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The behavior of a nonperturbative momentum-space renormalization group (RG) is analyzed both
above and below the critical temperature. The case of a scalar order parameter and of the Ising model is
studied in detail by analytical and numerical means. It is shown that this RG transformation is always
well defined even inside the coexistence curve. van der Waals loops are suppressed by long-wavelength
fluctuations which enforce the convexity of the free energy. The RG description emerging from this
study is then compared with exact results and other approximate theories.
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I. INTRODUCTION

Although first-order phase transitions underlie many
important phenomena in different fields of physics
through the quite general mechanism of spontaneous
symmetry breaking, they have received limited attention
from the theoretical point of view, compared to the
widespread interest raised by critical phenomena. A pos-
sible explanation is that usual mean-field descriptions giv-
ing rise to the van der Waals loop and Maxwell construc-
tion provide a qualitative picture of the transition, and in
fact reproduce the exact solution of models with suitably
chosen long-range interactions [1]. A phenomenological
picture of the liquid-vapor phase transition is provided by
the celebrated droplet model which describes the physical
mechanisms leading to phase separation and predicts the
occurrence of some universal features at the transition
[2]. In particular, the free energy is shown to have an
essential singularity on the coexistence curve, a result
which goes beyond all mean-field treatments and was
later confirmed by rigorous analysis, at least for the Ising
model in arbitrary dimension [3]. Unfortunately, the
simplest mean-field theories devised for first-order phase
transitions are not suited for dealing with long-range fluc-
tuations which characterize the critical point and there-
fore they do not match with the known properties of crit-
ical points which should instead be recovered as the tem-
perature approaches its critical value. On the other
hand, the droplet model does predict scaling laws in the
critical region but does not provide a quantitative frame-
work for calculating critical exponents and scaling func-
tions.

The possibility to apply renormalization-group (RG)
ideas to the description of first-order transitions has been
a matter of debate since RG’s were first studied. The
original proposal of a particular ‘“discontinuity” fixed
point [4] which should describe the universal features at
the transition was later confirmed by approximate real-
space renormalization-group calculations which also
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showed the presence of the same essential singularity pre-
dicted by the droplet model [5]. However, this promising
description of first-order transitions was never analyzed
beyond approximate calculations and never reached the
same degree of confidence attained by critical phenomena
through €e=4—d or 1/n expansions [6]. On the other
hand, recent numerical studies suggested that both real-
and momentum-space renormalization groups might
show pathologies near first-order phase boundaries [7],
and in fact singularities and nonanalyticities in RG trans-
formation were reported by several groups [8]. The pres-
ence of this kind of anomalies in an exact implementation
of RG was later excluded by rigorous results which, how-
ever, suggested that, near phase boundaries, the renor-
malized Hamiltonian might not exist at all even after a
single RG step [9]. This theorem was explicitly proven in
the framework of real-space RG but it was conjectured to
hold also for momentum-space RG.

The problem of the description of first-order transi-
tions within RG’s is therefore still open and a theory able
to consistently describe both phase separation and critical
points is lacking. Here we analyze the momentum-space
RG formalism and we consider an approximation, the
so-called “local potential approximation” (LPA), which
is known to give a correct picture of critical phenomena
to lowest order of the € expansion [10]. Contrary to pre-
vious results, our analysis does not show any anomaly
even inside the coexistence region where all the deriva-
tives of the chemical potential identically vanish, and
shows how nonperturbative effects are crucial for a
correct description of the phenomenon of phase separa-
tion.

In Sec. II, we sketch the derivation of the exact
momentum-space renormalization transformation for the
lattice-gas model in the framework of the hierarchical
theory of fluids [11]. This method allows for a twofold
interpretation of the renormalized Hamiltonian which
turns out to be useful for getting physical insight on the
evolution of the RG flow. Then we discuss the simple
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LPA approximation to the exact hierarchy, which arises
quite naturally in this context.

Section III is devoted to the analysis of the possible
asymptotic behaviors of the differential equation previ-
ously obtained. The asymptotic analysis is then com-
pared with the numerical solution for a ¢* theory in Sec.
IV. Both numerical and analytical results show that
LPA is free of any singularity at any finite value of the
momentum cutoff and successfully describes the coex-
istence region by reproducing rigorously flat isotherms at
convergence. No ad hoc Maxwell construction has to be
used but the integration over long-wavelength modes is
responsible for the correct thermodynamic behavior in
the two-phase region. In fact, the isotherms progressive-
ly flatten but a constant chemical potential at coexistence
is recovered only after fluctuations of arbitrary long
wavelengths have been taken into account. The first-
order phase boundary correctly matches with the critical
region when the temperature is raised but the description
of the coexistence curve, within the LPA, is not satisfac-
tory because, in three dimensions, it predicts diverging
compressibility at coexistence for all temperatures below
the critical point. This situation improves for dimensions
larger than 4 where the same approximation is shown to
give rise to a finite compressibility at coexistence, in
agreement with known exact results. In this case, numer-
ical results indicate the presence of an essential singulari-
ty on the coexistence curve.

In Sec. V we apply our method directly to the three-
dimensional Ising model in order to extract both the
universal and the nonuniversal properties of the model
and we discuss how these findings compare with known
results in that system. The implications of a correct
short distance behavior in the correlation functions are
also analyzed.

A discussion about the possible occurrence of a
“discontinuity fixed point” within our formalism, togeth-
er with more elaborate extensions of the theory can be
found in Sec. VI.

II. MOMENTUM-SPACE RG
FOR THE LATTICE-GAS MODEL

For future reference, we give a short derivation of the
full set of RG differential equations in the framework of

A. PAROLA, D. PINI, AND L. REATTO 48

the hierarchical theory of fluids (HRT) [11]. Here we
consider a lattice gas on a hypercubic lattice in d dimen-
sions with nearest-neighbor attraction and on-site hard-
core respulsion. As is well known, this model can be
mapped into the ferromagnetic Ising model by associat-
ing the presence of a particle on a given lattice site with
an up spin. The thermodynamics of the model is given by
the grand partition function

N
E= =3 - Te A 2.1)
N20 N! 2 2

where B=1/kyz T, z =exp(Bu) is the fugacity, the sum la-
bels r; run over all the lattice sites and the Hamiltonian
His

H=1 3 v(ri—r,). (2.2)
T1ers
rl#&r2

Here the two-body interaction v (7) corresponding to the
usual nearest-neighbor ferromagnetic Ising model is
defined by

o , for r=0
—w , for nearest neighbors (2.3)

