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Wave propagation in an excitable medium along a line of a velocity jump
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The propagation of an excitation wave in a distributed medium along a stripe with increased velocity
is shown to result in the formation of a stationary V-shaped wave structure. The propagation velocity of
this structure depends on the width of the stripe due to effects of wave curvature. We observed this

phenomenon in a light-sensitive version of the Belousov-Zhabotinsky system under nonhomogeneous il-

lumination. Equations are derived that describe quantitatively the observed wave structures and applied
to estimate the diffusion coefficient of the propagator species.

PACS number(s): 05.70.Ln, 82.20.Mj, 82.20.Wt, 87.90.+y

A wide class of self-organization processes in complex
physicochemical systems is closely related to wave propa-
gation in so-called excitable media [1—3]. A distributed
excitable medium [e.g. , the chemical Belousov-
Zhabotinsky (BZ) reaction [1] or heart muscle [2]] con-
sists of locally coupled active elements which can form a
pulse in response to an external signal. Such pulses travel
through the medium as autowaves. Their properties
differ significantly from acoustic or electromagnetic
waves in conservative systems. For instance, they annihi-
late under collisions, are not rejected from boundaries,
and their velocity depends on the local wave-front curva-
ture.

We report the observation of a stationary-wave pattern
propagating along a thin stripe with higher velocity
placed in a homogeneous medium with lower velocity.
The wave front in a region surrounding the stripe is tilted
with respect to the propagation direction but it is Hat,
whereas the front inside the stripe is strongly curved.
Hence such an experiment produces an effective and sim-
ple means to study the curvature-speed relationship. In
particular, we have measured the dependence of the
propagation velocity of the V-shaped structure on the
width of the stripe and then elaborated a mathematical
description of the experimental results using the kinemat-
ical theory of autowave patterns [4,5]. This leads to an
estimate of the important phenomenological parameter
D, which is the slope of the linear dependence of au-
towave velocity on local curvature.

Experiments were performed by using a light-sensitive
version of the BZ reaction. In this system the reduced
state of the catalyst rutheniumbipyridyl [Ru(II)] pro-
motes the autocatalytic production of the crucial propa-
gator species HBrOz. Once this complex is photochemi-
cally excited to RU(II)' it catalyzes the production of the
inhibitor Br [6,7]. Using this mechanism it is possible
to control the local excitability of the system by the in-
tensity of the applied illumination [8—11]. In particular,
the illumination decreases the velocity of a wave.

In order to avoid hydrodynamic perturbations, a silica
gel (thickness 0.6 mm, diameter 7 cm) was used as a ma-
trix of the reactive solution in which the catalyst
Ru(bpy)3 + (4 mM) was immobilized [12]. Disregarding

the bromination of malonic acid, the initial reactant con-
centrations in the gel are calculated as follows: 0.09M
NaBr, 0.2M NaBr03, 0. 17M malonic acid, and 0.47M
HzSO4. The temperature was kept fixed at (24+1) 'C. In
this system waves propagate for approximately 3 h. To
avoid drift effects due to slow aging of the solution the
measuring times were kept as short as possible.

The observation light, which also controlled excitabili-
ty, was emitted from a high-pressure mercury lamp (150
W). Two-dimensional transmission through the reactive
layer was recorded by a charge-coupled-device camera
(Hamamatsu C3077) at 490 nm and stored on a time-
lapse video recorder. Single frames of the resulting
movies were digitized by an image-acquisition card
(Data-Translation DT-2851) and finally analyzed on a
personal computer.

We induced in the experiments almost planar wave
trains of constant period (T=35+1 s) propagating in an
illuminated medium. By using black stripes, which
blocked the observation light, we created a region with a
higher excitability and, correspondingly, with faster wave
propagation. The stripes were oriented perpendicularly
to the wave fronts. Their length was approximately 4 cm
with half widths (half the value of the width of the stripe)
8 of 0. 1 —2. 1 mm. Due to the different propagation ve-
locity inside and outside the stripe the planar waves
transformed to V-shaped ones in the course of time (see
Fig. 1).

