
PHYSICAL REVIEW E VOLUME 48, NUMBER 4 OCTOBER 1993

Paraxial wave-optics simulation of x-ray lasers
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Paraxial wave-optics models of x-ray lasers include diffraction, time dependence, a stochastic descrip-
tion of spontaneous emission, two-way waves coupled by a saturable nonuniform gain, and refraction
due to a nonuniform charge density. Standard algorithms for this modeling tax the speed and storage of
a supercomputer. Recent work, using such algorithms on an overly coarse grid, has very distorted near
fields, too wide far fields, and an optimistic estimation of spatial coherence. This paper develops axial
shooting-secant iterations that feature coarse-grid storage of fields, refined-axial-step standard-algorithm
shooting between coarse-grid data, and improved coarse-grid approximations via secant estimation.
Such calculations, effective when the charge density and gain vary much more transversely than axially,
save time and much storage. High-accuracy integral Hermitian methods for the transverse discretiza-
tion are also introduced and provide several advantages in comparisions with standard finite differences,
discrete Fourier transforms, and Gauss-Hermite or Gauss-Laguerre expansions. Several well-converged
x-ray-laser calculations are presented. A slightly greater gain along certain curved paths contributes
much less than refraction to prominent maxima in the far-field wings. Discrete computation inherently
underestimates diffraction and thereby overestimates power output. Refraction enhances the evolution
of single-mode-like intensity whereas saturation of the gain inhibits this process. The fields are sensitive
to the transverse profiles of the charge density and small-signal gain. Although refraction leads to many
more transverse modes, it improves spatial coherence.

PACS number(s): 02.60.—x, 02.70.—c, 42.25.—p, 42.55.Vc

I. INTRODUCTION

Research on x-ray lasers is burgeoning worldwide and
should lead to a broad array of important applications
[1,2]. These lasers involve an intricate mix of atomic
kinetics, hydrodynamics, and optics. Relatively simple
analytical and numerical modeling, using geometric op-
tics and having only an unsaturable gain, gives quite a bit
of insight [3]. However, an assessment of coherence,
saturable gain, and diffractive effects is also needed and
demands a wave-optics treatment, the difficulty of which
requires extensive numerical simulation. Such computa-
tion may help with the optimization of x-ray lasers,
which is important because their best possible perfor-
mance may be only moderate, or even marginal.

Feit and Fleck [4] offer a complex description based on
paraxial wave optics. Garrison et al. [5] provide much
more detailed modeling —macroscopic and microscopic.
They even include a transverse paraxial pumping wave,
but their calculations treat a dye laser, which requires
less computational power than the x-ray calculations un-
dertaken by Feit and Fleck.

These papers do not treat hydrodynamics or really in-
tricate atomic kinetics. Such calculations for x rays are
precluded because the two-way advective-marching algo-
rithms of paraxial wave optics are so demanding that
they can, just by themselves, tax or overwhelm the most
powerful computers. This circumstance insidiously en-
courages using too few points in order to reduce the corn-
puting burden. For example, calculations below ascer-
tain that an overly sparse grid used by Feit and Fleck [4]
needs at least five times more points to yield only modest

convergence. Using their algorithms on such a more
refined grid severely taxes the capacity of a Cray- Y/MP8.

This paper focuses upon reducing the computational
burden of the two-way advective-marching algorithms
via more efficient, iterative strategies with these algo-
rithms. High-accuracy transverse discretization, derived
from integral Herrnitian methods, is also introduced and
compared with standard finite differences, discrete
Fourier transforms, and Gauss-Hermite or Gauss-
Laguerre expansions. A variety of calculations relevant
to the modeling of x-ray lasers is included. Like preced-
ing work [3,4], the computations deal only with simple
time-independent profiles of the charge density and
small-signal gain. There is no coupling to hydrodynamics
or detailed atomic kinetics. No microscopic analyses are
considered —simple macroscopic models of gain, refrac-
tion, and spontaneous-emission sources suffice to demon-
strate the effectiveness of the computational methods.
The more efficient algorithms provide well-converged
simulations of the macroscopic optics and still save time
and much storage, which can be used for hydrodynamics
and elaborate atomic kinetics.