0, elsewhere

v(r)=

but its precise form will never be needed in the following.
As a first step we split the interaction in the sum of two
terms:

v =vRr)+w(r), (2.4)

where the reference part v ® coincides with the hard-core
contribution while w(r) is the nearest-neighbor attrac-
tion. In this particular case, all correlation functions of
the reference system are known: the many-particle direct
correlation functions [12] are extremely local vanishing
everywhere except if all their arguments coincide. Con-
versely, in momentum space, they are wave vector in-
dependent and their value can be obtained via the gen-
eralized compressibility sum rule:

J
§"InZ %
Rikyy oo ky)= '
S A B W P o
n R n
= MWZ/V) 8 1 pin(1—p)+plnp] , (2.5b)
dp” dp"

where p and V are, respectively, the density and the
volume of the system. Notice that in our definition (2.5a)
the direct correlation functions include the ideal-gas con-
tribution. Z is the canonical partition function which can
be obtained from = by a Legendre transform:

1nZ=1n:—f1nz(r)p(r)ddr ,

8In=
Slnz(r) ’

(2.6)
p(r)=

~
and the label R identifies the reference system. For the
lattice model we are dealing with, spatial integrations
must be interpreted as series over lattice sites. In such a
case, functional derivatives just correspond to partial
derivatives. Then, we expand the logarithm of the grand
partition function inn a diagrammatic series in powers of
the attractive part of the interaction w and formally per-
form the Legendre transform (2.6) on the full partition
function order by order in the diagrammatic expansion.
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The result, valid both for the lattice gas and for ordinary
fluids, reads as

InZ =InZR—1Vpg(0)+1Vp? [ d ¢(r)+D, , 2.7)
where 2, represents all connected diagrams built with n-
point vertices cf (n>3), FR bonds, and ¢ bonds satisfy-
ing the following conditions: (1) There is at least a ¢
bond in each diagram. (2) The end point of a ¢ bond
must be connected to the end point of a FX bond. (3) The
end point of a F® bond may be connected either to a ¢
bond or to a ¢} vertex. (4) There is at most one “refer-
ence path” (i.e., a path of F® bonds and cX vertices) be-
tween each pair of points in the diagram. (5) The dia-
gram remains connected after cutting a single bond.

Here ¢(r)=—pPw(r), the n-particle direct correlation
functions ¢R(r, ..., r,) are defined as functional deriva-
tives analogously to Eq. (2.5a) and F(k)=—1/c,(k) is
just p times the usual structure factor. We have been
forced to obtain the diagrammatic expansion of the
Helmholtz free energy starting from the grand canonical
ensemble and performing a Legendre transformation, in
order to eliminate some “anomalous diagrams” present in
the canonical formalism for any finite system [13,14].

Analogous expansions for the n-particle direct correla-
tion functions can be immediately obtained from Eq. (2.7)
by functional differentiation with respect to the density
profile p(r). The diagrammatic expansion (2.7) can be ar-
ranged in the form of a loop expansion by summing up
the chains of FR and ¢ bonds which are allowed by the
rules (2.7). By defining the new bond A

A=—208__
I—FR(k)$(k)

in place of ¢, the expansion for the Helmholtz free energy
becomes

InZ=InZX—1¥p¢(0)
+1vp? [d% ¢(r+8+D,,

(2.8)

(2.9)

where & represents the sum of chains of ¢ and FX bonds
explicitly given by

dd
—1yp _&1 l_FR
7 f 2m) n[ (p)g(p)]

and D, represents all connected diagrams built with n-
point vertices c,f‘z (n >3), FR bonds, and A bonds satisfy-
ing the previous conditions (1)—(5) with the two addition-
al conditions: (6) there is at least one vertex cX; (7) a dia-
gram cannot contain a chain of F® and A bonds with two
or more A bonds.

Notice that the zero-loop term reproduces the well-
known mean-field approximation to the free energy of the
interacting system InZyz=—pB A\, the sum of chains
formally coincides with the random-phase approximation
[13], while the other diagrams can be thought of as a for-
mal way to include higher-order fluctuations. Due to the
strong similarity of (2.9) with the analogous expansion of
a scalar field theory, we can interpret each bond as a
propagator and each n-particle direct correlation func-
tion of the reference system as representing an “interac-
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tion” in the field theory [15].

The first step in Wilson’s momentum-space RG [15] is
just to integrate the short-wavelength fluctuations, i.e., to
define a sequence of systems where fluctuations over long
wavelengths are inhibited. In our expansion, each loop,
i.e., each integration in momentum space, is associated to
the introduction of fluctuations. Therefore, if all the
momentum integrations in the diagrammatic expansion
are cutoff at a given infrared scale Q, we expect that fluc-
tuations over length scales L > 1/Q are formally inhibit-
ed. We define —kzT A, as the free energy per unit
volume given by the full expansion where all integrations
in momentum space are limited to a domain Q, which
excludes a neighborhood of the k =0 point of the Bril-
louin zone. Clearly, the free energy of the fully interact-
ing system is reproduced in the Q —0 limit, when Qg
coincides with the full zone, while the mean-field approxi-
mation is recovered when the domain of integration Qg
vanishes. Physically A, includes fluctuations up to a
minimum wave vector Q and we do not expect any singu-
larity in the modified free energy A ), related to the k =0
mode, as long as Q is different from zero: The effects of
this infrared cutoff are somehow similar to confining our
system into a box of size L ~1/Q.

According to the rules (2.9), each loop in the expansion
must contain at least one A bond which is proportional to
the Fourier transform of the original two-body interac-
tion of the lattice gas. Then, a cutoff in the momentum
integration is reproduced, to all orders, by cutting off the
long-wavelength components of ¢(k): A convenient way
to inhibit long-wavelength fluctuations in the system is
then to consider a sequence of models, that will be called
Q systems, characterized by a two-body potential with a
hard core on site plus a tail wy(r) whose Fourier com-
ponents coincide with those of w(r) in Q, and are set
identically to zero in the remaining of the Brillouin zone.
Strictly speaking, this procedure also modifies the zero-
loop (mean-field) part of the free energy and therefore we
cannot identify the free energy A, of the Q system with
the modified free energy previously defined, but the rela-
tionship between the two quantities is easily obtained:

B4y

£14(0)=45(0)]

2
+P2—fddr[¢<r)—¢Q(r)] . (2.10)
Analogously, the two-particle direct correlation function,
and hence the structure factor, acquires a discontinuity at
wave vectors lying on the boundary of Q5. This discon-
tinuity is due only to the zero-loop diagrams in the ex-
pansion of ¢ and can be removed by defining the corre-
sponding modified quantity:

@Q(k)=c?(k)+¢(k)—¢g(k) . (2.11)

Higher-order correlation functions do not have zero-loop
diagrams and are therefore continuous in the whole Bril-
louin zone.

