

Bloch and de Dominicis [4], Matsubara [10],as well as
Thouless [11]showed that the thermal average of a string
of products of creation-annihilation Bose and Fermi
operators of an interacting system under the time order-
ing can be expressed in terms of a sum of products of
"unperturbed" thermal averages of pairs containing one
creation and one annihilation operator:

(( [Al("(r, ) Al' '(rz) . )) =Tre ' T[AI"'( )ArI' '(rz) . ]/Zo

+(—1) '[TrT[e ' "
A "(r, )AP'(r, )]/Z ]

a11 pairs
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—P(HO —PN )
where Zo= Tre ' is the "unperturbed" grand
partition function with the chemical potential p. Ho is
the unperturbed single-particle diagonal Hamiltonian

(2.1), with the relation obeyed by the stochastic average
of a product of Gaussian stochastic variables Ix,. ] with
zero mean:

Ho=pe, [ata, ] . (2.2)
&x;x . . x„)= g Q&x;x ). (2.5)

The sum in Eq. (2.2) runs over all the Bose and Fermi or-
bitals. X is the number operator for the system. The
operators Al"(r), etc. , are creation annihilation opera-
tors in the "interaction picture" involving either imagi-
nary time,

A '( )=e O'A "e (2.3)

or just operators in the conventional interaction picture,

A "( )=e ' A "e (2.4)

B. Matsubara contractions interpreted as averages
of Gaussian stochastic variables

and T orders the operators in increasing order of ~ from
right to left. There are no phase contributions in Eq.
(2.1) for bosons, while for fermions the phase (

—1) ' will
appear for anticommuting the operators g; times to
bring Al'(r, ) and Al~'(r ) together in the thermal aver-
age of AI" and AI '. Unlike the ordinary Wick's
theorem, which is an operator identity, the Bloch —de
Dominicis —Matsubara theorem, Eq. (2.1), is an equation,
which is derived by utilizing the property of the invari-
ance under the cyclical permutation of operators in a
trace and the fact that Eq. (2.3) or (2.4) generates an
Al"(r) as a simple multiple of A", via Eq. (2.2). Equa-
tion (2.1) is strikingly similar to the Wick reduction for-
mula of the vacuum expectation value of a string of
operators under time ordering. The pair averages
« T[ AI(r; ) A;(r& )] )) can be naturally identified here as
"thermal contractions. " We shall henceforth refer to
them as Matsubara contractions. The question is: can
we find out an expansion of a T-ordered product in terms
of some suitably defined "normal-ordered" product of
operators and products of thermal averages? The
thermal normal-ordered products should have the prop-
erty that their thermal averages are zero and also there is
commutability (or anticommutability) of the associated
Bose (or Fe."ni) variables under this normal ordering. In
that case, we may envision that the thermal average of
the T-ordered product would naturally reduce to the
Matsubara formula, Eq. (2.1), on taking the trace. This
type of expansion, if it exists, will afford us a compact
algebraic form with which to compute selective summa-
tions and similar manipulations which have been found
to be useful in the analogous zero-temperature formal-
isms. In particular, since the time differentiation of the
thermally normal-ordered operators should be rather
easy; this type of expansion will allow us to generate non-
perturbative cumulant expansions involving thermally
normal-ordered operators. As we shall illustrate below,
there is indeed a unique and natural thermally normal-
ordered expansion.

product
of pairs

Although not widely known, for such variables it is
possible to define the so-called Wick powers

nl n2 nI
I x, 'x 2' . xk" ] uniquely [27] as symmetric functions of
x&,x2, . . . , such that their stochastic averages are zero.
The expansion expressing an ordinary monomial

nl n2 nk ~

x 'x ' - xk' in terms of Wick powers may then be in-

terpreted as an identity closely analogous to Wick's
theorem. This suggests strongly the possibility of ex-
pressing the time-ordered products of operators in Eq.
(2.1) in terms of analogous Wick powers —by interpret-
ing the operators A "(r; ) as Gaussian stochastic vari-
ables and introducing appropriate generalizations of the
Wick powers for quantum operators. There are nontrivi-
al differences, of course, between the variables x; and
operators A '. (i) the variables Al]'(r) are noncommuting
Bose or Fermi operators and are not c numbers; (ii) there
is a time ordering in the definition of averages; (iii) there

are phase factors ( —1) ' for the fermion variables. As
we show below, despite these differences, it is possible to
look upon the operators A as Gaussian stochastic vari-
ables: The T ordering makes the operators Al"(r) com-
mute under the T-ordered symbol (except for a sign); they
thus behave either as commuting variables (for bosons) or
as Grassmann variables [2,28] (for fermions).

By invoking certain auxiliary Grassmann numbers

[28], it is possible to map the T-ordered products of fer-
mion operators to a set of corresponding boson operators.
Let us suppose that we replace the ferrnion variables
A~(r; ) by a product BI(r; )y;, where BI is a boson vari-
able and y; is a member from a set of even number of
Grassmann numbers. Similarly, AI" gets replaced by
BI]']ty,*. The operator I BI J and the numbers I yj I are as-
sumed to commute. With this replacement, the phase

g;, entering the T-ordered products involving the permu-
tation of the Fermi operators AI" and AI ' will be au-

tomatically taken care of by the Grassmann numbers y;
and y . This follows in a straightforward manner from
the anticommuting nature of the Grassmann numbers

~]2 I T[ AI (+] ) AI (+2) ] } y2r ]T[BI ( r2)BI (+1)]

y]y2T [Bt (r])B—
= —T[AI"(r )A (rq)],

(2.6)

We begin our discussion by noting that there is a close
algebraic similarity between the Matsubara formula, Eq.

where P,2 is the permutation operator.
Using Eq. (2.6), it is possible to replace all the fermion
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variables by the corresponding boson variables and keep
track of the order of appearance of the Grassmann num-
bers appearing in front of the time ordering, as in Eq.
(2.6). Any theorem proved for the T-ordered product of
Bose variables BI can be finally mapped back to the cor-
responding Fermi variables by multiplying them with the
associated Grassmann numbers. As an example, we veri-
fy that since

(( T[8"(;)8,'"(, ) ] » = « T[8,"'(,)8,"(;) ] »,
the antisymmetry under permutation of the Matsubara
contraction involving Fermi operators Ar"(r; ) and
Ar'r'(rr ) easily follows:

((T[Ar"(r, ) A,' '(rj)]» =y, y, « T[Br"(r, )Br' '(r, )] »
= —y, y, &(T[8,' '(r, )Br"(r, )]»
= —(( T[ A "'(r ) A "(;) ] » .

(2.7)

Let us assume, then, that we have replaced each fer-
mion variable by a product of boson variable and the as-
sociated Grassmann number, and henceforth we would
be working with an expression containing Al s of the
original boson variables and Br"(r)'s for the new boson
variables replacing the Fermi variables as discussed
above. No phase factors appear then in the thermal aver-
age of these latter products:

((T[A'"(,)A' '( )
. 8"( )8"'( ) . »= g Q((T[A' '( )A,'"(,)]»((T[8,"'(;)8,"'(,)]» .

all pairs

(2.8)

Equation (2.5) is restored by multiplying Eq. (2.8) by the appropriate product of Grassmann numbers y'yr . , appear-
ing in the order of appearance of the operators BI',BI~'. . . .

Since Eq. (2.8) satisfies all the properties of stochastic averages of Gaussian stochastic commuting variables, Eq. (2.5),
we may introduce the "thermal normal-ordered" product { . Ar("(i). . .Br(j)(j ). . . ]p of the above variables which

should satisfy, in close analogy with the property of Wick s power [27), the following desirable properties:

( ) {A(i).. . 8(j). . . ) —P(A(i). . . 8(j). . .I I )P h I I fP

where P is any permutation;

(11) « {A"' 8'j'
] »=0

(2.9)

(2.10)

(iii) The relation of the above normal product with the T-ordered product should not depend in any special way on the
total number of variables and should be a manifestly symmetric function of all the variables, compatible with Eq. (2.9).

