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Using nonlinear saturated feedback to control chaos: The Henon map
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We used nonlinear saturated feedback to regulate the motion of chaotic dynamical systems. We stud-
ied the case of the Henon map by controlling both unstable equilibrium points and periodic orbits. A
key issue addressed is that of the geometry of the saturated feedback.

PACS number(s): 05.45.+b

INTRODUCTION

In recent years, there has been a growing interest in the
control of chaotic (both continuous- and discrete-time)
systems [1—9]. Although chaos is a beneficial feature in
heat- and mass-transport phenomena, in many situations
it is an undesirable phenomenon which may lead to vibra-
tions, irregular operation, and fatigue failure in mechani-
cal systems [6]. Given a chaotic system, one would like
to regulate its motion around a reference trajectory, corn-
monly a low-period periodic orbit, in order to obtain im-
proved performance. A central observation is that a
chaotic attractor typically has embedded densely within
it an infinite number of unstable periodic orbits, in addi-
tion to unstable equilibrium points [2].

Departing from existing theories on robust control of
dynamical systems [10], it is possible, in principle, to con-
struct a feedback control which steers the dynamic of a
system to a desired target (equilibrium points, periodic
orbits, etc.). However, in practice such feedback leads
commonly to large, costly, and physically unfeasible al-
terations of the system [1]. Therefore most approaches to
control chaos must assume that only small temporal per-
turbation of accessible parameters are allowed. From a
control-theory viewpoint, the above implies a problem of
control with bounded inputs [12].

Ott, Grebogi, and Yorke (OGY) [2] reported the first
strategy to control chaos. The OGY methodology con-
sists in applying feedback control actions only when the
trajectory of the system is in a small neighborhood of a
given objective trajectory, so that parameter perturbation
boundedness is satisfied. Due to its local nature, OGY
control leads to poor performance with large transient
periods. Recently, Romeiras et aI [9] extende. d the OGY
methodology, allowing for a more general choice of the
feedback matrix. Such a feedback matrix is constructed
in base-to-pole placement techniques to assure local
asymptotic stability. In order to have small parameter
perturbations, they used a discontinuous saturation func-
tion. As in the OGY methodology, the feedback is linear
and local. We believe that local linear designs do not
take advantage of all the stabilization capacities of non-
linear systems.

As a step to approach the control of a chaotic system
with nonlinear feedback action, we study the control of

the Henon map [11]. As objective trajectories, we take
both unstable fixed points and periodic orbits. Our feed-
back control is constructed in two stages. First, a non-
linear feedback is constructed which transforms the
Henon map to a linear system, its global attractor being
the objective trajectory. Then, to satisfy the small pa-
rameter perturbation constraint, a saturation function is
introduced.

UNBOUNDED CONTROL

Consider the Henon map x„+,=F(x„,u) [11]:

+1,n+1 +2, n

X2 n+1 — X2 n +BX1 n +u2

where u is an accessible parameter. It is well known that
for certain values of the parameter set (B,u), the system
(1) exhibits very complex behavior [1,4]. The feedback
u =u„(x;u) =x2 „Bx,„—+u, where u is a dummy input,
transforms the system (1) to the controllable input-output
linear map (see [10], and references therein) x, „+2=v,
with input v and output x1. Given an arbitrary reference
trajectory Ir„], the controllability of x& „+z=u implies
that one can design a linear feedback u =u„(r„) such that
the closed-loop system x, „+z=u„(r„)has [r„] as its glo-
bal attractor. Therefore the system (1) with feedback
u =u„(x;u)=x2 „—Bx, „+u„(r„)has [r„] as its global
attractor. By defining the error of tracking as
E„=x,„—r„, it is possible to see that v =u„(r„)must be
given by v„(r„)= —g ] (x i „r„)—g2(x2 „r„+i ) +—r„+2, —
where g, and g2 are tunable parameters such that the
matrix

0 1

has its eigenvalues in the open unit circle.

BOUNDED CONTROL

Suppose that the parameter u is restricted to take only
small controlling temporal perturbations 6*. If we apply
the feedback u„(x;u) to system (1), the input u may take
arbitrary values, so that the small temporal perturbation
constraint is not necessarily satisfied. I.et u =u be a
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FIG. 3. Time series for the stabilization of a period-2 orbit.
The initial condition is (x &o, x20) =(1,—1), and the perturbation
bound 5*=0.025.

USE OF DELAY COORDINATES

For a large set of periodically forced systems, it is pos-
sible to derive an explicit discrete-time model (induced by
a Poincare section) which can be used to design nonlinear
controllers [9]. In general, such models may present
parametric and/or structural uncertainties. If one is able
to estimate the size of such uncertainties, robust control-
lers can be derived [13] which account for model/reality
deviation.

We now discuss the case where the dynamical equa-
tions are not known. In experimental studies of chaotic
dynamical systems, delay coordinates are often used to
represent the system state. It only requires measurement
of the time series of a single scalar state variable. Let
x (t) be such a state variable and Z(t) be the delay coor-
dinate vector, which is given by

Z (t) = (x (t),x (t —T),x (t —2T), . . . , x ( t MT) ), —

where T is the delay time. If n is the dimensionality of
the dynamical system, for M ~2n the vector Z(t) is
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generically a global one-to-one representation of the sys-
tem. In the presence of parameter variations u;, delay
coordinates lead to a map of the form [14]:

Z;+)=G(Z;, u; „, . . . , u; „u, ) .
Observe that the state of the system (2) depends on the
last r+1 ~ 1 values of the parameter u. Reyl et al. [15]
used the model (2) to fit the return map of experimental
NMR laser dynamics. This map was used to control the
dynamics of a NMR laser by means of linear feedback.

Define the dummy coordinates yk; =u;
k =1, . . . , r The. n the map (2) can be written as the fol-
lowing augmented system:

Z;+, =6 (Z;,y;, u; ),
Y;+ i =SY;+Bu, ,

where Y;=(y, ;, . . . , y;„)*,B=(1,0, . . . , 0)* (e denotes
transpose operation), and S is an r X r matrix, which is
given by

0 0 0 0
1 0 . 0 0

0 0 . 1 0

In the coordinates (Z, Y), the map (3) depends only on
the actual value of the parameter u;. Given the fitted
map (3), and if the system is controllable, it is possible to
design a saturated nonlinear feedback u; =S(F(Z;, Y; ) )

which renders the dynamical system asymptotically
stable to a periodic orbit.

In conclusion, we have shown that a saturated non-
linear feedback is able to stabilize chaotic systems. This
methodology does not require that the objective trajecto-
ry I r„] be embedded in a chaotic attractor [2]. However,
input saturation may introduce additional behaviors,
such as multistabihty [12].
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