Characteristic properties of stationary-wave propaga-
tion in this inhomogeneous medium were measured for
different half widths 8 of the dark stripes. Five or six
stripes with increasing 8'were used in succession during
one experiment. Each measurement was performed after
a waiting period of 150 s, during which the pattern
achieved a new steady geometry. Figure 2 shows charac-
teristic experimental snapshots taken immediately after
removing the dark stripes. The leading, highly curved
portion of the front is located inside the well excitable re-
gion, whereas the fronts in the unperturbed illuminated
surroundings are tilted with respect to the initial front
orientation. The angle P between the tilted front and the
planar wave increases with increasing values of half
width 8'. Figure 3 describes the dependence of the wave
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FIG. 3. Dependence of propagation velocity U on stripe half
width &obtained in two different experiments.
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FIG. 1. Waves of excitation in a light-sensitive BZ system
propagating along a dark stripe (half width 1.0 mm) with higher
velocity. Initially planar waves become V-shaped and achieve a
new steady geometry.

velocity U along the stripe boundary on half width 8 us-

ing the data obtained from two typical experiments. The
value of U for 8'=0 is the normal velocity of planar
fronts in the homogenous, illuminated medium ( U= 82
pm/s). The velocity U increases rapidly with 8'and sat-
urates at approximately 97 pm/s. The velocities are de-
rived during a 21-s interval from waves that have passed
already 1.5 cm along the dark stripe. Careful analysis

confirms that the velocity U and the angle p at this dis-
tance have increased to steady values.

The pattern in Fig. 1 is similar to shock-wave struc-
tures, for instance, created by sound propagation along a
wire surrounded by a liquid [13]. For such an acoustic
system the sound velocities V& in the wire and V2 in the
liquid are constant, with VI & V2. In the liquid one can
observe Rat acoustic waves tilted with respect to the wire
by an angle p, which satisfies the equation cosp= V2/V, .
We emphasize, however, that in our case the propagation
velocity along the high-velocity stripe is not constant, but
depends on the width of the stripe.

The theoretical explanation of the observed phenome-
na is based on the kinematical description of autowaves
[4,5]. Let us consider the autowave front propagating
through a long excitable channel ( L~x L)—with im-
permeable boundaries and with a stripe of high velocity
placed on the symmetry axis (

—W ~x ~ W) (see Fig. 4).
The normal velocity V of each point of the front depends
on the local curvature K:

V= V0+DK .

Here V0 is the velocity of the planar autowave. For
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FIG. 2. Shapes of autowaves observed immediately after re-
moving the dark stripes of different half width. Half width 8
and observed angle Ps: (a) W=0. 28 mm, Ps = —26.4'; (b)
W=0. 83 mm, Ps = —35.7'.

FIG. 4. Stationary shape of a wave front computed from the
analytical solution (6) and (7) of Eq. {4). Parameter values:
V„=97.9 pm/s, V, =77.9 pm/s, U=83.9 pm/s, Ps, =17.9',
L =1.44mm, 8'=0. 1 mm, a=4.5X10 cm /s.
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V= U cosP, (2)

where P is the angle between the x-axis and the tangent
to the front.

Inserting (2) into (1) we obtain

DK= UcosP —Vo,

Since K =dP/ds, where s is the arclength, we finally have

d =(U cosP —Vo)/D .
ds

(4)

Equation (4) has an exact analytical solution, but the
form of this solution differs from the cases U& Vo and
U) Vo. Hence we need to describe the parts of the front
inside and outside the dark stripe in different ways. For
this it is convenient to rewrite (4) using Cartesian coordi-
nates:

dx

U cosP
—Vo

D cosP
U cosP

—Vo

D sinP

(5)

Due to the symmetry of the pattern it is sufficient to
find the solution of (5) only for the right half of the medi-
um.

For the dark stripe we have Vo= Vd & U. For this case
we can integrate (5) with initial conditions x =0 and

y =0 for P=O and present the shape of the front in para-
metric form:

the BZ system, coefficient D in (1) is of the same order as
the diffusion coefficient of the propagator species HBr02
[14,15], which is about 2 X 10 cm /s. In particular, for
the medium with fixed catalyst, the value of D should be
larger [4,5]. The value Vo difFers for different parts of the
investigated medium: Vo = Vd in the dark stripe
( —W x W) and Vo= V& in the illuminated region
(~x~ L and ~x~ ) W). Due to this difference the initially
Hat wave front should be curved with time. Let us as-
sume that a stationary shape of the front is achieved after
a relaxation process and U is the propagation velocity of
the stationary structure as a whole along the y axis (see
Fig. 4).