Within the framework of Wilson’s RG, fluctuations of
shorter wavelengths are iteratively integrated out and the
Hamiltonian governing the dynamics of the remaining
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degrees of freedom is related to the original Hamiltonian
through a set of differential equations for the coupling
constants. In our language, this corresponds to relating
the set of correlation functions of the Q system with those
of a system infinitesimally close to it characterized by a
cutoff Q —dQ, which includes fluctuations in a wider
wave-vector range. The exact relationship can be easily
found on the basis of the perturbation expansion (2.9)
where the ‘“‘reference system” now is taken as the Q sys-
tem and the “perturbation potential” ¢(r) has Fourier
components only in the region [k EQgy 40,k EQy] of
vanishing measure. Therefore, the perturbation potential
vanishes almost everywhere in the Brillouin zone, and
only one-loop diagrams survive in the dQ —0 limit. A
differential equation governing the “evolution” of the free
energy can be immediately found from the previous loop
expansion (2.9) with the result

_dAg _ Ly _dp
dQ 293, (27)

where 2 is the boundary of Q, (25 =d Qg /dQ) and the
modified correlation function Fy(k)=—1/Cy(k) is re-
lated, in the long-wavelength limit, to the modified free
energy by a compressibility sum rule [13]

) -1
Ay

3p?
The exact evolution equation (2.12) describes the effects
of introducing fluctuations of wave vector Q into the free
energy of the system. It should be integrated starting

from an initial wave vector Q, characterized by the con-
dition QQo:ﬂ where the modified free energy coincides

In[1+F,(p)p(p)],  (2.12)

(2.13)

with the mean-field approximation.

Analogous “evolution” equations can be written for
the many-particle direct correlation functions and togeth-
er they form an exact hierarchy of differential equations
for the structure and the thermodynamics of the model
[11].

This set of equations, in the critical region and at long
wavelengths, becomes completely equivalent to
momentum-space RG. In fact, in this regime, .‘7Q(O) be-
comes large and the argument of the logarithm in Eq.
(2.12) can be approximated by F,(p). The attractive po-
tential thereby disappears from the equation which ex-
plicitly shows the universal character of long-wavelength
fluctuations:

dAo 1 _dp

0 25, GG
From the structure of this equation we see that a RG for
a scalar field theory is recovered within the formalism of
HRT, the role of renormalized propagator on a wave-
vector scale Q being played by the (modified) direct corre-
lation function €y (k) of the previously defined Q system.
Analogous simplifications occur in the equations govern-
ing the evolution of the other correlation functions. The
full hierarchy of RG differential equations can then be
recovered by a simple change of variable, i.e., by rescal-
ing the n-particle correlation function with suitably
chosen powers of the cutoff Q. In this way, we can iden-

(2.14)
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tify, apart from a scaling factor, the n-particle correlation
functions of the previously defined Q system with the
coefficients of the RG effective Hamiltonian, when the
fluctuations at momenta larger than Q have been in-
tegrated out [11]. On the other hand, our derivation of
the exact hierarchy of differential equations shows that
the direct correlation functions at cutoff Q are defined for
all wave vectors k and keep complete information about
the short, as well as the long, range behavior of the sys-
tem. Therefore they provide a comprehensive description
of the equilibrium properties of the model.

This correspondence is, in fact, quite useful in the dis-
cussion of possible approximation schemes to the full
hierarchy. A natural ansatz is to maintain that the
modified direct correlation function of the Q system can
be represented in an Ornstein-Zernike (OZ) form also in
the neighborhood of a phase transition. In this approxi-
mation, the long-wavelength limit of Co(k)is

Colk) ~ Co(0)—bk? . (2.15)
This hypothesis is actually justified in dimension larger
than 4 where the asymptotic form (2.15) is valid also at
the critical point. In three dimensions, the small value of
the critical exponent 7 suggests that (2.15) might be a
reasonable first approximation which already includes the
correct lowest order in an e=4—d expansion [11]. If the
zero-momentum limit of the pair correlation function is
related to the modified free energy via the compressibility
sum rule (2.13), the first equation of the hierarchy be-
comes a closed partial differential equation equivalent to
the local potential approximation of the RG approach:

30 2

2

3°A
. 2Q +bQ2
dp

d—1

, (2.16)

where K; is a geometric dimensionless factor and we
have assumed that the chosen volume Qg in the Q—0
limit contains all wave vectors in the Brillouin zone ex-
cept those contained into a small sphere of radius Q cen-
tered around k =0. We stress that Eq. (2.16) represents
the evolution of the free energy at long wavelength and in
the critical region within the Ornstein-Zernike approxi-
mation implied by Eq. (2.15). The full evolution at all
length scales is instead given by the exact differential
equation (2.12) which can also be applied far from the
critical region or at short distances.

If the density variable p is identified with the scalar
field ¥(x), the modified free energy A y(p) becomes the
potential Uy (1(x)) of the effective Hamiltonian at length
scales 1/Q. This statement can be proved either by com-
paring our equation with usual RG equations in LPA
[10] or by expanding the modified free energy in powers
of the density, starting from the critical density p., and
writing the full hierarchy of differential equations for the
expansion coefficients which comes out of our approxi-
mate equation. All the terms (diagrams) of this approxi-
mate hierarchy can be shown to keep the topological
structure of the exact hierarchy, and the OZ ansatz (2.15)
has the only effect to approximate the momentum depen-
dence [15] of the n-particle correlations c¢2. Here we just
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want to stress that this OZ approximation of the HRT, or
equivalently the LPA in the RG, is nonperturbative in na-
ture and keeps all orders in the field theory interactions
generated by the renormalization-group flow.