The only sensible choice for {Cr(rl )Dr(&2) I p for two arbitrary Bose operators Cr(r) ) and Dr(r2) (which may be Ar
or Br ) is the followmg:

{C,(,)D,(,)] =T[C,(,)D,(,)]—« T[c,(,)D,(,)] »

=T[cr(r))Dr(rz)] [CI(71)DI('r2)]p &
(2.11)

where the overbar is an alternative notation for the Matsubara contraction. For three operators CI,DI, and EI, we can
construct the normal-ordered product in terms of symmetrized products of operators, viz. , from T-ordered product of
three operators and { ]p products of two operators, keeping the manifest symmetry of all the variables. Thus we define

{CI (r i )DI ( r2 )EI( r3 ) ]p: {CIDIEI ]p
=c1 T[CIDIEI ]+C2 {CIDI ]pEI+ C3 {Cr EI ]pD1+ C4 CI {DIEI ] p . (2.12)

Since we want the functional definition of { ] p to be independent of number of variables, Eq. (2.12) should reduce to
the definition (2.11) if one of the variables in Eq. (2. 12) is deleted. Thus, for example, if we delete Cr, we get

{DrEr ]p=ci T[DrEr ]+C4 {DrEr ] p

showing that C, = —C„=1, from Eq. (2.11). From symmetry, it then follows that

{CrDrEr] p= T[crDrEr] {CrDrEr] p {CrDrEr]p {CrDrEr ]p

where {CrDrEr ]p are symbols for [CrEr ]pDr. It may be easily verified that

(( {C,D,E, ]p» =0

which is consistent with Eq. (2.6).
For four variables, we should likewise have

{CrDrErFr ]p= Co T[crDrErFr ]+(Ci [CrDr ErFr ]+(other similar terms)

+ (C2 [CrDrErFr ]+(other similar terms) .

(2.13)

(2.14)

(2.15)

(2.16)

Deleting any one of the variables should lead to Eq. (2.14), thereby showing Co= 1, and Ci and similar coefficients
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= —1. By demanding the expectation value (( I CzDzEzFz ) p)) to vanish, and using Eq. (2.8) for (( T[CzDzEzFz] )), it
follows that C2 and other similar coe%cients are also —1. Proceeding upwards, it then generally follows that

I Cr"'(r, )C' '(r~ . . Cz'(r; ) . . Cr '(~, )Jp.=T[Cr'"(r, ) . . ]

—IC'(r ) ~ C"(r ) Cz(. )]

—
[ Czi(~, ). . C,"(~, )C,'"'(r, )C,"'(~, )C,'"(r, ). .

Ip
—(all possible contractions) . (2.17)

We should note that with our "overbar" notation for contraction, only the two operators appearing on the extreme
sides under the overbar are really contracted. Other operators in between are not contracted at all. If we now multiply
Eq. (2.17) by the appropriate Grassmann numbers, to convert the Bz operators to the parent Fermi operators, then we
have our stipulated "thermal normal product" expression of a T-ordered product:

T[A'"(r, )A' '(~ ) . . A "(r ) A' '(r ) . ]=[A'"(v, )A' '(r ) . A "(r;) . A' '(r ) . .
]p

+[[A"'(r ) . A "(r ) . A'z'(r ) ] + . . ]

+ (double contractions ) + ( triple contractions ) +
For fermions, using the anticommuting nature of the Grassmann numbers, we have the definition

I A"'(r ) . A "(r ) Ar'z'(~ ) Jp=( —1) "[Ar"(~, )Ar'z'(r )]pl Ar'"(~, )

(2.18)

(2.19)

where ( —1) "is the phase of the permutation needed to bring Az" and Ariz' side by side and on the place indicated and
the term in angular brackets on the right r ''sses Ar" and Ariz'. Equation (2.18) is obviously consistent with Eq. (2.7) by
construction.

We c;n also verify that a generalized Wick expansion also holds good:

T[ICrDr '
I p[FrGz ' ' l]= ICrDz ' FrGz '

]p

+(all possible contractions between the operators from the first group

and those from the second group) . (2.20)

The expressions in Eq. (2.18) and (2.20) above will be our central building blocks in formulating the thermal-cluster-
cumulant expansion. We should note that, unlike the ordinary normal products, in the thermal normal ordering we do
not reorder the operators with destruction at the right. Also, we have generally nonzero Values for both [a, ,a z]p and
[a~ra,tz]. The values of the contractions are

n; for '7) P 72
a[~[(ri)aJz(r2) =&zjexp[ez —p)(ri —r2)] && .

1+n; for ~, «2
(2.21a)

(2.2 lb)

n;=I/[e ' +1] . (2.22)

with upper (lower) signs for fermions (bosons). n,. 's are
the unperturbed occupation probabilities and are given
by

III. THE THERMAL-CLUSTER-CUMULANT
METHOD FOR THE STATISTICAL OPERATOR

Let us assume that the system Hamiltonian H has a
one-body unperturbed Hamiltonian Ho and a perturba-
tion V:

c; are the unperturbed energies of the system:
H=HO+ V (3.1)

Ho=+ e, a,ta, . (2.23)
The grand partition function Z for the system is

defined as

Moreover, by setting the variables ~&, . . . , ~„as ~„=0,
+n —1 ~& +n —2 2i. . . , and letting 5~0+, we may
derive —if desired —the thermal Wick expansion for
products of time-independent variables.

We should mention here that the notion of a thermal
normal product expansion was also explored by Balian
and Veneroni [29] who considered a recursive definition
of the thermally normal-ordered product.

Z =Tr exp[ —P(H —pX)], (3.2)

where p is the chemical potential of the system. The
analogous unperturbed partition function Zo is given by

Zo= Tr exp[ P(HO pN)] . — — (3.3)

Introducing the operator U —= U(P) as
exp[ P(H —pX)], we c—an write the "imaginary-time"
Heisenberg equation for U in the "interaction picture"
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[2] as Vz(r)=exp[~(HO p—N)]Vexp[ r—(H&& pN)] . (3.6)

where Ul and Vl are given by

(3.4)
Equation (3.4) leads to the following Feynman-Dyson ex-
pression for Ul(P):

Uz(f3= T exp J —Vz(r)dr
P

0

Ut(r) =exp[r(HO —pN ) ]exp[ r(H— pN—)], (3.5) This leads, via Eq. (3.5), to the expression for Z/Zo.

Z/Zo =Tr I exp[ /3(H—
O pN )

—] Ul(p) I /Tr exp[ /3(H—O pN )—], (3.8)

which we may compactly rewrite as

Z/ZD = « U, &&))&) =((T exp f &

—V~&~)dr])) (3.9)

Z /Zo =exp( —PC ) . (3.10)

and expanding C in order of Vl. By equating the nth-
order term of Z/Zo from Eq. (3.10) to the corresponding
term of Eq. (3.9), the nth-order cumulant C'"', may be
obtained. This procedure, in fact, forms the cornerstone
of the Kubo-Fox perturbative operator cumulant expan-
sion [12,13] and is also conceptually very close to the
Bloch —Balian —de Dominicis thermodynamic perturba-
tion theory [4—6]. Perturbative cumulants also appear
implicitly in many path-integral formulations [16,17].