Section II outlines various physical assumptions and
the basic paraxial wave-optics equations. Section III is
subdivided in the following way: Sec. III A casts the par-
axial wave-optics equations in terms of the geometric
theory for first-order quasilinear partial difFerential equa-
tions [6], which helps, I think, to visualize the subsequent
iterative algorithms; Sec. III 8 describes axial discretiza-
tion for time-independent, time-dependent, one-way, and
two-way transport —shorting-secant iterations appear in
the analysis of two-way transport; Sec. IIIC compares
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various methods for the transverse discretization-
Fourier transforms, Gauss-Hermite or Gauss-Laguerre
expansions, standard finite differences, and finite
differences derived from an integral Hermitian approach;
Sec. III D discusses models of the charge density and the
gain, the spontaneous emission in terms of random-walk
linear-gain relations, and the transverse coherence calcu-
lations. The calculations in Sec. IV illustrate the preced-
ing analyses and display various properties of the x-ray
output —Sec. IV A deals mainly with relatively inexpen-
sive one-way computation while much more expensive
two-way calculations appear in Sec. IV B. Section V has
concluding remarks and suggests some directions for fur-
ther work.

II. PARAXIAL WAVE-OPTICS MODELING
OF X-RAY LASERS

The macroscopic field in an x-ray laser arises from the
amplification of spontaneous emission in a very slender
plasma. Figure 1 depicts a typical configuration of the
laser. Its "axis" coincides with the z axis. Henceforth
the words "axial" and "transverse" refer, respectively, to
this z axis and any direction perpendicular to it.

An interplay of diffraction, refraction, saturable gain,
spontaneous emission, hydrodynamics, and atomic kinet-
ics determines the macroscopic output of the laser. Spon-
taneous emission generates a tremendous number of
"modes. " Diffraction spreads the radiation, and the
amount of spreading increases with the mode index. The
charge density and small-signal gain of the plasma, which
are dynamic because of hydrodynamic expansion and
atomic kinetics, have the following spatial properties: (a)
they are large near the z axis and vanish outside the
near-axis region; (b) their transverse variation is much
greater than their axial variation. Consequently, refrac-
tion, which bends rays toward lower concentrations of
charge, also spreads the radiation. Since diffraction and
refraction spread the radiation into regions with less gain,
they reduce the overall amplification. The field becomes
large enough to saturate the small-signal gain. Since the
gain is greater near the z axis, it saturates there before it
does so in the transverse wings of the plasma. This
differential saturation can therefore flatten the transverse

distribution of the field. The spontaneous emission also
generates two-way waves, which are coupled via their
respective contributions to the saturation. Despite the
various factors that spread the radiation in the laser, its
axial length is so long in relation to its transverse size
that most of its relevant output is channeled into narrow
pencils of rays at its ends. It is therefore possible to de-
scribe this output with paraxial waves.

Many projected applications of x-ray lasers, e.g., the
holography of biological specimens, require a sufficiently
high degree of spatial and temporal coherence [7], the
analysis of which requires information about the ampli-
tude and phase and hence necessitates a wave treatment.
Because x-ray mirrors are relatively inefficient, relatively
poor mode selection and modest coherence may always
result. The laser is likely to remain a many-mode device
operating far from a steady state. Moreover, only a few
passes through the laser are attainable before the gain
sub sides. Time dependence is therefore an essential
feature of the laser.

A paraxial wave-optics analysis of x-ray lasers in-
herently describes diffraction. In summary, such an
analysis must also include time dependence, spontaneous
emission, two-way waves coupled by a saturable nonuni-
form gain, and refraction due to a nonuniform density of
charge. Furthermore, incorporating detailed atomic
kinetics and hydrodynamics into the analysis would be
highly desirable for accurate modeling.

To characterize the dielectric constant e of the plasma,
let me use the relatively simple high-frequency formula

where n„e, m„and co are, respectively, the free-electron
number density, the electron charge, the electron mass,
and the x-ray angular frequency. The following modeling
does not preclude a more detailed description of the
plasma's dielectric properties, but this simple formula
suffices for what I want to discuss.

In order to set up a paraxial approximation, define a
suitable space-time average for the dielectric constant,
i.e.,
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diffraction, gain,
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Then a two-way plane-polarized monochromatic field can
be represented in the form of plane waves having "slowly
varying" amplitudes E*, angular frequency co, and wave
number coc Qe, (c is the velocity of light in vacuum):

E(x,p, z, t)=E+(x,y, z, t) exp[i~(c 'Qe, z —t)]
CD

CD)
C/)

C3

I—

intensity of amplified
spontaneous emission

+E (x,y, z, t) exp[ —ice(c 'Qe, z+t)] .