III. SCALING BEHAVIOR OF THE RG EQUATION

In order to analyze the general features of the solution
to Eq. (2.16) in the Q@ —0 limit, it is convenient to put it
into a dimensionless form by suitably normalizing both
density and free energy:

172

x=(p—p.) X,

] (3.1

d

By use of these new variables, the evolution equation
(2.16) can be written in a universal form, independent of
the particular system we are considering. Therefore, it is
an appropriate starting point for studying how LPA de-
scribes the growth of correlations and the spontaneous
symmetry breaking in models with scalar order parame-
ter. Equation (2.16) then becomes

R\
[ 2
+Q
v 2
o loa-y, |9 , (3.2)
aQ 2 *w
Q +Q2
8x2 0

where subscript O labels quantities evaluated at the criti-
cal density x =0. Let us consider the main features of
the solution to Eq. (3.2) above and below the critical
temperature.

A.T>T,

The critical properties described by Eq. (3.2) have been
the subject of several studies both in d =3 and near four
dimensions, where this approximation reproduces the
correct first order in the € expansion. Here we recall that
by “renormalizing” Eq. (3.2) through the rescaling

t=—InQ ,
Z=xQ—(d—2)/2 , (3.3)
H,=¥,07 7,

the scale factor Q can be eliminated from Eq. (3.2) and
our equation acquires a scale-invariant form suitable for
fixed point analysis:

9’H,
O0H, 4—2 OH, 1 =k
5 z —dH,==~In |—— <+
t 2 oz 2 9°H,
+1
622 0

(3.4

This equation, mathematically equivalent to Eq. (2.16),
should be integrated from an ultraviolet cutoff up to
t— co. The appropriate cutoff for a given physical model
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is consistently included in the more general Eq. (2.12) but
is lost in the long-wavelength approximation leading to
Eq. (2.16). In this section we will specialize to the study
of a scalar ¢* field theory postponing the discussion of the
Ising model to Sec. V. In this case, the appropriate initial
condition is imposed at ¢ =0 and is characterized by a
mass r and a quartic coupling u:

H,_o(z)=rz2+uz* . (3.5)

Physical quantities at a given cutoff ¢ can be obtained
from Eq. (3.4) by performing the correct rescaling im-
plied by (3.3). In particular, the inverse compressibility
at the critical density is proportional to

9’H,

dz?

x,] '~e (3.6)

0
Therefore, a finite compressibility in the physical, t — oo
limit, corresponds to a diverging solution, while, in d <4,
the critical point is characterized by a finite asymptotic
value H*(z) which can be computed by looking for sta-
tionary solutions to Eq. (3.4), i.e., by solving the RG fixed
point equation. As usual, critical exponents can be ob-
tained by linearizing the evolution equation near its fixed
point solution and searching for the eigenvalues of the
relevant perturbations. The odd (i.e., the “magnetic”)
eigenfunction is exactly given by the first derivative of the
fixed point function with respect to the variable z and
corresponds to a critical exponent 8=(d +2)/(d —2)
below four dimensions. Instead, the evaluation of the
even (i.e., the “thermal’) eigenfunction must be carried
out numerically with the result y=1.378 for the
compressibility critical exponent in three dimensions
[11]. In two dimensions, the OZ assumption (2.15) lead-
ing to the evolution equation (2.16) is no longer justified
and a nonzero value of 7 is crucial for reproducing the
correct physics at the lower critical dimension.

According to the RG picture, the initial evolution of
the free energy (3.5) in the critical region leads H,(z)
close to the fixed point solution H *(z). In such a regime,
the evolution (3.4) is well represented by the linearized
form and the most relevant contribution comes from the
leading thermal eigenvalue. If the temperature is slightly
above the critical value, the linear evolution drives the re-
normalized zero-field compressibility (3*H, /dz2), to-
wards growing positive values:

*H,(z)  42H*(z) 2 47hp(2)
>~ 5 trTe 3
oz dz dz
where 7 is a measure of the reduced temperature and
hr(z) is the relevant thermal eigenfunction and A=2/7.

The nonlinear evolution then generates a finite value for
the physical compressibility (3.6) in the # — oo limit.

, (3.7)

B. T<T.,

The RG flow (3.7) is quite different slightly below the
critical temperature: In this case 7 is negative, the linear
evolution (3.7) drives the compressibility towards negative
values [16] and we might expect that the argument of the
logarithm in the fully nonlinear evolution equation (3.4)
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goes negative thereby generating singularities at finite
cutoff @ =exp(—t). This scenario, advocated in Ref. [7],
is forbidden, however, by a general theorem in the case of
the exact RG transformation [9] and does not occur even
for the approximate RG-LPA evolution (3.4) as we are
going to show. By taking the second derivative of Eq.
(3.2) with respect to x and defining the variable

Wy (x)
OWolx) |

dx?

2

ug(x)=In (3.8)

we cast the evolution equation for the logarithm of the
dimensionless inverse compressibility in quasilinear form:

w. ou %u
00 =2Q__l—_a ZQQd_l . (3.9)
X

a0 2
In the region where uy(x) is negative and large, this
equation can be simplified by neglecting exponentially
small terms and the resulting evolution can be easily in-
tegrated giving

ug=2x>—x3)Q 4% (3.10)

which is clearly free of any singularity at finite cutoff.
The same analysis can be equivalently carried out for the
renormalized equation (3.4). This asymptotic solution de-
scribes the behavior of the compressibility within LPA
inside the coexistence curve and in fact has been obtained
by assuming that the evolution drives the logarithm of
the inverse compressibility to negative values. We see
that fluctuations inhibit van der Waals loops and instead,
the inverse compressibility tends to zero in the whole re-
gion |x| < x, thereby reproducing flat isotherms, i.e., the
phenomenological Maxwell construction in the Q—0
limit. Equation (3.10) is consistent with our assumption
of large and negative uy(x) in the region |x|<x, for
d >2. The solution, however, breaks down at x ==*x,
where our analysis is not valid any more and the
compressibility should attain a finite value. Therefore,
we are led to identify x, as the coexistence density mea-
sured from p,.