In our formulation, too, we express ln(Z/Zo) as a con-
nected entity, which we want to evaluate in a nonpertur-
bative manner. If we expand the T-ordered product in
Eq. (3.9) using our thermal Wick's theorem expounded in
Sec. II [Eq. (2.18) and (2.20)], and regroup all the con-
nected operators together in an entity to be denoted as
Al(]&3), then by combinatoric reasoning Ul(P) can direct-
ly be written as a thermally normal-ordered exponential
of Al(/3):

Ut(» = [exp [ W, (P) ]]p . (3.11)

In the expansion, Eq. (3.11) above, the thermal normal
ordering prevents contractions between the various

using the definition of the thermal average.
If we expand the T-ordered exponential in Eq. (3.9) in

powers of perturbation, we will get then a perturbative
expansion of Z/Zo. The difficulty with such an expan-
sion is that, any truncated expression will lack the multi-
plicative separability of Z for an ensemble of weakly in-
teracting subsystems, and as a result, the logarithm of
Z —related to the free energy —will not be additively se-
parable. Such truncations thus violate the property of ex-
tensiuity of the computed extensive thermodynamic quan-
tities. In the many-body parlance, this feature is ex-
pressed as the appearance of disconnected terms in
ln(Z/Zo). Using the cumulant expansion [12,13], it is
possible to devise approximations which satisfy the addi-
tive separability of ln(Z/Zo), which implies the presence
of connected quantities only These. connected entities—
denoted as cumulants —can be generated by first writing

Az(P) operators in Ul(P). In what follows, we shall
derive the equations for determining the various com-
ponents of Al(/3).

Each of the components of Az(P) has a specific particle
rank dictated by the number of creation and annihilation
operators. Broadly speaking, these components may be
divided into two distinct categories. In one, we have "di-
agonal" operators in which there is no change in occu-
pancy before and after the scattering. They thus induce
scattering from any function to the same function. We
shall call such operators as "closed" from now on, and
shall denote then as Xl(/3). The rest of the operators are
nondiagonal in the sense that they scatter from one func-
tion to a diA'erent function, and induce at least one
change of occupancy after its action on a function. We
denote these operators as Sl(P) and call them as "exter-
nal. " The external operators are of excitation or deexci-
tation types, depending on whether they induce transi-
tions to higher-energy states or to lower-energy states.

We illustrate the above classification of the operators
by a specific example. Let us assume that we have a
Hamiltonian describing a bosonic system involving only
one type of boson (see, e.g. , our example application in
Sec. V). Denoting the creation and annihilation opera-
tors for the boson as b~ and b, the "closed operators"
Xl(/3) for the problem are of the

Xl(/3)= g [1/(n!) ] X(lp) ™b"b
n=0

—:g X„,(P),
n=0

(3.12a)

where each Xl(P) induces a diagonal scattering involving
no change in occupancy of the bosons. Similarly, the
"external" operators S&(/3) can be written as

S&(p)= g Sl '"(P)
m, n

mWn

= g [ I/(m!n! ) ]St '"(P)b ™b"
m, n

mWn

(3.12b)„&(p)
m, n

mWn

which induce changes in the occupancy. The m ) n type
of operators are excitation types, while the m (n type of



SYSTEMATIC NONPERTURBATIVE APPROACH FOR THERMAL. . . 3379

operators are deexcitation types. For more than one
single-particle states, there is an obvious generalization.

With the above classification in mind, let us write Eq.
(3.11) as

Ur(P) = {exp[ Wr(P) ]]~

= {exp[S,(P)+X, (P)]Jp . (3.13)

Bsz(r) BXz(~)+ exp[sr(r)+Xz(r)]
a~ 1 p

Our intention now is to derive differential equations for
Sz(r) and Xz(v'), which can be integrated to yield expres-
sions for Sr(P) and Xr(P).

Substituting Eq. (3.13) into Eq. (3.4), and utilizing the
fact that operators commute, apart from a possible phase
factor under thermal normal ordering, we derive

Equations (3.16) are the principal working equations of
our cluster-cumulant theory. The connectedness of the
right-hand side of the equations indicates that Sz(p) and
Xz(p) will be connected operators, justifying the term
"cluster cumulant" used to denote them. Any trunca-
tions of the right side of Eq. (3.16) would still preserue the
connectedness of the Sr and Xr. Since Z/Zo is the
thermal average of Ur, only the zero-body (number) com-
ponent of Uz will survive in Z/Zo, owing to the thermal
normal ordering present in the expression of UI, Eq.
(3.13); this in turn implies that only the zero body p-art of
the cluster-cumulant operators will contribute to Z/Zo.
This, of necessity, will be a closed operator, which we
may denote as XI. The advantage of thermal normal or-
dering is again evident, since otherwise we would have
had contractions from the operators SI and XI in Z/Zo.
Thus we have

= Vr(r) exp[Sr(r)+Xr(r) .

.P

(3.14) Z /Zo =exp(Xz ) . (3.17)

BXz(r)+ a. exp[sr(r)+Xz(r) ] .

. P

= {Vr(r){exp[sr(r)+Xz(r)]] {exp[sr(1 )

+Xz(r)]] ]tr,
(3.15)

The advantage of using a thermal normal-ordered an-
satz for UI is evident, since we have a rather simple ex-
pression for the "time derivative" of UI. The Sl and XI
operators with boson variables commute with UI under

{ ]&, while for fermions there are always even number of
fermion variables in SI and XI and thus they again com-
mute with Uz under { ]&. Using again the generalized
thermal Wick's theorem [Eq. (2.20)] on the right side of
Eq. (3.14), we have

We can now generate all the thermodynamic quantities
from Eq. (3.17). In particular, the free energy of the en-
semble is given by

F=FO —Xz/p . (3.1g)

N=«NU, » /« U, »

=[«N(1+Xr")» exp(Xr ')]/[exp(Xr )]

The unperturbed free energy Fo is to be computed from
the knowledge of the unperturbed partition function.
Since Xr is a connected quantity [even when computed
via some truncated series of Eq. (3.16)], it follows that
5F=F—Fo is also a connected quantity and hence is an
extensive quantity. The chemical potential p should be
determined from the condition

= «N(1+Xr") » . (3.19)

where Vzexp(Sz+Xz) involves thermal contractions be-
tween Vl and various powers of SI and XI from the ex-
ponential, omitting contractions among SI and XI. Since
the various powers of SI and XI are Iinearly independent,
it follows that [24—26]

Bsz(r) = {Vrexp[Sr(r)+Xr(r)]]..87

BX (r) = {Vzexp[Sr{r)+Xr(r)]]
87

(3.16a)

(3.16b)

where we have equated the external and closed com-
ponents of {Vrexp(Sr+Xr )]& to —Bsz(r)/Br and
—BXz(r)/Br, respectively. In Eqs. (3.16), those operators
of the composite {Vzexp(sz+Xz)]& are external which
involve at least one change of occupancy. Similarly,
those operators of the composite {Vzexp(Sr+Xz)]tr are
closed which involve no change in occupancy. The sub-
scripts ex and cl, respectively, stand for the external and
closed components of an operator.

In Eq. (3.19) above, only the one-body component of
the diagonal operator Xz"' can contribute to «NUz »,
and only the zero-body component Xl ' can contribute to
« Ur ». From the value of the observed average particle
number X, p can be found out by a self-consistent solu-
tion of the set of equations (3.16) and (3.19).

Since there are both exponentially growing and decay-
ing terms in Ur, a direct solution of Eq. (3.16) might en-
tail potential "stiffness" and hence numerical instability.
To obviate this, it seems better (unlike the real-time
theories) to revert to the "Schrodinger picture, " and
solve the corresponding cluster operators S(r) and X(r),
defined as

S(r) =exp[ —r(HO —pN)]Sr(r)exp[r(HD pN)], —

(3.20a)

X(r)=exp[ r(H0 pN ) ]Xz(r)e—xp[r(H—O pN ) ] . —

(3.20b)
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The cluster-cumulant equations for S(r) and X(r) are
given by

as(r) = [Ho pN—S(r) S(—r) [Ho pN—]

occupation probabilities n; [e.g. , Eq. (2.21)], this mode of
solution would entail a power-series expansion of Sr and

Xr in terms of Vr and unperturbed occupation probabili-
ties.

At the first order, we have

+ [ V exp(S+X) },„,
ax(r) = [Ho pN ]x——x [Ho pN—

)

(3.2 la)
a"'s, (7 )

a"'x, (r) =
[ Vl(r)},( .