Substitute this expression into the wave equation

Axial coordinate

FIG. 1. A schematic of an amplifier of spontaneous x-ray
emission. A typical computed output is displayed. The trans-
verse dimension of the drawing is greatly exaggerated.

VE= ~E .
c2 Bt2

(4)

specify that E—are "slowly varying" in the sense of the
inequalities



3132 JAMES W. GREENE

~ &a

,
'

iE —[,
Bz c

0 E+-
((co')E +—i;

Bt
(5)

Let me define the scaled variables
+E—

and then neglect B E—/Bz and B E /B—t in comparison
to the much larger terms indicated by these inequalities.
One thereby obtains
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Then, Eqs. (6) and (8)—(10) lead to
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where the transverse Laplacian

(6)
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Equations (6) describe the combined effects of
diffraction and refraction. It is customary to neglect the
small transverse variations of velocity in the advective
terms of Eqs. (6), i.e.,

One can also arrive at the same results more rigorously
by beginning with the first-order Maxwell equations [9].
Such an approach requires additional assumptions about
the smallness of various terms involving E—,e, and their
spatial and time derivatives.

A macroscopic description of saturable nonuniform
gain is provided by the oft-used gain coefficient [10]

go(x, y, z, t)

1+(atE+i'+ fE [')/I„, '- (9)

S (x,y, z, t) = 2+(x,y, z, t) exp[i@—(x,y, z, t—)], (10)

where 2 +—are taken to be definite functions that vary rel-
atively smoothly while 4* are described stochastically
and vary much more rapidly. In this way, the intensity
~S

+—
~

of the spontaneous emission varies smoothly while
its phase variation can be arbitrarily complex.

in which (a) go is a nonuniform small-signal gain; (b)
two-way waves are coupled as if they arise from statisti-
cally independent sources [i.e., the sum (~E+~ + ~E

~
)

adds the intensities without interference whereas a
squared sum like

~

E+ +E
~

has interference terms]; and
(c) the parameter I„, equals the two-way intensity at
which the gain is saturated down to one-half of its small-
signal value. Of course, the two-way waves should be sta-
tistically independent because they are generated by
spontaneous emission.

Limitations in storage and speed preclude a computer
simulation of spontaneous emission at a microscopic lev-
el. The intensity of spontaneous emission ought to vary
smoothly with respect to a macroscopic resolution. On
the other hand, the phases of this radiation should be un-
correlated down to the smallest scale that can be simulat-
ed by a computer. Therefore, consider the following
macroscopic representation of the two-way spontaneous
emission:

where g =go/(1+
~

A'+ + 6
~

). The gain coefficient g
in Eqs. (12) is divided by 2 so that the intensities ~A' —

~

rather than the fields 8+—behave like exp(gz). The trans-
verse boundary conditions for Eqs. (12) may be taken to
be

lim 6" (x,y—,z, t)= lim V,@—
( xy, z&)= 0.

X)y ~ oo
(13)

Any external radiation entering the ends of the laser can
obviously be specified by axial boundary conditions. In
the absence of such radiation, the laser's fields evolve
solely from the spontaneous-emission sources 4—in Eqs.
(12).

III. COMPUTATIONAL METHODS

A. Kinematics and dynamics

Despite the presence of the transverse Laplacian, it is
possible, and useful, to interpret Eqs. (12) with the
geometric theory for first-order quasilinear partial
differential equations [6]. The structure of Eqs. (12) sug-
gests the generalized characteristic differential equations

dx
d$

dp'

d$

dz =
dS ds — c

(14)

d6 +—

+ =+i Vi@++i — (E—e', )8+—

2co+e. 2c Qe.
+—8—+S+—

2
(15)

where the parameters $ —measure arclength in the for-
ward or backward directions along the characteristic
curves. The advective velocity c/Qe, is constant.
Equations (14) therefore imply that (a) the projection of
each characteristic curve onto xyz space (i.e., an "xyz-
projected characteristic base curve") is a line parallel to
the z axis, and (b) a time increment 6t corresponds to the
same spatial increment 5z on every such characteristic
base line. The transverse Laplacian terms in Eqs. (15) in-
dicate also that the base-line evolution of 8—is affected
by their values on neighboring base lines. In other words,
each transverse section of field points (x,y) remains pla-
nar and advects parallel to the z axis with a constant ve-
locity while the corresponding field values 8 (x,y, z,t)—
evolve concurrently in accordance with Eqs. (15). This
geometric picture of the advection would be more corn-
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dx =
8$

0 Qz

8$ 8$
(16)

so that unprojected characteristic base curves are lines
parallel to the z axis. Of course, the forms of Eqs. (15) do
not change for a steady state, which is merely a special
solution of them. The aforementioned laser-fixed assem-
bly of transverse sections is also convenient for an xyz
discretization of both one-way and two-way steady-state
problems.