The way in which the solution inside the coexistence
curve (3.10) matches with the external solution, is a deli-
cate issue which can be solved by a careful analysis of the
evolution equation (3.9). In order to extract this informa-
tion, it is convenient to look more carefully at the region
X ~Xxg, i.e., at the behavior of the compressibility near the
coexistence curve. The form of Eq. (3.10) suggests a den-
sity rescaling of the form:

z=(x —x)Q 972, (3.11)

The relevant dependence on Q can be eliminated from the
exact evolution equation (3.9) by the shift

Up=ug—(4—d)nQ . (3.12a)
By use of these variables, the equation becomes
% |p9Y% _ ;5,3 4
e QaQ (d —2)z 3 +(4—d)
d’U,
= L1270 1r042. (3.120)

2 9z
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By neglecting the last term, which vanishes in the Q —0
limit, we obtain an asymptotic evolution equation, valid
in the neighborhood of the coexistence curve. If d <4,
for every value of x,, i.e., at any point of the coexistence
curve, this equation admits a fixed point solution satisfy-
ing the boundary conditions:

UQ(Z)Z‘:;‘XOZ R (3.13a)
4—d
U, ~ — .
Q(Z)z—>+oo d_zlnz (3.13b)

Equation (3.13a) is required by the correct matching with
the solution (3.10) in the two-phase region while (3.13b)
guarantees finite compressibility outside the coexistence
curve.

This fixed point solution has the unphysical feature to
give a diverging compressibility at coexistence: the coex-
istence curve therefore merges with the spinodal curve in
this approximation [17]. The asymptotic behavior pre-
dicted by our solution is

_xo)_(4—d)/(d—2) (3.14)

X~ (x
near the phase boundary. This solution, as pointed out
before, is consistent with our evolution equation (2.16)
only for d <4 and in fact the “critical exponent” in Eq.
(3.14) vanishes when the dimensionality tends to the
upper critical dimension 4. Therefore we conclude that
the basic OZ ansatz (2.15) cannot be justified, at least for
dimensionality lower than four but we expect that a more
realistic description of the behavior near coexistence can
be obtained for sufficiently high dimensions.

The reason for such a different behavior in d > 4 can be
traced back to the relevance of the fluctuation corrections
to the position of the phase boundary when the dimen-
sionality is increased. In fact, if we assume that the coex-
istence density x, moves with Q as

xo(Q)~xo—aQ+ - -

and we rescale the density according to Eq. (3.11), we get
the asymptotic solution

(3.15)

ug~uo—In[1+exp(—4aze °+b)] (3.16)

with the correct behavior at z—* . Contrary to the
solution (3.14), this form shows the expected discontinui-
ty of the inverse compressibility at coexistence [propor-
tional to exp(u,)] and suggests that momentum-space
RG in LPA is able to describe, at least qualitatively, the
phenomenon of spontaneous symmetry breaking for sca-
lar field theories in d > 4.

IV. NUMERICAL RESULTS

The asymptotic analysis presented in Sec. III on the
possible behaviors of the evolution equation (3.2) near
phase transitions must be supplemented by the accurate
numerical solution of the partial differential equation in
order to be fully convincing. We have carried out such a
numerical study starting from an initial condition of the
form (3.5) for a fixed value of the “interaction” u =0.05
and different “temperatures” r and spatial dimensions
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d >2. We have solved Eq. (3.9) using a fully implicit,
predictor corrector, finite difference method [18] which
we found particularly convenient for equations of quasi-
linear structure. Some numerical isotherms below the
critical temperature are shown in Fig. 1 for d <4 and
compare quite favorably with the predictions of the
asymptotic analysis. A flat portion of the isotherms is
clearly visible in the figure, in agreement with the analyti-
cal results of Sec. III. The coexistence curve can be
identified without ambiguities from the numerical data,
due to the exponential character (3.10) of the divergence
of the compressibility in the two-phase region. The nu-
merical solution is stable with respect to a substantial
refinement of the numerical mesh and the predicted
power-law divergence (3.14) of the compressibility at
coexistence can be accurately extracted from the data. A
plot of the coexistence density in the neighborhood of the
critical point for d =3, as a function of the reduced tem-
perature (Fig. 2) shows the expected power-law behavior

xo(P)~|r—r,.|P 4.1)

consistent with the scaling laws and the critical ex-
ponents obtained above T, (8=0.345) [11].

The results at and above dimension 4 are instead re-
ported in Fig. 3 and show the expected dramatic
difference with respect to the cases previously discussed.
The inverse compressibility still vanishes exponentially in
the coexistence region but is characterized by a sharp
discontinuity at the phase boundary. This discontinuity
is clearly visible from the numerical output, because there
is always exactly one mesh point at an intermediate value
of the compressibility no matter which is the mesh spac-
ing.

Therefore, as anticipated, we must conclude that above
four dimensions, momentum space RG in LPA is able to
reproduce both a flat isotherm in the two-phase region
and the correct discontinuity of the compressibility

1 P/px

FIG. 1. Inverse compressibility (in arbitrary units) as a func-
tion of density normalized to its value at coexistence. The re-
sults of the numerical integration of the evolution equation
(2.16) are shown for three different space dimensionalities
D =25,3,3.5.
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FIG. 2. Density-temperature plot of the coexistence curve
close to the critical point in D =3. Dots are the results of Eq.
(2.16) while the continuous line is a power-law fit corresponding
to the critical exponent 8=0.353.

across the coexistence curve. Then, we can ask whether
the free energy as a function of the density is analytic
outside the coexistence curve or presents an essential
singularity at coexistence. It is quite difficult to extract
this information from the numerical results because
essential singularities are rather elusive and cannot be
easily detected. A stringent condition for the occurrence
of essential singularities is the vanishing of the radius of
convergence of the Taylor expansion about the singulari-
ty. For the Ising model the expected behavior for the nth
derivative of the thermodynamic potential with respect to
the external magnetic field [3] is

FEdln.:

~K"(n!)d/(d_”
" dh”

r=0"

(4.2)

in agreement with the droplet model predictions [2]; we
recall that in the lattice-gas picture the magnetic field A
in (4.2) is replaced by the chemical potential. The actual

)

1 P/Px

FIG. 3. Same as Fig. 1 for space dimensions D =4, 7.
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computation of these high-order derivatives of the nu-
merical solution of our partial differential equation is
rather delicate but can be pursued at least for the first ten
derivatives. The results in d =4 and d =5 are shown in
Fig. 4 as a function of In(n!) and strongly suggest a rapid
increase of F, with n! at an approximate rate F, ~(n!)>.
Such a behavior would imply that the presence of an
essential singularity at coexistence is reproduced by this
RG treatment. However, the form of the singularity in-
dicated by the numerical fit does not agree with the Ising
model exact result (4.2) pointing out a quantitative inade-
quacy of our equation.