07

(4.1)

(4.2)

+ [ V exp(S +X)},i . (3.21b)
At second order, likewise, we have

In our numerical applications, we shall solve for S(r) and
X(r) first from Eq. (3.21), then go over to Sl(r) and Xl(r)
via the inverse transforms of Eq. (3.20) and finally com-
pute Z/Zo from Eq. (3.17). We should mention that Al-
tenbokum et al. [30] had suggested earlier a coupled-
cluster approach for thermal averages, which requires the
knowledge of the eigenspectra of H, and is thus structur-
ally very different from our more direct formulation.

We conclude this section by emphasizing that the
thermal field theory developed by us in Secs. II and III
never explicitly used the concept of a thermal vacuum
nor introduced auxiliary variables [19—22] for comput-
ing the thermal averages. The thermal Wick's theorem
derived bp us requires only the knowledge of contractions
like [ A I"Alt'J']& and [ A I+'I' A I']&. While this is
sufficient for developing the thermal-cluster-cumulant
theory, one may envisage another possible realization of
the thermal field theory where there is an explicit appear-
ance of a thermal vacuum and of normal ordering in the
traditional sense. We have shown in Appendix A, there
is indeed such an alternative representation which is re-
lated to the traditional formulation of thermofield dy-
namics [18—20].

IV. PERTURBATIVE SOLUTION
OF THERMAL-CLUSTER-CUMULANT EQUATIONS:

EMERGENCE OF A VARIANT
OF BLOCH —BALIAN —de DOMINICIS

PERTURBATION THEORY

In this section, we shall indicate a way to generate a
perturbative solution of our cluster-cumulant equations.
The resulting equations are the analogs of one of the vari-
ants of the perturbative cumulant results of Bloch, Bali-
an, and de Dominicis [4,5], which defines a perturbative
series for the free energy as powers of Vr and the unper-
turbed occupation probabilities n, [see, e.g. , Eq. (2.22)].
We shall illustrate our perturbative approach in Sec. V by
taking as a concrete example the case of the anharmonic
oscillator.

To effect the perturbative construction, it is more con-
venient to start with the thermal-cluster-cumulant equa-
tions in the interaction picture, and expand the cluster
cumulants Sr and Xr in orders of perturbation. This
leads to a perturbative solution for Sr and Xr at order n,

Sr and Xr starting from solutions for Sr and Xr at
lower orders. Since the relevant contractions involved in
the cluster-cumulant equations refer to the unperturbed

a"'s, (&) = [ Vl(r)"'Sl(r) },„
B7

+ [ V,(r)"'X,(r) },„
a'"x, (r) =[VI( )'"sI( )},i

(4.3)

+ [ VI(r)"'XI(r) },) . (4.4)

"'Sl(&)= —f [~r(&I )].d&s
0

= —f [e ' 'V],„dr, , (4.5)

Liouvillian Superoperator:thewhere Lo
Lo V—:[Ho, V].

Substituting this value in Eq. (4.4), we find

1s

0

X(p)=f e O' Vdrif e O2V
0 0

= f e ' '(Lo ')[V(e o'1 —1)V] dr, , (4.6)
0

where the quantity [ ] indicates the zero-body (number)
component. This procedure can be repeated to generate
higher order ~"'XI's. In our perturbative solution, Sl(r)
and Xl(r) are obtained first as integrals with time in-

tegrations from 0 to r in Eqs. (4.3) and (4.4). XI(P)'s are
then obtained as integrals with time going from 0 to p.
At second order, we thus have two time integrations over
~& and ~2 with ~&) ~2. At higher order n, '"'Xr will in-
volve multiple integrals with limits

P ~ ri ~ rz ~ r3 r„.. ~ r„. In the literature, there ex-
ists several versions of the thermodynamic perturbation
theory involving series expansion in Vr and unperturbed
occupation probabilities, which differ in ways the time in-
tegrations are carried out. In some variants, the time in-
tegrations are integrated with restrictions such as ~, )~z,
etc. Our perturbative solution corresponds precisely to
such a development. There are other variants where the
time arguments are independently integrated from 0 to p;
the restrictions ~, & ~z are enforced via suitable Heavy-

Clearly, the contribution to Z/Zo comes only from the
zero-body component Xr, which has a nonvanishing con-
tribution starting at second order. This is because '"Xr,
from Eq. (4.2), involves the completely contracted com-
ponent of [ Vl(r) ],i, which is zero owing to the normal or-
de ngof V

Writing in long hand, we have, for '"Sr:
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side step functions [4,5]. This way of rewriting the ex-
pression under the integrals for the perturbative cumu-
lants is convenient to study the zero temperature, or the
Kohn-Luttinger limit. There are also related formula-
tions, where the integrations involving step functions are
performed using suitable contours in the complex time
plane —yielding formulas strikingly similar to the zero-
temperature stationary Briickner Goldstone theory.

Balian, Bloch, and de Dominicis [6] had formulated
another resummed version of the perturbative formula-
tion, which involves "perturbed" or exact occupation
probabilities. This is very useful for treating translation-
ally invariant systems. Our present cluster-cumulant for-
mulation does not naturally generate this perturbation
series. By introducing a suitable self-consistent one-
particle potential, we may, however, generate such a
resummed version. This will also be very useful in study-
ing the zero-temperature limit. We shall discuss the for-
mal aspects of the convergence of the stationary
coupled-cluster theory in the zero-temperature limit in a
forthcoming publication [31], using the resummed ver-
sion of the cluster-cumulant theory.

V. ILLUSTRATIVE APPLICATIONS:
THE ANHARMONIC OSCILLATOR WITH
CUBIC AND QUARTIC PERTURBATIONS

A. An optimal zeroth-order description:
The thermal Hartree function

We shall apply the thermal-cluster-cumulant method
to compute the partition function of an anharmonic oscil-
lator with a cubic-plus-quartic perturbation. The Hamil-
tonian for our problem is given by

H=a a+ —,'+2 ~ y(a +a) +k/4(a +a) . (5.1)

This has been used earlier for studying the eigenspectra
of anharmonic oscillators by coupled-cluster methods
[32,33]. The unperturbed frequency is taken as unity. In
our numerical application, we shall ultimately take y =A, .
This equally weighted cubic-plus-quartic perturbation
produces very asymmetric potentials as A, increases and
the spectra of H differ significantly from that of
H0=a a+ —, in the large-coupling regime. Since the en-1

tire spectrum of H contributes to Z, the anharmonic os-
cillator with an asymmetric perturbation should turn out
to be a stringent testing ground of our formalism. The
case of symmetric perturbations, such as quartic and sex-
tic terms in the potential, have been found to be some-

b=(1 —t ) '~ (a —ta s), —

b =(1—t )
'~ (a ta —s), —

(5.3a)

(5.3b)

where we restrict ourselves only to real parametrizations
of ~P&. We note that s and t are, respectively, related to
the shift and width parameter of the Gaussian.

For a finite-temperature application, there is no unique
way of choosing the optimal values of s and t. We may,
e.g. , in the spirit of the zero-temperature formalism,
choose them to minimize the ground-state expectation
value (P~H~P&/(P~P&. This leads to the so-called Har-
tree Gaussian function ~P& [32]. We propose to choose
instead a different starting point which is optimal in a cer-
tain sense in the finite-temperature formalism. We
demand that s and t should be chosen in such a way that
the unperturbed, i.e., mean-field, free energy is a
minimum. The minimizing equations show that the
G-aus sian function, thus determined, leads to the
minimum value for the thermally averaged energy ((H »
as well. We may thus call this Gaussian function as the
"thermal Hartree function. " We have found in the actual
numerical implementation that the thermal Hartree func-
tion is a much better starting point as compared to the
ordinary (zero-temperature) Hartree function—
particularly in the large coupling regime.