If only the gain and free-electron density are steady
(Bg/Bt =Be/Bt =0), any initial fields evolve transiently
into a near steady state (BA IBt =0) in which th—e fields

I

plicated if the approximation of Eq. (8) were not in effect.
While keeping the xy variations continuous, one can

discretize the zt variations of the fields 6 —onto a set of
transverse sections separated by a uniform axial incre-
ment 5z. As the fields advance through the spatial step
5z, they evolve temporally through the increment 5t,
where ot =Qe, 5z/c. If the assembly of transverse sec-
tions is regarded to be fixed with respect to the laser, the
field points advect along the intersections of the charac-
teristic base lines with the transverse sections. The
forward-field points move in the positive z direction while
the backward-field points move oppositely. If an xy
discretization is added to the foregoing zt discretization,
the continuous density of projected characteristic base
lines is replaced by a discrete set of these lines. The
space-time evolution of the associated field values 6' —is
thus recorded on a laser-fixed assembly of transverse sec-
tions.

A kinematic alternative, which is particularly con-
venient in the case of one-way propagation [e.g. ,

=0 in Eqs. (12)], moves the assembly of trans-
verse sections axially at the velocity el+a„ i.e., the as-
sembly is fixed with respect to the moving beam pulse
6+. In such a uniformly moving coordinate system, each
field point is fixed inside a particular transverse section as
the corresponding field value evolves via the forward
member of Eqs. (15).

If the free-electron density, gain, and sources are
steady (Be/Bt =Bg/Bt =BA'—+IBt =0), every solution of
Eqs. (14) and (15) evolves transiently into a steady state
(B6+/Bt =0—). For a steady state, Eqs. (14) can be
simplified to

B. Axial discretixation

1. One-may time-independent transport

Let the xy variation be continuous and implicit in the
notation and consider the simplest propagation —no
sources, one-way transport, and no time dependence.
Then, if 6 =4+—=0 and V=A'+, Eqs. (15) reduce to the
form

=aV'i V+P(z, V)V,
QZ

(17)

whose solution may be expressed implicitly

V(z) = V(0)+ f [aVi+P(p, V(p)))V(p)dp . (18)

Setting a(p)=aV'i+p(p, V(p)), and iterating Eq. (18) as
a transversely continuous Neumann series [11], one ob-
tains

are changing only slightly in response to the fluctuating
sources. A simulation of this near steady state can be ob-
tained from a full time-dependent analysis with Eqs. (14)
and (15). One may alternatively deal with time-
independent sources (BS /Bt —=0) by regarding each sto-
chastic realization of the sources as a member of an en-
semble of steady-state sources. For each member of this
ensemble, there is an exact steady state (Be +—/Bt =0) de-
scribed by Eqs. (15) and (16). Small fiuctuations of the
fields, i.e., the near steady states, are then represented by
a sequence of steady-state solutions corresponding to
steady-state sources taken from the ensemble. Even
though the time-dependent approach involves transients
not present in the steady-state analysis, there is probably
little practical difference in the results of these two ap-
proaches. However, the numerical procedures required
by these approaches are quite different.

Equations (15) may be regarded as an xy-continuous
system of two-way-coupled nonlinear first-order
differential equations with sources. They can be solved,
in conjunction with Eqs. (14), when one specifies initial
values, the transverse boundary conditions [Eqs. (13)],
and any axial boundary conditions arising from external
radiation. Similarly, Eqs. (13), (15), and (16) have
steady-state solutions when the density, gain, sources,
and external radiation are steady.

