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We investigate the effect of two-level crossings on the traffic jam in the cellular-automaton (CA) model
of traffic flow. The CA model is an extended version of the traffic-flow model proposed by Biham,
Middleton, and Levine [Phys. Rev. A 46, R6124 (1992)]. Its model is described in terms of the CA on
the disordered square lattice with two components: one is the site of three states representing the one-
level crossing and the other is the site of four states representing the two-level crossing. We find that the
dynamical jamming transition does not occur when the fraction ¢ of the two-level crossings becomes
larger than the percolation threshold p,. (¢ >p, ). The dynamical jamming transition occurs at higher
density p of cars with increasing fraction ¢ of the two-level crossings below the percolation threshold
(¢ <pp,c). We also present a simple mean-field theory for the jamming transition in traffic flow with two-

level crossings.

PACS number(s): 05.70.Jk, 64.60.Ak, 89.40.+k

I. INTRODUCTION

Recently, traffic problems have attracted considerable
attention [1]. The computer simulation of traffic flow in
an entire city is a formidable task since it involves many
degrees of freedom. Biham, Middleton, and Levine [2]
have proposed a simple cellular-automaton (CA) model
to describe a traffic flow in two dimensions. The traffic-
flow model is given by a three-state CA on the square lat-
tice. Each site either contains a car moving upwards, a
car moving to the right, or is empty. They have found
that a dynamical jamming transition occurs at the critical
density p =p_. (p.=~0.3-0.4) with increasing density of
cars. The dynamical jamming transition separates be-
tween the low-density moving phase in which all cars are
moving and the high-density jamming phase in which all
cars are stopped. A real-space renormalization-group ap-
proach has been applied to the jamming transition [3].
However, the mean-field theory analyzing the jamming
transition has not been known until now.

The CA models have been increasingly used in the
simulations of complex physical system [4—6]. The CA
models provide only some general qualitative problems of
the complex system while in other cases useful quantita-
tive information can be obtained.

In real traffic-flow systems, the traffic jam is frequently
relaxed by introducing two-level crossings. The jamming
single-level crossing prevents cars from crossing its point.
By increasing the number of two-level crossings, the
traffic jam is avoided even at a high density of cars. The
occurrence of a traffic jam strongly depends on the num-
ber of two-level crossings.

In this paper, we study the effect of two-level crossings
on the traffic jam in the cellular-automaton model of
traffic low. We extend the CA model proposed by Bi-
ham, Middleton, and Levine [2] to take into account the
two-level crossings. The two-level crossings are random-
ly introduced on the sites of the square lattice. Our mod-
el is described in terms of the CA on the disordered
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square lattice with two components: one is the site of the
single-level crossing and the other is the site of the two-
level crossing. The single-level crossing is described by
the three states that either represent a car moving up-
wards, a car moving to the right, or show an empty state.
The two-level crossing is described by the four states that
either represent two cars moving upwards and to the
right, a car moving upwards, a car moving to the right,
or show an empty state. The traffic jam is due to the
excluded-volume effect of cars. Without two-level cross-
ings, the traffic jam always occurs above the jamming
transition point. However, it is expected that the traffic
jam will not occur above the percolation threshold since
the infinite path connected by two-level crossings (an
infinite cluster of two-level crossings) appears and cars
can be free to move on the infinite cluster. We show that
the dynamical jamming transition does not occur when
the fraction ¢ of the two-level crossings becomes larger
than the directed percolation threshold p,. [7-10].
Below the percolation threshold (c <p, ), the jamming
transition occurs at higher density p of cars with increas-
ing fraction ¢ of the two-level crossings. We also present
a simple mean-field theory for the jamming transition in
the CA model with two-level crossings.

The organization of the paper is as follows. In Sec. II,
we propose the extended CA model of the traffic flow to
take into account the two-level crossings. We describe
the computer-simulation method for the extended CA
model. In Sec. IIl, we present the simulation result. We
show the dependence of the velocity of cars on the densi-
ty p of cars and the fraction c of two-level crossings. We
show the effect of the two-level crossings on the jamming
transition. In Sec. IV, we present a simple mean-field
theory for the jamming transition. Finally, Sec. V con-
tains a brief summary.