To determine the optimal s and t parameters, we first
rewrite H in terms of the boson variables b /b, and bring
it to the thermal normal order. The rearranged Hamil-
tonian is

what better behaved in the earlier numerical studies of
the partition function [17,34], presumably because the
unperturbed and the perturbed Hamiltonians have the
same symmetry. In contrast, the cubic-plus-quartic per-
turbation destroys the inversion of the system, exerting
greater demands on the theory.

Since we want to employ our formalism well into the
strongly nonperturbative regime, i.e., A, &)1, it is con-
venient to transform the unperturbed ground state ~0& of
HD to a shifted Gaussian with an altered width and fix
the shift as well as the width in some optimal manner.
We would then have the advantage of starting our com-
putation from a good zeroth-order description. To
achieve this, we induce a Bogoliubov transformation of
the boson variables a/a to generate another (shifted)
Gaussian function ~P& [32,33]:

~y&-exp(sa +-,'ta '~0& (5 2)

and introduce new boson operators b/b for which ~P & is
the vacuum. b and b are given by

H=((H»+Q[b b]&+ c0 [(Skco)co' +(3&2yco)co' +[ +co6A(2n +1)]co'+(3y/2&2)(2 +nI)] [bt+b]&
—(2') [co —(1+6+2yco'+24k, co' )co —6A, (2n + 1)] [ b + b

+ [[y/(2') ]+[4+2lco'/(2')3~ ]][bt3+b3+3bt b+3btb2]p

+ [g/(2co) ][bt +b +4bt b+4btb3+6bt~b2]

where

(5.4)
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II=(2') '[co +(1+6&2yco'+24Aco' )+(6A/co)(2n +1)],
((H )) = —,'+ [(I+co )/2']n + [(3yco'/v 2')+(6Aco' /co)](2n + 1)

(5.5a)

+(3A/co )n (n + I )+ (3A/4' )+(1—co) /4co+co' +2&2yco' +4k'' (5.5b)

and co and cu' are given by

co=(1 t)/—(1+t),
co'=s/(1 t) . —

(5.6a)

c)«H» Bn 1 c)So Bn

Bc@ c)co /3 Bn Bco

From the expression for So in Eq. (5.9), we find that

(5.12)

H, = «H )&+nfb'b], . (5.7)

In what follows, we shall take co and co' to be our varia-
tional parameters rather than s and t. Let us note that
the transformed Hamiltonian has a di6'erent frequency Q
in Eq. (5.4). In defining the thermal normal order, we
have assumed that the occupation probability n has the
value [exp(pQ) —1] '. Zo has been computed with this
new frequency, Q. Since this is a number nonconserving
Hamiltonian, p =0.

We take the new unperturbed Hamiltonian IIo to be
given by

1 aS,
p Bn

(5.13)

(5.14)

This condition is the same as minimizing the average
energy with respect to co. Equation (5.14) can be explicit-
ly written as

The minimization condition for Fo with respect to co then
reduces to

Zo for this Ho is given by

Z = Iexp[ —/3(«H » Qn )]/(e—xp(PQ) —1)][exp(PA)] .

co —(1+6+2yco'+24Aco' )co —6X(2n +1)=0 .

(5.15)

—= ((H » ——S,1
(5.9)

where So is the unperturbed entropy.
The minimizing condition of Fo with respect to co can

be written as

BFo

Bco

Fo ~Fo gn+ =0.
Bn

(5.10)

Now, ((H)) contains terms with various powers of n

stemming from the complete contractions of b /b opera-
tors entailed in ((H)). The quantity AIb b] in Ho
comes from those terms of H where one contraction
remains to be done to reach complete contraction. It
then follows that

a((H )&

Bn

Using Eq. (5.11), we find

(5.11)

(5.8)

From this Zo, we derive the expression for the unper-
turbed free energy Fo as

I'o = ——lnZo =—((H ))+—[n inn —(n +1)ln(n +1)]1 1

It then follows that So in Eq. (5.9) is a function only of
co. Minimizing Fo with respect to co', we have

aF, a«H » =0
Bco

(5.17)

which again shows that the minimization is essentially
with respect to the average energy. Equation (5.17) can
be explicitly written as

(8k')co' +(3V 2yco)co' + [co+6K,(2n + 1)]co'

+(3A, /2v'2)(2n + 1)=0 . (5.18)

From now on we shall call the co at the minimizing
point as the thermal Hartree frequency and the optimal
Gaussian thus determined as the thermal Hartree func-
tion.

The average thermal energy, ((H)) for the thermal
Hartree function is given by

Although there are several local minima for ((H )), we
always choose the global minimum corresponding to the
positive frequency co. This minimum is rather unique and
can be reached by a Newton-Raphson iterative strategy.

Using Eq. (5.15), the expression for 0 in Eq. (5.5a) can
be drastically simplified as

(5.16)

((H)) =
—,'+[(I+co ) 2/co] n+[(3yco'/v 2')+(6Aco' /co)](2n+1)

+(3A./co )n(n + 1)+(3A,/4'~)+( I —co) /4co+co' +2V'2yco' +4k co' (5.19)

and H can be simplified to
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H=((H))+ro{b b}p+r){b l3!+b l3!+b b/2!+btb /2!}p

+tz{bt /4!+b~/4.!+bt b/3!+btb /3I+bt b /2!21} (5.20)

The closed operators for this problem are all of the
form {b™b} for all powers of m ~0. The m =0 term is
a c number. Any other operator of the form {b™b"}for
mAn is external. We may thus write S and X in the
"Schrodinger picture" as

S(r)= g [1/( m!n!)]s „( )r{ b™"b}p
m, n

mWn

—:gS „(r),
m, n

mWn

(5.22a)

X(r)= g [1/(m!) ]x (r){b™b}p
——gX (r) .I =0 m

(5.22b)

Since the thermal contractions of the generators of the
Hamiltonian (i.e., the terms appearing in H) produce new
higher-body operators not contained in the Hamiltonian,
the time-ordered exponential T[exp f oP

—Vt(r)dr]
defining Ul(P) will generate higher and higher body con-
nected operators S~ and XI on expansion in normal order
and regrouping and, as a result, would entail a countably
infinite number of external and closed-cluster operators
of all possible ranks. For any practical implementation,
the cluster cumulants in SI and XI, or equivalently S and
X in the "Schrodinger picture" must, therefore, be trun-
cated. A fruitful way of generating systematic approxi-

where ri=[y+4&2Aco'][6/(2ai) ] and a=6k/co2.
The unperturbed Hamiltonian is H = ((H ))0

+ai {b b }p.
Let us note that we have no terms containing b, b,

b~, and b in the thermally normal-ordered expression
for H in Eq. (5.19) when b and b are defined with respect
to the thermal Hartree function. This is a consequence of
the minimizing nature of the thermal Hartree function
and may be interpreted as the "thermal Brillouin condi-
tion" [35]. A general proof of this relation is given in
Appendix B.

With respect to the renormalized frequency co, the
relevant contractions are given by

n for r, ) r2 (5.21a)

(n+1) for r, (r
(5.2 lb)

B. Classification of operators:

mation schemes is to include in successive higher-order
calculations, cluster operators of higher particle ranks.
Thus our cluster-cumulant approach affords a natural
systematics of including higher-order interactions.

In the present case, we propose to include in the cluster
cumulants all operators up to total rank of four. Thus
our closed operators are I, {b b }p, {b t b }p', our external
operators are {b }p, {b}p, {bt }p, {b }p, {bt b}p,
{b'b'}p {b"}p {b'}p {b"}p {b'}p {b"b}p, and
{b b }p We s. hould note that we follow the convention
of throwing all the "time" dependence on the cluster am-
plitudes: S „(r)=( 1/m!)(1 /n!)s „(r){b™b"}p, etc.;
the b /b operators have no "time" dependence.