V(z)=V(0)+ f a(p) V(0)+ f "a(v)V(v)dv dp
0 0

1+f a(p)dp+ f a(p)dp f"a(v)dv+ f a(p)dpf"a(v)d, vf a(g)dg+ . V(0)
0 0 0 0 0 0

= exp f a(p)dp V(0) .
I. 0

Fleck, Morris, and Feit [12] show that

exp f 'a (p)dp = exp( —,'aV'iz} exp f 'p(p, p(p))dp,
0 0

X exp( —,'aV2iz)+0 (z 3), (20)

when p(z, &(p) ) can be represented by a power series in z.

I

Similar considerations establish an alternative splitting of
the exponential operators:

exp f 'a (p, )dp = exp ,' f 'P(p, V—(p))dp exp(aViz)
0 0

Xexp —,
' p, IM dp +0 z

(21)
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Consequently, Eqs. (17), (19), and (21) imply that

V(z ) = exp —,
' f P(p, V(p ) )dp exp(a V~z )

Xexp —,
' f P(p, 9(p))dp V(0)+O(z ) .

0
(22)

= exp [ ,' [P(—0,P(0) ) +P(z, V(0) ) ]z ] (23)

the first approximate form of which has a truncation er-
ror consistent with Eq. (22) and the second approximate
form of which is needed to obtain an algorithm explicit in
P(0). The alternative splitting in Eq. (20) requires the
same phase approximation. The output M(O, z)V(0) be-
comes the source for the vacuum operator exp(aViz),
whose discretization is discussed in Sec. IIIC. Finally,
an M(O, z) multiplication of the vacuum-operator output
exp(aViz)M(O, z)V(0) yields the approximate field V(z),
viz. ,

The computational implementation of Eq. (22) is
straightforward. Let a field V(0) be defined over any one
of the transverse planes described in Sec. III A. Then,
compute and store the elements of the "xy-diagonal"
operator exp[ —,

' fop(p, V(p))dp]. For example, the tra-
pezoidal rule gives the following amplitude-phase multi-
plier for the axial interval (O, z):

M(O, z)= expI i [P(O, V(0))+P(z, V(z))]z+O(z )]

quential. It is sometimes claimed that the operator split-
ting in Eq. (20) is superior. Numerical testing yields, at
least for the applications considered herein, virtually
identical results for the splitting in Eq. (21), which is used
for the calculations in Sec. IV.

If a one-way steady-state axially distributed source
S(z) is present, Eq. (17) generalizes to the form

=aVi9'+P(z, V)V+X,
dz

(26)

so

V(z) =V(0 ) + f 'I [aV', +P(IJ„P(p ) ) )P(p ) +S(p ) ]d p
= V(0)+ —,'[$(0)+el(z)]z

+ f '[aV",+P(p, P(p ) ) ]P(p )dp, +0 (z') (27)

V(z) =M (O, z) exp(a Viz)M (O, z) [V(0)+4] . (28)

by virtue of the trapezoidal rule. Although the preceding
Neumann-series analysis of Eq. (18) could be repeated
with this more general expression, such complexity is not
justified for stochastic sources. It suffices instead to gen-
erate a stochastic increment 4 of appropriate amplitude
and random phase and to add it to the field at the begin-
ning of each axial step. Equation (24) thereby becomes

V(z) =M (O, z) exp(aVjz)M (O, z) V(0) . (24) 2. One-may time-dependent transport

M(z, 2z)M(O, z) = exp[ —,'[P(z, V(z))+P(2z, V(z))]z]

X exp[ —,'[P(O, V(0))+P(z, V(0))]z]

& exp[ i [P(0, V(0))+P(2z, V(0))]2z]

=M(0, 2z) . (25)

The factor exp( —,'aVfz) in Eq. (20) can be combined under
juxtaposition. The splitting in Eq. (20) may therefore
seem to be preferable, but, as long as the amplitude-phase
multiplier M(O, z) is saved for the second multiplication
in Eq. (24), this apparent advantage of Eq. (20) is inconse-

Notice that V(z) is a steady-state solution. The axial
variable z need not be greater than 0 so backward as well
as forward "marching" of the steady-state solution is pos-
sible. The steady-state field has to be specified on only
one transverse plane in order to determine its values over
any other such plane by repeatedly applying Eq. (24) with
sufficiently small axial steps. Moreover, the field is stored
on only one transverse plane throughout such a computa-
tion.

The evaluation of the exponentials in Eq. (23) entails
much more computing time than the two multiplications
by M(O, z) in Eq. (24). It is therefore important to save
M(O, z) after its evaluation so that it does not have to be
recomputed for the second multiplication in Eq. (24).