II. MODEL AND SIMULATION
We describe the CA model of traffic flow with two-
level crossings in two dimensions, showing the traffic-jam
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transition and the percolation transition. The CA model
is an extended version of the traffic-flow model proposed
by Biham, Middleton, and Levine [2]. The CA model
takes into account the effect of two-level crossings. The
CA model is defined on the square lattice of n Xn sites
with periodic boundary conditions. The traffic-flow mod-
el is given by the CA model on the square lattice with
sites of two components. The one component is the site
of the single-level crossing and the other component is
the site of the two-level crossing. The two-level crossings
are randomly distributed with probability ¢ on the square
lattice and the single-level crossing with probability 1—c.
Each site on the single-level crossings either contains an
arrow pointing up, an arrow pointing to the right, or is
empty. The single-level crossing is described by the
three-state CA. Each site on the two-level crossings ei-
ther contains two arrows pointing up and to the right, an
arrow pointing up, an arrow pointing to the right, or is
empty. The two-level crossing is described by the four-
state CA. The arrow pointing up represents the car mov-
ing up. The arrow pointing to the right represents the
car moving to the right. For illustration, Fig. 1 shows
the CA model with two-level crossings. The car is inhib-
ited from overlapping on the single-level crossing. How-
ever, on the two-level crossing, the car moving up is al-
lowed to overlap the car moving to the right. The move-
ment of cars is controlled by a traffic light. The arrows
pointing up move only in even time steps, and the arrows
pointing to the right move in odd time steps. On even
time steps, if the up nearest-neighbor site is the single-
level crossing, each arrow pointing up moves one step up
unless the up nearest-neighbor site is occupied by the
right arrow or the up arrow. If an up arrow is blocked
above by another arrow, it does not move, even if the
blocking arrow moves out of the site during the same
time step. If the up nearest-neighbor site is the two-level
crossing, each up arrow moves one step up, unless the up
nearest-neighbor site is occupied by the up arrow. If an
up arrow is blocked above by the up arrow, it does not
move even if the blocking arrow moves out of the site
during the same time step. On odd time steps, if the right
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FIG. 1. Schematic illustration of the cellular-automaton
model of traffic flow with two-level crossings. The arrow point-
ing up represents the car moving up. The arrow pointing to the
right represents the car moving to the right. The car moving up
is allowed to overlap the car moving to the right at the two-level
crossing.
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nearest-neighbor site is the single-level crossing, each ar-
row pointing to the right moves one step to the right, un-
less the right nearest-neighbor site is occupied by the
right arrow or the up arrow. If a right arrow is blocked
by another arrow on the right-hand side, it does not
move, even if the blocking arrow moves out of the site
during the same time step. If the right nearest-neighbor
site is the two-level crossing, each right arrow moves one
step to the right unless the right nearest-neighbor site is
occupied by the right arrow. If a right arrow is blocked
by the right arrow on the right-hand side, it does not
move, even if the blocking right arrow moves out of the
site during the same time step.

In this model, the traffic problem is reduced to its sim-
plest form. The essential features are maintained. These
features include the simultaneous flow of cars in two per-
pendicular directions in which cars cannot overlap on the
single-level crossing, and on the two-level crossing both
cars moving up and to the right can overlap. We investi-
gate the effect of the two-level crossings on the traffic jam
in this model. In the original model proposed by Biham,
Middleton, and Levine [2], the jamming transition is due
to the excluded-volume effect of the interaction between
the up and right arrows. However, in our model, the
jamming transition is relaxed by the reduction of the
excluded-volume effect induced by the overlap of cars on
the two-level crossings.

We consider the simulation procedure for the CA mod-
el explained above. The single-level and two-level cross-
ings are randomly distributed, respectively, with proba-
bility 1—c and probability ¢. The densities of right and
up arrows are given, respectively, by p,=p/2 and
Py =p /2 without an overlap of cars, where p is the densi-
ty of cars. Initially, cars are randomly distributed on the
sites of the square lattice without an overlap of cars. The
up arrows move or stop in even time steps according to
the CA rules explained above. Then, in odd time steps,
the right arrows move or stop according to the CA rules.
We have performed simulations of the CA model starting
with an ensemble of random initial conditions where the
system size is n =15-50, p =0.0-1.0, and ¢=0.0-1.0.
Each run is obtained after 10000 time steps. The total
number of arrows of each type is conserved due to the
periodic boundary condition. The total number of up ar-
rows in each column and the total number of right ar-
rows in each row are conserved. They give rise to 2n
conservation rules.