C. Diagrammatics

The generation of the thermal-cluster-cumulant equa-
tions for S and X is very conveniently accomplished by
resorting to diagrammatics. We depict the various n-

body operators in H by unfilled circles as vertices, with
incoming and outgoing lines signifying the b and b
operators. Some typical H diagrams are displayed in Fig.
1. Since we have contractions of both the types
bl(&i)bl(r2) and bt(r;)bt(rz), with ri ) r~, it is necessary
to indicate by arrows on the line the nature of an opera-
tor, viz. , whether it is a b or b . A line entering a vertex
(arrow towards the vertex) is a b operator. Likewise, a
line with an arrow emanating from a vertex is a b~ opera-
tor. We have shown in Fig. 2 the above two cases of
thermal contractions. The vertices of the operators are
placed on a diagram in increasing order of the "time" ar-
gument from right to left. S and X vertices are depicted
as filled circles, some typical terms of which are shown in
Fig. 3. As long as we indicate on the diagrams for S and
X the b and b operators by appropriate arrows, it does
not matter in what way we orient them.

The cluster-cumulant equations for S and X are gen-
erated by drawing the composite diagrams obtained by
joining Ho and V vertices with arbitrary numbers of S
and X vertices in all possible ways, with the restriction
that Ho is always joined to the S and X vertices from
both left and right, while V is joined only from the left.
This special status for H„ is a consequence of the pres-
ence of both HoS (or HoX) and SHO (or XHO) contrac-
tions in the cluster-cumulant equations in the
"Schrodinger picture, " viz. , Eqs. (3.21). Having drawn
all the connected composite diagrams, we classify all the
composites having the same disposition of ingoing and

(a) (b) (c)

FIG. 1. Typical H diagrams are shown here.
FIG. 2. Two cases of thermal contractions are being depict-

ed.
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2.i 6'V
=( = ——~ — ~)+ ~-- +s(~=~

2! ~
(a) (b) (c) (d)

6 (===)
2l

1+ +----—2! 2!

FIG. 3. The cluster-cumulant operators S and X are shown
with filled circles. (a) —(e) are external operators S, since they in-
volve change in occupancy, while (f)—(h) depict closed operators
X involving no change in occupancy. The vertices (a) —(e) are,
respectively, S& o, So &,S»,S», and S40. Similarly, (f) (g), and
(h) depict Xo, X„and X&.

6 ( ~ ) 1 1+ + —
3 + -- —---

6W 2! 2! (2!)

FIG. 4. Diagrammatic depiction of some terms entering the
cluster-cumulant equations for S»,X&, and Xo.

outgoing lines together and equate these diagrams to the
negative "time" derivative of the cluster operator having
the same shape. Depending on whether these composites
are external or closed types, we equate them to the nega-
tive time derivative of an S or an X. For our applica-
tions, in constructing the diagrams, we have included at
most two cluster-cumulant vertices. We have found that
this suftices even for large k. As examples, we have
shown the diagrammatic depiction of some terms enter-
ing the cluster-curnulant equations for Sz &,X„and Xo in
Fig. 4. The rules for evaluating the diagrams are collect-
ed in Appendix C.

The cluster-cumulant equations have been solved by
Runge-Kutta initiation followed by predictor-corrector
method. For a wide range of A, , starting from A. =0. 1 to
X=1000, the equations are very robust and show no er-
ratic or unstable behavior. The SI ' and XI operators in
the interaction picture are generated from the S „and

X operators via

Sl '"(r)Ib™b"}p=exp—[(m )neo ]rS —„(r)[b™b"}p,

Xm( ) [bomb m} X ( )Ibtmbm}

(5.23a)

(5.23b)

and finally Z/Zo is evaluated as exp(Xq ).
For generating the perturbative solution, let us note

that, in the first order, '"SI(p)'s of the forms
Sl', S~,SI',S&' are zero, since the corresponding Vz's

are zero as a consequence of the thermal Brillouin condi-
tion. In Eq. (4.2), the first-order contribution is obtained
only for the operator XI '. Thus, we have no first-order
contribution to XI. At second order, ' 'XI thus receives
contributions from ' "SI', ' "SI', ' "SI', "'SI', and
'"XI. As examples of concrete results, we quote below
the expression for ' 'XI:

' 'XI =(g2/2')[ n /9+(n +—1) /9 n(n+—1)+n(n+1) ]P

+(a /12')[ n "/8+—(n +1) /8 n(n +1—)+n(n +1) ]P

+(7/ /co )I(n /54)(e ~ —1)+[(n+1) /54](e ~ —1)+[n (n+1)/2](e~ —1)+[n(n+1) /2](e ~ —1)}

+(a /co ){(n l384)(e ~ 1)+[(n—+1) /384](e ~ —1)+[n (n+1)/24](e ~ —1)

+ [n (n + 1) /24] X (e ~ —1)}+(a /8)n (n +1) P (5.24)

These results coincide exactly with a variant of the
Bloch —Balian —de Dominicis theory [4,5], where the ar-
guments for the "time" variables are in the range
p r, rz r3 . ~ r„~0 for the nth-order diagram.
The series generated involve "unperturbed" occupation
probabilities n with respect to the renormalized frequen-
cy, Q.

D. Results and discussions

In Table I, we show the values of Z and Zo and the
free energy F for various values of T= 1//3 and A, . The
corresponding "exact" values are also displayed for as-

sessing the performance of the method. They have been
computed by using the eigenspectrum of H, obtained by
diagonalizing H in the harmonic-oscillator basis of the
unperturbed Ho =a a + —,'. Basis functions up to the
quantum number 19 have been used for A, =0. 1 and 1.0,
up to the quantum number 30 for A, =10 and 100, and up
to quantum number 40 for A, =1000. From a perusal of
Table I it is clear that the value of Z obtained for even
very large values of A, are quite good vis-a-vis the exact re-
sults. Since we have included the cluster-curn ulant
operators only up to rank four, the performance of the
cluster-cumulant method is very satisfactory.

Bloch, Balian, and de Dominicis [4—6] have discussed
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TABLE I. The thermal-cluster-cumulant (TCC) results for the anharmonic oscillator with cubic-plus-quartic perturbation (cluster
operators up to rank 4 are used). The entry for T=O corresponds to the Kohn-Luttinger limit, which is the ground-state energy. co

corresponds to the thermal Hartree frequency (see text for details). F corresponds to the free energy computed from Z.

0.1

1.0

2.0

10

100

1000

T =1/P

0.0

0.4

0.5

0.8

1.0

0.8

1.0

1.25

1.6

0.0

1.0

1.25

1.6

2.0

0.0

1.6

2.0

2.5

4.0

0.0

4.0

5.0

8.0

0.0

20.0

25.0

1.2228

1.2366

1.2851

1.3177

1.9692

2.1085

2.1021

2.1989

2.3689

2.4502

2.5606

2.6773

3.7173

3.8595

4.0323

4.4849

11.679

11.213

9.6749

44.986

44.422

43.969

—0.062 88

—0.065 52

—0.074 04

—0.079 19

—0.153 93

—0.155 26

—0.1567

—0.158 48

—0.176 78

—0.176 78

—0.176 78

—0.176 78

—0.229 66

—0.225 49

—0.221 12

0.212 29

—0.4294

—0.41264

—0.325 16

—O.S08 21

—0.503 01

—0.498 81

ZQ

0.262 19

0.360 79

0.632 56

0.799 44

0.440 10

0.560 08

0.698 Ol

0.875 55

0.494 15

0.617 50

0.774 57

0.93902

0.641 25

0.762 47

0.899 67

1.2591

2.5064

2.2139

2.0876

67.774

32.045

Z
TCC

Exact'

0.263 71
[0.263 80]
0.362 98

[0.363 17]
0.637 43
[0.638 17]
0.806 45
[0.807 76]

0.450 25
[0.452 64]
0.573 06
[0.576 99]
0.714 51

[0.720 68]
0.896 81
[0.906 33]

O.S08 53
[0.512 78]
0.635 25
[0.641 87]
0.796 82
[0.807 OS]
0.966 11
[0.980 44]