A repeated application of Eq. (24) juxtaposes
amplitude-phase multipliers of the form M [nz, (n +1)z]
so one might be tempted to combine juxtaposed exponen-
tials into a single exponential for a doubled axial step.
However, such a combination is not strictly correct since

A further generalization to time-dependent one-way
transport requires only the addition of advective time
corrections to the marching algorithm given by Eq. (28).
The time-dependent analogue of Eq. (26) is

=aViV+P(t, z, V)V+X,
dz

(29)

where the time dependences of the free-electron density
and gain are represented explicitly. Equations (14) and
(15) show that the spatial step of length z in Eq. (29) cor-
responds to the advective time step t =QE,z/c. There-
fore, the amplitude-phase multiplier in Eq. (23) general-
izes to the time-dependent form

M(O, z) = exp[ —,
' [P(0,0, V(0))+P(+e,z/c, z, V(0))]z],

(30)

while the form of Eq. (28) remains unchanged for time-
dependent transport.

A typical calculation with only one transverse section
might proceed in the following way. Starting at one end
of the laser, one sets V(0) equal to the field of an input
beam and then applies Eq. (28) recursively until the sec-
tion advects axially and temporally to the other end of
the laser. If such a calculation were repeated many
times, always with the same input field, but each time
with a difFerent sequence of stochastically generated
spontaneous-emission increments, one would obtain the
output beam along with its statistical fIuctuations.

Of course, the axial resolution of such a calculation can
be increased by using more transverse sections. Because
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3. Two-unsay time-dependent transport

Two-way-coupled transport poses a much more
difficult problem than one-way transport. Let %=A'
and V= 6"+. Equations (15) become

aV'—iX P(t,—z, X, 9')X+4
dz

d =aViV+P(t, z, %,V)%+I+ .
Z

(32)

If the preceding analysis for one-way time-dependent
transport is retraced, a backward integration of Eq. (31)
and a forward integration of Eq. (32) yield the following
analogs of Eq. (28):

%(0)=N(o, z) exp(aViz)N(o, z)[%(z)+S (z)],
V(z) =N (O,z) exp(a Viz)N (O, z) [V(0)+ 4+(0)],
where

N(o, z) = exp I 4 [P(0,0,%(z), V(0) )

+P(+e,z/c, z,%(z), V(0))]z] .

(33)

(34)

(35)

the requisite computing storage for each transverse sec-
tion is so large, the total number of such sections is limit-
ed to much less than the number of axial steps needed to
adequately resolve the difFraction, gain, and refraction.
This circumstance —namely that the number of trans-
verse sections can be much less than the number of axial
steps in a time-dependent calculation —arises because the
free-electron density and gain vary much more trans-
versely than axially and evolve quasistatically, at least for
a time required by light to transit the laser.

(O, Z)=(o, mz) (m =1,2, . . . ) . (36)

Suppose further that the forward and backward fields and
the spontaneous-emission increments are defined and
stored only at the endpoints of the interval (O, Z). If Eq.
(33) is applied recursively,

If the interval (O, z) is sufficiently small, Eqs. (33)—(35)
permit, at least in principle, an accurate simulation over a
laser-fixed assembly of transverse sections. Equation (33}
adds a spontaneous-emission increment to the backward
field X(z) and computes its backwardly advected output
X(0) while Eq. (34) accomplishes the same thing for the
forward field V(0). The backward and forward fields of
the laser advance over one space-time step when this cal-
culation is performed for each adjacent pair of transverse
sections.

Feit and Fleck [4] essentially follow this "brute-force"
approach —they use the alternative splitting of Eq. (20)
and evaluate the operator exp( —,'aV'iz) via discrete
Fourier transformation. The computations in Sec. IV
demonstrate that this procedure can outstrip the capacity
of a supercomputer such as a CRAY-Y/MP8. The irony
of this computational method is that the fields are stored
at the density of the paraxial steps even though paraxial
approximations are usually undertaken to avoid such a
density of storage. This enormous storage and a consid-
erable amount of computing time can, in fact, be circum-
vented by iterative generalizations based on Eqs.
(33)—(35).