Notice that both the discontinuous behavior of our
solution across the coexistence curve and the numerical
indication of an essential singularity of the inverse
compressibility are features generated by the strong non-
linearities of the evolution equation (2.16). In fact, in or-
der to reproduce these results, it is crucial to keep track
of all the correlation functions of arbitrarily high order,
i.e.; to introduce an infinite number of coupling constants
in the renormalized field theory. Any truncation, e.g.,
keeping only the mass term and a quartic interaction in
the renormalized Hamiltonian [16], drastically changes
the long-wavelength evolution and a mean-field-like free
energy is recovered: the flat portion of the isotherms
disappears while the van der Waals loop and the spinodal
curve survive in the Q —0 limit. Therefore, even if a re-
normalization procedure which takes into account just
quartic interactions shows a qualitatively correct critical
behavior, it fails in describing some important features of
the symmetry-breaking phenomenon in any space dimen-
sionality, d >4 included. The standard analysis of
momentum-space RG equations within the framework of
€ expansion [16], amounts to solving the differential equa-
tions up to a given length scale, usually chosen by requir-
ing that the renormalized correlation length is of the
same order as the lattice spacing. Then, the RG flow has
driven the Hamiltonian into a noncritical region and
mean-field approximation can be used to evaluate ther-
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FIG. 4. Plot of the absolute value of the nth derivative of the
free energy at coexistence as a function of n!. Data are obtained
by solving numerically Eq. (2.16) for space dimensions D =4, 5.
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modynamics and correlations. In the language of HRT,
it means that the integration of Eq. (2.16) (which is exact
to order €) is not carried out up to zero wave vector Q as
it should but it is arbitrarily stopped at a minimum Q.
Beyond this momentum cutoff, the standard RG pro-
cedure assumes that the free energy is not affected by the
inclusion of fluctuations of longer wavelength. This can
actually be checked above the critical temperature by ex-
plicitly solving the RG equation up to zero cutoff wave
vector: The resulting free energy does not appreciably
differ from the RG estimate and the critical properties
are correctly reproduced by the matching prescription.
The picture, however, drastically changes below the criti-
cal temperature where the matching prescription allows
one to correctly describe the shape of the coexistence
curve and the universal amplitude ratio C, /C_ between
the values of the compressibility on the critical isochore
and on the coexistence curve, respectively, above and
below the critical temperature. Instead, as we have
shown, the correct integration of the evolution equation
(2.16) predicts an infinite compressibility on the coex-
istence curve (i.e., C, /C_ =0) for all dimensions below
four. From this point of view, such a behavior is actually
unexpected because Eq. (2.16) contains the correct first
term in the € expansion and therefore is expected to
reproduce the exact critical properties at least in
d =4—e. A possible explanation is that during the RG
evolution beyond the matching point the approximation
(2.15), the only approximation in our theory, breaks
down near the coexistence curve and a more complicate
momentum dependence of the direct correlation function
is generated by the RG flow within the coexistence curve.
We will further elaborate on this point in Sec. VI.

V. APPLICATION TO THE THREE-DIMENSIONAL
ISING MODEL

In the two previous sections the asymptotic form (2.16)
of the evolution equation for the free energy, which con-
tains the universal features of the phase transition, has
been analyzed in detail. If we want to extract also the
nonuniversal properties of the system we must, however,
integrate the full evolution equation (2.12). To this end,
we need a closure relation involving the direct correlation
function @y (k)= —1/F,(k). In order to match with the
above description in the critical region, the OZ form
(2.15) for C@y(k) must be recovered in the long-
wavelength limit. A natural way to extend the relation
(2.15) outside the critical region is to assume that C,(k)
depends on the wave vector k only through the Fourier
transform of the attractive part w(r) of the interaction
[19] (we recall that in our case the direct correlation func-
tion of the reference system, in momentum space, does
not depend on k). For the three-dimensional, nearest-
neighbor lattice gas we have [see (2.3)]

¢(k)=6Bwy (k) ,

where we have introduced the nearest-neighbor Fourier
transform

y(k)=4(cosk, +cosk, +cosk,) .

(5.1)

(5.2)
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The form (2.15) for the direct correlation function in the
limit k—O0 and the compressibility sum rule (2.13) are
then obtained if we state
82.>4Q
@Q(k)= % +By(p, T)[1—y(k)] .

. (5.3)

We note that with this choice the integrand at the right-
hand side of Eq. (2.12) is a function of y(k), so that the
integration surfaces 2, can be conveniently taken as the
equipotential surfaces in momentum space ¥ (k)=const.
The coefficient By(p, T) in (5.3) is chosen so as to ensure
that the radial distribution function at zero separation
8o(r=0) vanishes for every Q due to the singular on-site
repulsion vy (r) which prevents each lattice site from be-
ing occupied by more than one particle. If we turn to the
picture of the model as a system of interacting spins
s;==1 on each lattice site j, this amounts to requiring
that our choice for the direct correlation function
correctly implies the relation (s J;) =1 for the mean value
of the spin squared. Since the radial distribution function
8¢(r) is related to the Fourier transform of the structure
factor Sy(k)=—1/pcf(k), the constraint gu,(r=0)
=(0—the so-called core condition— gives rise to an in-
tegral condition for the direct correlation function. The
closure relation (5.3) then resembles the well-known opti-
mized random-phase approximation (ORPA) of liquid
state, which in turn is equivalent to the lowest order of
the I'-ordered approximation in a lattice gas [20]. How-
ever, in our case, the coefficient B, is not given by its
high-temperature limit — 68w but instead is free to adjust
itself in order to satisfy both the core condition and the
evolution equation (2.12). Since the core condition in-
volves the short-range behavior of the system, we expect
that it does not affect the universal features of the theory
in the critical region. In fact, according to Sec. III, the
critical behavior is uniquely determined by the asymptot-
ic equation (2.16), which in turn depends only on the OZ
approximation (2.15) and on the compressibility sum rule
(2.13) fixing the behavior of Cy(k) in the long-
wavelength limit. Nevertheless, this condition must be
taken into account if we want to achieve an accurate
description of the system over the whole phase plane.