0.672 85
[0.687 87]
0.797 63

[0.817 40]
0.938 93
[0.964 35]
1.3093

[1.348 4]

2.9646
[2.9770]
2.6712

[2.6666]
2.3241

[2.500 4]

3803.5
[3807.3]
70.268
[71.065]
33.634

[34.362]

Z
Second-order

cumulant

0.264 28

0.363 98

0.640 65

0.811 76

0.459 70

0.587 50

0.735 83

0.928 07

0.524 34

0.658 39

0.830 62

1.0117

0.722 88

0.861 49

1.0186

1.4264

2.844 3

2.259 9

2.845 2

3798.0

69.783

33.228

TCC
Exact'

0.553 52
[0.553 52]
0.533 16
[0.533 02]
0.506 70

[0.506 44]
0.360 25
[0.359 32]
0.215 12
[0.213 49]
0.721 S4
[0.720 46]
0.638 36
[0.634 12]
0.556 76
[0.549 92]
0.420 21

[0.409 45]
0.174 25
[0.157 37]
0.793 74

[0.791 30]
0.676 22

[0.667 90]
0.567 16

[0.554 21]
0.363 40

[0.343 00]
0.068 95

[0.039 51]
0.835 39

[0.825 35]
0.633 98

[O.S98 65]
0.452 23

[0.403 25]
0.157 53

[0.097 64]—1.0778
[—1.195 6]—3.7836
[ —3.7742]
—4.3470

[—4.3637]
—4.9127

[ —4.9041]
—6.7468

[—7.3314]
—82.292

[ —82.291]
—82.437

[ —82.447]
—85.046

[—8S.274]
—87.889

[—88.432]

F
Second-order

cumulant

0.553 16

0.532 30

0.505 32

0.356 22

0.208 SS

0.715 66

0.621 75

0.531 88

0.383 45

0.11944

0.782 83

0.645 61

0.522 45

0.296 94

—0.023 33

0.790 63

0.519 21

0.298 18

—0.046 12

—1.4206

—3.745 9

—4.1813

—4.7753

—8.3652

—82.281

—82.422

—84.908

—87.584

'Quantities within brackets indicate exact values.
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thoroughly the problem of going to the zero-temperature
limit for the free energy for a number conserving H. In
this case @&0. They have shown that F approaches the
ground-state energy Eg, when the energy levels are
discrete. When the system is of infinite extension but of
finite density, the limit has to be taken with much care,
and one should use perturbed occupation probabilities [6]
(or, in an alternative version certain quasiparticle occupa-
tion probabilities, as in [36]) to approach the limit. For
the problem studied by us here, p=0 and the energy lev-
els are discrete, so that the zero-temperature limit for I
should be reached quite smoothly:

b,E =E, Eo =—lim (F Fo)—
P~ oo

1
11m lnZ Zp

P—+ oo
(5.25)

This relation is known as the Kohn-Luttinger theorem
[37]. Using Eq. (3.18), we have

hE= lim —Xt/P .
P~ oo

(5.26)

Table I displays the total energy E, as a function of A, ,
which agrees very well both with the exact values and
with the corresponding results obtained with the zero-
temperature version of the stationary coupled-cluster
theory [33] using the cluster operators up to rank 4. We
conclude that our theory verifies numerically the Kohn-
Luttinger limit and reduces to the corresponding zero-
temperature version of the stationary coupled-cluster
theory for the anharmonic oscillator. An analytical
treatment of the Kohn-Luttinger limit and the use of per-
turbed occupation probability will be the subject of our
future paper [31]. In Table I, we have also displayed the
second-order perturbative cumulant results, obtained by
using Eq. (5.25). A perusal of these results shows that the
second-order cumulant results are generally rather inac-
curate as compared to the thermal cumulant results.

We should mention that, beyond the value of A, =1.78,
the potential generates a second minimum away from the
coordinate origin, which gets deeper with further in-
crease of A, . The thermal Hartree functions obtained by
us are centered closer to the deeper minimum. All the
excited states are thus also centered around this
minimum. The presence of double minima should make
the prediction of the high-temperature behavior of the
partition function particularly diFicult, since at the
higher temperatures the shallow minimum at the origin
should make its presence felt via higher excited states
which should be better described as bound state localized
at the origin rather than at the deeper minimum. The
qualitative feature of the potential at A. =100 and 1000
are very similar. However, its relative depth is more for
A, =1000, making the description of the bound state rela-
tively better as compared to A, =100. This is rejected in
the increased accuracy of the computed Z and I' for
k= 1000 relative to k= 100.

VI. CONCLUDING REMARKS

We have presented in this paper a nonperturbative
cluster-cumulant approach for computing thermal aver-
ages by combining the best features of thermodynamic
perturbation theory involving cumulants, certain ideas of
thermofield dynamics and the imaginary-time generaliza-
tion of the time-dependent coupled-cluster theory. We
have introduced connected quantities —called cluster cu-
mulants by us —which are the appropriate nonperturba-
tive analogues of perturbative cumulants. We have
developed a finite-temperature field theory involving only
the physical variables, by introducing the concepts of
thermal normal ordering, thermal Wick expansion, and
thermal contractions. Our formulation is shown in Ap-
pendix A to be unitarily equivalent to the traditional for-
mulation of thermofield dynamics, but is more suitable
for numerical implementation since we have no "dou-
bling" of the degrees of freedom. The thermally averaged
quantities appear as c-number entities as a consequence
of the validity of the thermal Wick's theorem. The per-
formance of the method has been illustrated by comput-
ing the partition function of a cubic-plus-quartic anhar-
monic oscillator at wide ranges of temperature T= I/P
and the coupling constant A, . The method has been found
to be both robust and stable, provided we start from an
unperturbed Gaussian as the vacuum for the creation and
annihilation operators which minimize the thermally
averaged energy. This function has been termed the
thermal Hartree function by us. We have also verified
numerically that the ground state of the anharmonic os-
cillator is obtained in the low-temperature limit. The
cluster-cumulant equations are conveniently set up using
diagrammatic techniques, which are illustrated by citing
specific examples.
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APPENDIX A: THERMOFIELD DYNAMIC
ANALOG OF THE THERMAL

WICK EXPANSION

The thermofield dynamics was originally developed to
extend the zero-temperature quantum-field theory to
finite temperature [19—22], while retaining an underlying
wave-function approach. The thermal average of any ob-
servable at the inverse temperature P is written as an ex-
pectation Ualue over a "thermal vacuum" ~0&). To
achieve this explicitly, one introduces extra quantum-
mechanical variables acting in another Fock space, called
the tilde space, and the physical Fock space is expanded
to generate a direct-produce Fock space of the physical
Fock space and the tilde Fock space. The functionals of
the physical variables F ( A ) are replaced by F ( A

& ) with
the "thermal" operators [19—22] A& given by
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A p
=

Ups A Up& = A cosh8 —A sinh8 (bosons), (Ala)f ~

Ap= UpF AUpF= A cos8 —A sin8 (fermions), (Alb)

where 3, etc. , are the operators for the tilde variables.
The transformations in Eqs. (Al) are induced by two uni-
tary operators U&z and U z for the bosonic and fermion-
ic cases, respectively. ~op is chosen as the simultaneous
vacuum for both the physical and the tilde variables:

iop&= o, o& .

The thermal average of a functional F ( A, A ) is given by

(& [F(A, A')] » =(Op~F(A p, A p) ~Op&

(A2)

(A3)

sinh8= [exp[P(coo —p)]+1[ ' (bosons),

sin8= [exp[13(coo—p)] —1[ '~ (fermions) . (A5)

Thus, in thermofield dynamics, one first induces a Bogo-
liubov transformation, Eq. (Al), to generate a new ex-
pression from F( A, A ), Viz. , F( A p, A p), involving
2/2 and 2 /2, and then works out a field theory—
which becomes a zero-temperature formalism —using

I

and the angle 8 in Eqs. (Al) is chosen in such a way that
Eq. (A3) reproduces the required expressions for the
thermal average. In particular, using the expression of
the number operator a a for the functional F(a, a ), we
have

~op& as the new vacuum. The Hamiltonian gets mapped
onto a new Hamiltonian via the Bogoliubov transforma-
tion. The evolution takes place in an expanded Fock
space since all the degrees of freedom are doubled. This
increases the complexity of the problem. Our thermal
field theory, in contrast, involves only the physical vari-
ables and in this sense seems more physically motivated
for the numerical implementation.