It is easy to construct such iterations. Let several of
the small intervals (O, z) associated with Eqs. (33)—(35) be
linked together to form the interval

+(0)=N(o, z )exp(aV iz )N(o, z )N(z, 2z )exp(a%'iz )N(z, 2z ) . . N(Z —z, Z )exp(ap'~iz )N(z —z, Z )

X[%(Z)+1 (Z)]= U(O, Z)[g(Z)+4 (Z)],
where

N(nz, nz+z)= expI 4[@(+e,n—z/c, nz, S(nz+z), V(nz))+p(Qe, (nz+z) /c, nz+z, X(nz +z), V(nz))]z]

(n =0, 1, . . . , m —1),

(37)

(38)

and where the operator U(O, Z) transports the backward field through the entire interval (O, Z). Equations (35) and (37)
imply that U(O, Z) has the inverse

U '(0, Z) =N '(Z —z, Z) exp( aV &z)N '(Z —z, Z)N '(Z —2—z, Z —z) exp( —aV'iz)

XN '(Z —2z, Z —z) N '(O, z) exp( aV iz)N '(O, z)—,
where

N '(nz, nz +z) = exp[ ——'[P(+e,nz/c, nz, X(nz +z), V(nz) }+P(+e,(nz +z)/c, nz +z,%(nz +z), V(nz) }]z]

(n =0, 1, . . . , m —1) .

(39)

(40)

(41)

V(z) = U(0, Z) [V(0) +4+(0) ] . (42)

Therefore, Eq. (37) and the recursive application of Eq.
(34) yield

%(Z)= U-'(O, Zg3(0) —Z-(Z),

The operator U(O, Z) is built from a recursive algorithm
in which a step-by-step tandem application of Eqs. (33)
and (34) is required to determine the intermediate back-
ward and forward fields. If an approximate field %(0) is
guessed, Eqs. (41) and (42) permit one to calculate ap-
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proximate fields %(Z) and P(Z) from %(0) and the
known quantities V(0), S+(0), and 4 (Z). Iterative im-
provements of %(0) and V(Z) can then be obtained by
comparing the approximation %(Z) against the known
field S(Z).

Equations (41) and (42) constitute a nonlinear function-
al transformation

%(Z)= T [X(0)] (43)

defined by an elaborate advective-marching algorithm. A
determination of the inverse transformation

%(0)= T '[%(Z) ] (44)

9l(Z)

y„, x(o}

FIGr. 2. An iterative secant approximation T(P) of the non-
linear functional transformation T(P) [Eq. (43)].

is needed and can be approximated in a number of ways.
The procedure below employs "shooting" with Eq. (43)
and iterative refinements based on "secant" interpolation.

Let g; (i = 1,2, . . . ) denote a sequence of approxima-
tions to the field %(0) in Eq. (43), consider two successive
approximations f; and f;+, that bracket %(0) in the
manner depicted in Fig. 2, and pass a straight line
through the points (g;, T(P, )) and . (f;+„T(f;+i))
to obtain an approximate functional T(g }. The im-
proved approximation is taken to be g;+@=T '[%(Z)],
i.e., the successive approximations

S(Z)—&(g;+i)
Pl+2 4+I T(q ) T(y )

(4 Or+1)

(i =1,2, . . . ) (45)

are computed in a scalar fashion at each point of the
transverse grid.

This sequence is fully defined when the first two ap-
proximations gi and f2 are specified. The amount of
computation needed to converge satisfactorily depends
upon how accurately one chooses these quantities. The
following technique works well for the computations in
Sec. IV. First, set X(0)=0 and use Eq. (42) to compute
an approximation V(Z). Then, multiply [%(Z)+4 (Z)]
by the complex factors (1.00+0.01)exp(+0. 01i) and in-
vert Eqs. (41) and (42), i.e.,

g, = U(O, Z) X 1.01 exp(+0. 01i)[X(Z)+4 (Z)], (46)

Vi(0) = U (O, Z)V(Z) —4 (0), (47)

$2= U(O, Z) X0.99 exp( —0.0li)[%(Z)+S (Z)], (48)

7 (0)= U '(0, Z) V(Z) —4+ (0) . (49)