III. SIMULATION RESULT

We present the simulation result obtained by the pro-
cedure described in Sec. II. We have obtained the mean
velocity of cars for the system size 50X 50 by averaging
over 100 runs. Figure 2 shows the plot of the mean ve-
locity {v) of cars against the density p of cars for the
fraction ¢=0.0, 0.5, 0.6, 0.7, 0.8, and 0.9 of two-level
crossings. The mean velocity (v, ) (={v)) of cars mov-
ing to the right equals that (v, ) of cars moving up since
Px=p,=p/2. The mean velocity (v) of cars moving in
a unit time interval is defined to be the number of suc-
cessfully moving arrows divided by the number of ar-
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FIG. 2. Plot of the mean velocity {v) of cars against the
density p of cars for the fraction ¢ =0.0, 0.5, 0.6, 0.7, 0.8, and
0.9 of two-level crossings.

rows. The velocity {(v) has a maximum value (v)=1,
indicating that the arrow is never blocked, while (v )
means that the arrow is stopped and never moves at all.
The curve of ¢ =0.0 corresponds to the velocity distribu-
tion in the original CA model proposed by Biham,
Middleton, and Levine [2] with no two-level crossings.
With increasing fraction ¢ of two-level crossings, the
mean velocity {(v) becomes zero at higher and higher
density p. The point in which the velocity becomes zero
gives the dynamical jamming transition point. The jam-
ming transition point separates between the moving
phase in which cars are moving and the jamming phase in
which all cars are stopped. For the cases with the frac-
tions ¢ =0.8 and 0.9, the mean velocity (v ) of cars never
becomes zero, even at p=1. Generally, an infinite path
connected by the two-level crossings appears when the
fraction ¢ of two-level crossings becomes larger than the
directed percolation threshold p, . =0.7058 [7-10]. This
means that cars can move on the percolating cluster of
the two-level crossings. The dynamical jamming transi-
tion will depend strongly on the percolation transition.
To see the relation between the dynamical jamming tran-
sition and the percolation transition, we show the phase
diagram between the density p of cars and the fraction ¢
of two-level crossings in Fig. 3. The circles indicate the
jamming transition point for the system size 50X 50. The
region on the left-hand and upper sides of the transition
curve represents the moving phase in which cars move.
The region below the transition curve represents the jam-
ming phase in which all cars are stopped. With increas-
ing fraction ¢ of two-level crossings, the jamming transi-
tion shifts to the higher density p. The traffic jam is re-
laxed with the increase of the number of two-level
crossings. Near the directed percolation threshold p, .
=0.7058, the jamming transition point suddenly disap-
pears. This is due to the appearance of the percolating
cluster of two-level crossings. On the percolating cluster
of two-level crossings, cars are free to move since a car
moving up can overlap a car moving to the right on a
two-level crossing. The two-level crossings have an im-
portant effect on the dynamical jamming transition.

TAKASHI NAGATANI 48

! -
1
i i
Percolation
c r threshold ==
05— i
Moving b
phase [ Jamming
- f phase
i !
- b
0 | 1 1 t +J [ R B
0 0.5 1

FIG. 3. Phase diagram between the density p of cars and the
fraction ¢ of two-level crossings. The region on the left-hand
and up sides of the transition curve represents the moving phase
in which cars move. The region below the transition curve
represents the jamming phase in which all cars are stopped.

Above the percolation threshold, the jamming transition
does not occur. Below the percolation threshold, the
jamming transition occurs at higher density p of cars with
increasing number of two-level crossings.

The jamming transition depends on the system size. In
Fig. 4, we plot the transition point p, against the inverse
1/n of the system size for ¢ =0.0, 0.5, and 0.6. By extra-
polation, we estimate the value of the transition point in
the limit of an infinite system size. The estimated values
p. for ¢=0.0, 0.5, and 0.6 are given respectively by
p.=0.42+0.04, 0.4910.04, and 0.5310.04.