We, however, show that the conventional thermofield
dynamics can be transcribed into our formulation. Since
the functional F are an algebraic expression of 2 /A, we
may rewrite F( A p, A p) as

~o, &
= Up~op&, (A7)

then the thermal average, Eq. (A3) above may be
equivalently expressed as

&oplF(A p, A pt))op& =(oplF(A, A')lop& . (Ag)

Since A p/A p are linear combinations of A /A and
A /A, we may write F( A p, A p ) directly in ordinavy nor
mal order with respect to ~0p&. Thus, if F( Ap, A p) is a
time-ordered product of operators, we have

F(Ap, A p)= UpF(A, A )Up

from Eq. (Al). The actual form of Up. Upji or UpF,
should be chosen depending on the situation. If we now
define ~op & as a new thermal "base state" by the relation

~[AIp (ri)AIp (r2) ' ' ' ]= [&zp'(r&)Alp'(r2) . ]+(single contractions)+(double contractions)+ .

Let us premultiply and postmultiply Eq. (A9) by Up and Up, and get

?'[ AI "(ri)AI '(r2) ]= Up [ Alp'(r, ) Alp'(r2) .
I Up+ Up [(single contraction) I Up+

If we define now a thermal normal ordering by

[ AI" I(r, ) AI '(r~) I p= Up [ Al'p(r, ) Al'g (r~) I Up,

[ AI (rl) [ AI (ri ) AI (rj )]p Ip p[ AIp (rl) AIp(ri ) AIp (7j ) ' '
] Up, etc.

then we have

T[ Al"'(r&) AI '(r2) ] = [ AI "(ri)AI '(rz) .
]p+ [(single contraction) . .

]p+ .

(A9)

(A 10)

(Al la)

(A 1 lb)

(A12)

Since Eq. (A12) is a unitary transformation of the original expansion, Eq. (A9), the thermal normal ordering introduced
above satisfies all the desirable properties of a normal order, and the average (op~ [ J p~op & are zero automatically:

&o [] lo &=&o IU'U [ IU U'lo &&o I[]lo &=o. (A13)

Equation (A12) then relates the thermal normal ordered
Wick expansion stipulated by us, by the consideration of
the Gaussian stochastic nature of the Bose-Fermi opera-
tors in a T product with respect to thermal averaging,
with the one generated as appropriate unitary transforms
of thermal field operators from the more conventional
thermofield dynamics. The transcription of our represen-
tation to the traditional formulation is completed if we
now identify ((F( A, A ) » as (op~F( A, A ) ~op&. The
thermofield dynamic version of the cluster cumulant
theory, with the thermal normal ordering as in Eq. (A12),

has been introduced recently by us [35] along with a pi-
lot, numerical illustration. We note that the thermofield
dynamical treatment, although shown to be unitarily
equivalent here, is operationally very di6'erent. In partic-
ular, we shall never need to know the detailed form of ei-
ther Up or ~op&. In our formulation, the tilde variables
do not appear at all, and the original Hamiltonian H
governs the evolution of U. One may also show, al-
though we do not illustrate it here, that the usual Kubo-
Martin-Schwinger relations [38] are satisfied by our for-
mulation.
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APPENDIX 8: THERMAL HARTREE
VS THERMAL BRILLOUIN CONDITIONS

H=ho+g h [e, jt/, (81)

where ho is just ((H )), and Ie,. jt/'s are the generators in
thermal normal order, accompanying the coefficients h .

Let us assume that an arbitrary Hartree state
~

P' ) can
be written in terms of the vacuum as

In this appendix, we show formally that enforcing the
thermal Hartree minimizing condition on the unper-
turbed starting "vacuum" function

~ P ) automatically im-
plies the validity of associated thermal Brillouin condi-
tions.

Let us assume that the Hamiltonian H has been written
in thermal normal order. The "unperturbed" function
~P) which is the lowest state of the unperturbed Hamil-
tonian Ho can be parametrized, in terms of certain gen-
erators of H. Let us write H in thermal normal order:

f5@)-y5t. [e.j,fy) . (83)

Let us assume that the excited states of Ho can be gen-
erated by the action of combination of certain operators

Ie,*j on ~y):

(84)

We also write ~P) = WO~P); Wo= Wo= 1.
The thermal Hartree energy ((H)) can then be ex-

pressed as

exp gt e
'

~(b),
' . P

where e 's are certain specific generators of H used to
parametrize ~P); e s annihilate ~///). Using this parame-
trization, any infinitesimal variation in

~ P ), ~5P ), can be
similarly written as

«H))= y &y~W„e 'HW„'~y)
k=0

y (y W„e 'W„'~y)
k=0

= g (/I)~ W e 'HWt~p) IZ
k=0

We then write 5((H )) as

(85)

5((H)) = g (5y~ W„e 'HW„'~y) ZZ, —y (5y~ rV„e 'W„'~y&&&H )) ZZ, +~.c. (86)
k=0 k=0

Using the relation (83), and using the fact that I e j t/
and 8'k both contain destruction operators, we find that

(5/i ~ke '~J', ly) /Zo =y (yl ~/, Ie'. jt/e '~/,'ly &». Zo
a

—=y5t. (( I".j,)) =O,

since the thermal average of a thermally normally ordered operator is zero. We can similarly rewrite the first term in

Eq. (86) as

g (y~ g Ie.'j,5t. W, e
k=0 n

'HW„'~y) Z, =y (( Ie.' j,H )&5t. .

Since both Ie jt/ and H are in thermal normal order, it
follows that at the minimizing point of ((H )), we should
have

5((H)) =O=g (( Ie j//Ie jp))h 5t +H. c, ,

~P) can be parametrized by b and b; as a result the
coefficients of bt and b (and their adjoints) will be zero
when H is written in thermal normal order with respect
to the thermal Hartree function as the underlying unper-
turbed function ~P).

which shows that h 's must be vanishing. Thus, if ~P)
can be parametrized by the generators te j, then the
coefficients Ih j should be vanishing for the thermal
Hartree function. For a general anharmonic oscillator,

APPENDIX C: DIAGRAMMATIC RULES
FOR EVALUATING COMPOSITE DIAGRAMS

We consider here for simplicity the case of p=O. (i)

Any composite diagram consists of an H vertex and any
number of S(r) and X(w) vertices joined to H. (ii) We
draw only the topologically distinct diagrams. For any



SYSTEMATIC NONPERTURBATIVE APPROACH FOR THERMAL. . .

FIG. 5. A typical diagram, used for demonstrating the rules
for evaluating the factors associated with any diagram.

contraction in which the arrow goes from right to left, we
associate a factor (n+1). For a contraction where the
arrow goes from left to right, we associate a factor n. ~ is
the unperturbed frequency of the thermal Hartree func-

tion. (iii) For a diagram with each set of k equivalent
outgoing and I equivalent ingoing lines, we associate a to-
pological weight of I /(k! I!). (iv) For any set of
equivalent r internal lines, we associate a factor I/r!. (v)
For each set of p equivalent vertices of S or X, we associ-
ate a further weight of 1/p!.

We illustrate the use of the above diagram rules by
evaluating the factors of the diagram shown in Fig. S.
There are three pairs of equivalent outgoing and one pair
of equivalent ingoing lines, contributing the factor
1/(2!) 2!. There is a pair of equivalent internal lines,
stemming from X, giving another factor of 1/2!. Two S
vertices are equivalent, giving an additional factor of
1/2!.
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