The evolution equation (2.12) and the core condition
supported by the closure relation (5.3) give rise to a
closed system of two integrodifferential equations. A de-
tailed derivation has been reported elsewhere [21]. The
integration of these equations has been performed numer-
ically starting from the reference system-—namely, the
hard-core lattice gas without nearest-neighbor
attraction—to end up with the fully interacting one. The
results are in agreement with those given in Secs. III-1V.
In the present case, also the nonuniversal properties of
the model can be obtained; here they are reported in
terms of the usual magnetic quantities. In particular, we
get for the critical temperature the value
kT, /6J =0.7553, where J =w /4 is the usual ferromag-
netic coupling constant of the Ising model. This result is
to be compared with the “exact” one kT, /6J =0.7518,
obtained by extrapolation of series expansions [22]: we
see that the agreement is quite good (within less than
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0.5%). It is worthwhile noticing that this value can be
obtained either looking for the divergence of the iso-
thermal susceptibility y (the compressibility in the
lattice-gas description) above T, or for the vanishing of
the spontaneous magnetization m, below T,; this shows
that in the present approach the critical point is
recovered starting both from the ordered and the disor-
dered phase. The value of the critical exponents ¥ and 8
are in agreement with those reported in Secs. III-IV
y=1.378,8=0.345. We recall that these values are ex-
pected for any closure which satisfies the OZ approxima-
tion (2.15). They differ from the correct values by about
10%.

The inverse reduced susceptibility 1/x,.q=1/kTY
below the critical temperature as a function of the mag-
netization m is shown in Fig. 5. As expected on the basis
of the analysis developed in the two previous sections, the
susceptibility is indeed infinite over a finite interval,
which can be then unambiguously identified as the coex-
istence region. Moreover, for the three-dimensional sys-
tem under study, the inverse susceptibility remains con-
tinuous when one crosses the coexistence region, in con-
trast with the true behavior of the model. In the figure
we also show the value of 1/y,.4 obtained by summing a
large number of terms in the low-temperature expansion
[23]. By plotting the amplitude of the coexistence region
as a function of temperature we get the spontaneous mag-
netization curve, which is shown in Fig. 6 together with a
Padé approximant.

The behavior inside the coexistence region deserves
some more attention. In this region the function uy
defined in (3.8) diverges as the fully interacting system is
approached due to the vanishing of the inverse suscepti-
bility. It can then be seen that in the rather elaborate
structure of our equations several cancellations occur; if
we take them carefully into account, we are able to satis-
fy the core condition within numerical accuracy even at

15 L e T T
T ™7 T T

10 -

1/Xrea

| PR S S S SN SO ST SR S NN S S S
0.955 0.96 0.965 0.97 0.975
m

FIG. 5. Inverse reduced susceptibility as a function of mag-
netization for the Ising model in D =3 below the critical tem-
perature (kT /6J =0.47). Continuous line: present theory;
dashed line: data from low-temperature expansions.
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FIG. 6. Coexistence curve for the Ising model in D =3.
Dots: present theory; continuous line: Padé approximant.

coexistence. It is found that as u, diverges the core con-
dition can be verified for finite B, if one has uy ~1/Q for
Q@ —0, which is consistent with (3.10) for d =3. In Fig. 7
we report B, for the completely interacting system as a
function of the magnetization m on an isotherm below
T.. We note that, as we cross the coexistence region,
B, varies very sharply, although continuously.
The value of By, on the boundary of the coexistence re-
gion can be directly extracted from the core condition by
setting the inverse susceptibility to zero; this gives
By=—24W,/(1—m?) for every temperature, where
W,==0.252731 is the Watson function W(x) in three di-
mensions evaluated at x =0 [24]. However, it can be
seen that as we move inside the coexistence region, i.e., as
the magnetization m is decreased, By does not depend on
m any more, being locked to its boundary value instead
of decreasing in modulus as predicted by the above ex-
pression. This surprising feature shows that at the interi-
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FIG. 7. Curvature B of the direct correlation function [see
Eq. (5.3)] at convergence for the Ising model in D =3 as a func-
tion of magnetization below the critical temperature
(kKT /6J =0.55). Notice the sharp flattening in the two-phase
region.
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or of the coexistence region the limit with respect to Q in
the core condition, which reads as an integral condition
in momentum space, cannot be moved inside the integral,
so that the limiting behavior of B, does not coincide with
the result obtained naively by setting 1/xy=0 in the core
condition itself, although the two values match at the
boundary of the coexistence region. As the temperature
is lowered, the absolute value of B, rapidly increases due
to the corresponding increase in the spontaneous magne-
tization m,. Since B, determines the curvature of the
direct correlation function C@y(k), this causes the direct
correlation function below T, to be very steep near k=0
JSor each point inside the coexistence region. The physical
meaning of this momentum dependence will be analyzed
in the next section.

VI. CRITICAL DISCUSSION

In the previous sections we have provided analytical
and numerical evidence showing that the local potential
approximation to momentum-space RG equations for the
Ising model is free of singularity for any finite cutoff Q
above and below the critical temperature and correctly
predicts flat isotherms in the two-phase region. Howev-
er, the same analysis has pointed out some severe
deficiencies of this approximation particularly for space
dimensionality d <4 where an infinite susceptibility along
the coexistence curve has been found. The character of
the approximation used to derive the RG equations is
more clearly discussed within the framework of the
hierarchical reference theory of fluids [11] which shows
that LPA is exactly equivalent to an Ornstein-Zernike ap-
proximation (2.15) for the direct correlation function of
the Q system, a system where fluctuations of a wave vec-
tor smaller than Q remain bounded. Moreover, the study
of the Ising model, where a short distance condition (the
core condition) is introduced for determining the range of
the direct correlation function @Q(k), shows the tenden-
cy of @, to acquire a rapidly varying momentum depen-
dence across the coexistence curve (see Fig. 7) and to sub-
stantially modify its range in the two-phase region. This
suggests that the origin of the spurious behavior we find
resides in the oversimplified OZ approximation (2.15)
which misses some important feature of the k dependence
of the direct correlation function below the critical tem-
perature. As long as we stay outside the two-phase re-
gion, we have no reason to believe that Eq. (2.15) is quali-
tatively incorrect and in fact the extrapolations for the
correlation function of the Ising model based on low-
temperature expansions [19] confirm this approximate
behavior at long wavelengths. However, Eq. (2.15) is ob-
viously incorrect inside the two-phase region, at least in
the physical, Q =0, limit where the direct correlation
function is known to have a discontinuity at X =0 due to
the occurrence of long-range order in the system [25].
This is an immediate consequence of the long distance
behavior of the spin-spin correlation function when a
nonzero spontaneous magnetization m, is present in the
model which, in zero field, reads as