The dynamical jamming transition is due to self-
organization induced by the excluded-volume effect. The
percolation transition is due to the appearance of an
infinite cluster of two-level crossings. We show the pat-
terns of cars for the traffic jam in traffic flow with two-
level crossings. Figure 5 shows the typical patterns of
configurations of cars for the density p =0.6 of cars and
the system size 50X 50. Patterns (a) and (b) indicate, re-
spectively, the snapshots obtained for the fraction ¢ =0.5
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FIG. 4. Plot of the transition point p, against the inverse 1/n
of the system size for extrapolation.
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FIG. 5. Typical patterns of cars for the density p=0.6 of
cars and the system size 50X50. The numbers N, and N, of
cars moving up and to the right are N,=754 and N,=714. (a)
Pattern of the jamming phase obtained for the fraction ¢ =0.5
of two-level crossings. (b) Pattern of the moving phase obtained
for the fraction ¢ =0.8. The mean velocity is (v ) =0.89.

and 0.8 of two-level crossings. The cars moving up are
indicated by the vertical bars. The cars moving to the
right are indicated by the horizontal bars. The cross
represents the overlap between cars moving to the up and
to the right at the two-level crossing. In patterns (a) and
(b), the numbers N, and N, of cars moving up and to the

<v>
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FIG. 6. Plot of the mean velocity (v ) against the density p of
cars obtained from the mean-field theory.
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right are N, =754 and N, =714. In pattern (a), the mean
velocity is (v ) =0.0. The traffic jam occurs. In pattern
(b), where the fraction ¢ =0.8 of two-level crossings is
larger than ¢=0.5 of pattern (a), the mean velocity is
(v)=0.89. Almost all cars are moving and the traffic
jam does not occur. With the increase of two-level cross-
ings, the traffic jam is avoided by allowing the overlap be-
tween cars moving up and to the right at the two-level
crossing.

IV. MEAN-FIELD THEORY

We formulate a simple mean-field theory for the jam-
ming transition in traffic flow with two-level crossings.
We derive the mean velocities (v,) and (v,) of cars
moving up and to the right in a consistent manner. We
assume that each right car moves independently with the
mean velocity (v, ), and each up car moves independent-
ly with the mean velocity (v, ). A mean time required
for a right car to stay on a site is given by 1/{v,). A
probability that cars moving to the right prevent a car
from moving up is given by p,(1—c)/(v, ). Therefore,
the mean velocity (v, ) of cars moving up is given by the
probability that right cars do not prevent an up car from
going ahead,

(v, )=1—p,(1—c)/{v,) . (1)

Similarly, the mean velocity {v, ) of cars moving to the
right is given by

(v, )=1—p,(1—c)/(v,) . )

Here, we assumed (v, )70 and (v,)0. By setting
Px=p,=p/2 and solving Egs. (1) and (2), we obtain the
mean velocity (v ) =(v, ) =(v, ) of cars,

1+vi—2p(—0 . 1
—_— 3
- ) , lfp<2(l—c) (3)
(wr= 0 ifp>—1——— (4)
’ T 2(1—¢)’

Figure 6 shows the plot of the mean velocity (v ) against
the density p of cars for the fraction ¢ =0.0, 0.3, 0.4, 0.5,
0.6, and 0.8 of the two-level crossings. Above the frac-
tion ¢ =0.5, the jamming transition does not occur. The
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FIG. 7. Phase diagram obtained from the mean-field theory.
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mean velocity (v ) has a finite value even at p =1. Figure
6 is compared with Fig. 2. The solution of
1—2p(1—c¢)=0 gives the jamming transition point,

c=1—i forc=1. (5)

For ¢ > 1, the jamming transition does not appear. Fig-
ure 7 shows the phase diagram calculated from Eq. (5).
This is compared with Fig. 3. The mean-field theory can
explain qualitatively the dynamical jamming transition
and the percolation transition. However, quantitatively,
the result of the mean-field theory is not consistent with

the simulation result. This inconsistency is due to
neglecting the time-space correlation between cars.

V. SUMMARY

We studied the effect of two-level crossings on the
traffic jam in the traffic-flow model. We found that the
traffic jam does not occur at the fraction ¢ of two-level
crossings above the percolation threshold. Also, we
showed that the jamming transition occurs at higher den-
sity p of cars with increasing fraction ¢ below the percola-
tion threshold. We found the phase diagram representing
the moving phase and the jamming phase. We formulat-
ed a mean-field theory for the jamming transition.
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