One can express the normal velocity Vas

&w 1 U cos~w &1=—ln
D U U cosP —

Vi

Q U —Vi + ( U+ VI )tan(P/2)x(»= +U —V( —( U+ VI )tan(P/2)

(7b)

where Pii, and yii, are the values of P and y at the bound-
ary of the dark stripe, i.e., for x = W.

The front should be orthogonal to an impermeable
boundary. Hence, the angle P=O for x =L. Putting this
boundary condition into Eq. (7a) we get

L —8' 1
ln

UQ U' V,'— 13m

U
(8)

P=P~= —arccos(8i/U) . (9)

Note that the function P~(L) saturates very rapidly
with L. For instance, the angle Pii calculated for
L =1.44 mm (see Fig. 4) differs from the asymptotic
value (9) only by 0.01%. Hence we can use this asymp-
totic value of 13ii to estimate the dependence of the prop-
agation velocity U on the width of the dark stripe which
was observed experimentally.

Since P is a continuous function of the coordinate x, we
substitute x = W and P~=Pii from (9) into (6a). Then
we get the dependence of the propagation velocity U on
the half width W in the following form:

r

D w 2

Vd u u+I —u

The shape of the stationary front computed from the
system (6)—(8) is shown in Fig. 4. This characteristic V-
shaped front is stationary and similar to the wave struc-
tures observed experimentally (Figs. 1 and 2). In our ex-
periments the size of the medium is much larger than the
width of the stripe. The corresponding calculations for
the case L ))W show that the shape of the front in the
region surrounding the dark stripe is close to a straight
line and curved only near the boundary of the medium
(see Fig. 4). The angle Pii, depends on L and the function
X(Pii ) decreases with L. Moreover, for the case of an un-
bounded medium (L = ~ ) the function X(Pii, ) vanishes
and the curve defined by (7) degenerates into the straight
line (similar to the case of shock waves):

x P 2Vd ( Vd+ U)tan(P/2)
arctan

UQ V,' —U' Q V„'—U' X arctan tan(P ii, /2 ) -, (10)
1+u
1 —u

—=—1n [( U —
Vd ) /( U cosP —

Vd ) ] .y 1

(6a)

(6b)

x —W ~ ~w + ln x(P)
x(13~)

' (7a)

Here, x and y are the Cartesian coordinates of the front
within the dark stripe (i.e., for x & W).

For a medium surrounding the dark stripe ( W & x & L)
we have Vc = Vi & U. In this region the solution of (5) is

where u = U/Vd and Pii = —arccos( V& /U).
According to (10) the velocity U of the stationary au-

towave structure is an increasing function of half width
W. The single free parameter in (10) is the unknown
value of coefficient D. By fitting this parameter to the ex-
perimental data we find D=4.5X10 cm /s. The cor-
responding dependence of U on W is plotted in Fig. 5.
For this value of D the theoretical results are in a good
quantitative agreement with the experimental data
presented in Fig. 3. Furthermore, in Fig. 6 we used the
same value of the coefficient D to plot the front shape.
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FIG. 5. Dependence of propagation velocity U on stripe half
width 8' fitted by Eq. (10) (solid line) to one set of the experi-
mental data presented in Fig. 3.

FIG. 6. Shape of the central part of an autowave around the
dark stripe observed in experiment (open circles) and calculated
by Eq. (4) (solid line). Stripe half width 8'=0.41 mm. Boun-
daries of the stripe are indicated by vertical dashed lines.

The results shown in Figs. 5 and 6 demonstrate that
the kinematical theory provides a remarkably good
description of the observed phenomenon. Moreover, the
presented procedure proves to be a good method to esti-
mate the value of D, which is important for the quantita-
tive description of autowave processes in excitable media.
To achieve high accuracy of the estimate we need to wait
about 3 min to be sure that the stationary wave shape is
established. In the closed BZ system that we used the
propagating velocity decreases during this time by about
0.5%%uo. To improve the accuracy of the estimate it will be
helpful to use an open gel reactor for the BZ system [16]
in future studies.

The kinematical consideration is also applicable to the
case of smooth inhomogeneities as considered, for in-

stance, in Ref. [17]. But in such a case it is necessary to
obtain detailed information about the value of the planar
wave velocity in all parts of the excitable medium. In our
case of the velocity jump, the main reason for existence of
the observed stationary patterns is the dependence of nor-
mal propagation velocity on local curvature of the wave
front. Since curvature-related effects are a common
feature of autowaves, similar phenomena should be also a
specific property of other types of excitable systems in
physics and biology.
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