(SoSg) — mj. 6.1)
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A spontaneous magnetization generates a &-function
singularity at kK =0 in the structure factor which, via the
Ornstein-Zernike relation, implies a vanishing direct
correlation function at zero momentum. However, if the
momentum is finite the structure factor is regular and the
direct correlation function is expected to have a smooth
dependence on the wave vector k with a finite limit for
k —0 related to the susceptibility of the model at coex-
istence. Then we see that Eq. (2.15) cannot be a qualita-
tively correct approximation at least at Q =0 because it
forces the direct correlation function to remain continu-
ous in k also in the two-phase region. In order to better
investigate the expected momentum dependence of
€y (k) at nonzero Q, we notice that the effect of the cutoff
Q is qualitatively analogous to enclosing the system in a
box of size L ~1/Q. In fact both procedures eliminate
the phase transition by inhibiting fluctuations at long
wavelengths. Therefore we may estimate the k depen-
dence of €, by using the long distance behavior, Eq.
(6.1), of the spin-spin correlation function only for dis-
tances smaller than the “correlated box size” 1/Q. In
this way we find that @ (k) scales like

Cok)=Q%m;?F(k/Q), (6.2)

where the scaling function F(x) is analytic at small x and
depends on the details of the ‘“box.” In particular, if we
specialize to k =Q (i.e, the value entering the evolution
equation of the free energy) we get Cy(k =Q)~ Q¢ inside
the coexistence curve, a behavior which agrees with the
scaling result based on the hypothesis of a “discontinuity
fixed point” governing first-order transitions [6]. Let us
explore the consequence of such an expected k depen-
dence within momentum-space RG by replacing Eq.
(2.15) inside the two-phase region with the simple analyti-
cal form

@Q(k)k:o@Q(O)_bkd (6.3)
which satisfies the compressibility sum rule in the k —0
limit and also introduces the Q¢ scaling expected in the
Q—0 limit. According to the previous analysis, the
range b of the direct correlation function should scale as
mgy % which diverges as the spontaneous magnetization
vanishes, i.e., when the critical point is approached from
below. Of course the specific form of Eq. (6.3) has no mi-
croscopic justification and has been adopted here just to
investigate the effects of a Q¢ scaling within the
momentum-space RG. By substituting Eq. (6.3) into our
asymptotic evolution equation (2.14) we get the following
equation for the free energy replacing Eq. (2.16):

g 2

FA
———2 +p0?
op

4" ln 5 (6.4)

which formally corresponds to a scalar field theory with a
higher derivative in the kinetic term. The analysis of the
long-wavelength solutions of this equation proceeds along
the same lines of Sec. III, the only change being the ab-
sence of renormalization for the reduced density x of Eq.
(3.1) in order to eliminate the explicit occurrence of Q
from Eq. (6.4). As a consequence, the RG equation for
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the renormalized Hamiltonian Hj, in the two-phase re-
gion becomes

OH, +1
dH, 1 dx?
—dH.=—
at d t 211'1 ath > (6.5)
+1
ax2 0

where H and ¢ are defined by Eq. (3.3). A line of fixed
points of Eq. (6.5) can be found analytically in arbitrary
dimension and is given by

fOiHI dy

in terms of the parameter w < 1 whose nonuniversal value
depends on the details of the short-wavelength evolution.
Remarkably, the fixed point solution (6.6) is defined only
on a finite density domain |x| <|x,| determined by the
positiveness of the radicand at left-hand side of Eq. (6.6).
This clearly corresponds to the region of the phase dia-
gram where phase coexistence is allowed and the limiting
value of the rescaled density x, then corresponds to the
spontaneous magnetization mg. This result, through Eq.
(3.1), implies that my~x,/V (b), which is consistent with
the proposed scaling b ~m 2, The presence of such a
solution to the RG equations would imply that also first-
order transitions and the phenomenon of phase separa-
tion may be described in terms of fixed points and that in
the two-phase region all thermodynamical quantities,
such as free energy or inverse susceptibility, scale as Q€.
This result immediately follows from the adopted scaling
of density and free energy. Invoking the qualitative simi-
larity between our momentum cutoff procedure and a
finite-size scaling with box length L ~1/Q, our approach
reproduces the known finite-size scaling behavior at first-
order transitions derived by use of field theory methods
[26]. Moreover, a fixed point like (6.6) can be interpreted
as the momentum-space version of the extensively longly
sought discontinuity fixed point whose actual occurrence
has never been convincingly proven within the frame-
work of RG [6,9].

In order to investigate the interesting problem of
singularities along the coexistence curve and the match-
ing between the critical domain and the two-phase re-
gion, we need a form for the direct correlation function at
cutoff Q able to reproduce an Ornstein-Zernike form
(2.15) for the homogeneous system and a scaling form of
the type (6.2) inside the coexistence curve. This requires
a more elaborate ansatz for €y(k) which can be self-
consistently determined by explicit use of the second
equation of the HRT hierarchy [11]. More specifically,
the exact evolution equation for the direct correlation
function (or, in field theory language, for the propagator)
can be derived in the same way presented in Sec. II and
involves the three- and four-point direct correlation func-
tions at cutoff Q. If we adopt a closure relating these
many-particle correlation functions to Cy(k) we obtain
new RG equations which, in principle, allow a self-
consistent determination of the momentum dependence
of the propagator and therefore do not require an ad hoc

—1/2
(6.6)

= x|

%(l—ez‘i”)+2y
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parametrization like Eq. (6.3) for reproducing the correct
behavior at coexistence. A possible closure of this type
has already been proposed in Ref. [11] and has the fur-
ther advantage to allow for a nontrivial critical exponent
7170 which, in fact, turns out to be correct at second or-
der in the € expansion.

In summary, an accurate analysis of the momentum-
space RG for a scalar field theory (or equivalently for the
Ising model) shows that the local potential approximation
does not generate singularities in the RG flow either
above or below the critical temperature. On the con-
trary, this approximation is able to reproduce rigorously
flat isotherms in the two-phase region by suppressing the
van der Waals loops present in mean-field treatments.
However, the singularity at coexistence is not properly
described by LPA and a diverging susceptibility along the
phase boundary is found in d <4. The origin of this un-
physical behavior is clarified by use of the hierarchical
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reference theory of fluids which provides a different inter-
pretation to the RG equations and suggests the correct
scaling which may eliminate the spurious features of
LPA in the two-phase region. The resulting approxima-
tion also provides a fixed point description of the
symmetry-breaking phenomenon quite similar to the
discontinuity fixed point picture of first-order transitions.
A self-consistent scheme for implementing a momentum-
space RG able to reproduce the correct features of phase
coexistence has also been proposed.
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