Of course, the bracketing in Fig. 2 is not necessary for
the convergence of the foregoing "shooting-secant" algo-
rithm. A rigorous mathematical assessment of the con-
vergence may be very difticult to provide, not only be-
cause the algorithm on each characteristic base line is so
intricate, but also because the iterations on separate base
lines interact through the transverse Laplacian in Eqs.
(31) and (32). I offer only the computations in Sec. IV as
evidence of convergence. Because the transverse Lapla-
cian connects the shootings on separate base lines, the
shooting-secant iterations may not converge for a
sufficiently large axial interval (O, Z). For example, an
iteration %(Z) may not be bracketed by the initial toler-
ances on the right-hand sides of Eqs. (46) and (48). Such
a situation might improve if the iterations are reset by ap-
plying Eqs. (46)—(49) with the forward approximation
V(Z) corresponding to %(Z), and there are other tech-
niques for accelerating the convergence of secant estima-
tion. Furthermore, the "diagonal" approximation in Eq.
(45) could also be upgraded by including nondiagonal
terms. If the interval (O, Z) covers the whole laser, one is
dealing essentially with a stochastic description of a
steady-state laser. The x-ray laser is presently a nonsta-
tionary device whose simulation must include enough ax-
ial cells to resolve its temporal evolution adequately.
None of the foregoing refinements is necessary for con-
vergence of the calculations in Sec. IV.

4. Time and storage for two-way transport

Intervals of length Z [Eq. (36)] are linked together to
complete the axial discretization for the laser. Let its
length be l, and select integers M and N for which

(O, l)=(O, NZ)=(O, MNz) (M, N =1,2, . . . ) . (50)

Thus the fields are stored on 1V+1 transverse sections
while MN axial steps of length z add up to the length of
the laser. The time increment between adjacent trans-
verse sections is 1+e, /Nc, which is larger than the con-
ventional z-length increment zQe, /c when M) 1. As
long as the larger increment is satisfactory, the shooting-
secant method is useful. It also can revert to the conven-
tional advective strategy (i.e., no iteration) when M = l.
Unlike the conventional strategy, the shooting-secant
method allows axial refinement (increasing M) with no
change in computing storage or the time increment (fixed
N}. Furthermore, a large reduction in storage can be
achieved with less computing time.

In order to compare computing times, consider only a
fixed number of transverse zones so that the computing
time T, per field per axial step of length z is the same.
The number 8z of shooting-secant iterations needed for
satisfactory convergence is small (3 & 8z & 5 for the cal-
culations in Sec. IV) and decreases slowly as N increases,
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cs= 21'- 'V (51)

i.e., as the interval (O, Z) shortens. Also, let K ( =MN) be
the number of z-length axial steps inside the laser.

The conventional computing strategy applies Eqs. (37)
and (42) over K axial zones to advance the two fields X(z)
and V(z) through one z-length step. This computation
uses the time 2K%, . If it is repeated K times, the fields
advance an axial distance equaling the length of the laser.
Letting %'cs denote the total computing time for this
conventional strategy, one concludes

1. Transform methods

Equations (12), (15), and (22) indicate that the vacuum
operator exp(aViz) for one-transverse-dimensional Carte-
sian coordinates corresponds to the relation

a@ ix a'@
Bz 4~+e

(54)

point out certain aspects that, I feel, need further elucida-
tion.

Take the Fourier transformThe shooting-secant strategy applies Eq. (42) through
M axial steps in each of N Z-length axial cells to get the
N fields V(Z). This requires the time MN7;. Next, a
computing time of 4MNT, is needed when Eqs. (46)—(49)
are executed in the same way to get the initial guesses g,
and g2 in each of the Z-length axial cells. After these ini-
tial estimates are computed, one uses Eqs. (41) and (42)
inside N Z-length axial cells to advance the two fields
through one Z step. During this part of the calculation,
M axial steps and g~ iterations are performed inside each
Z-length cell, so this requires the time 2MN /at 7;.
When such a calculation is repeated N times for a com-
bined time of 2MN d"z "T„both fields advance a laser-
length distance. Adding the initial-estimate time to this
result yields the total shooting-secant time

P( a, z) = f P(x, z ) exp( i 2~—ax )dx (55)

on each side of Eq. (54) to get

a@ ix - a'@ l 7TA.cx
exp( i 2'—ax)dx =—

z 4 IT Qe.
(56)

where the transverse boundary conditions in Eq. (13)
have been used. Equation (56) can be integrated explicit-
ly to yield the Fourier transform

2l 7TA, cxg(a, z) =g(a, zo) exp — (z —zo)
&a

(57)

'jVss = (2N 8~+ 5 )MN V, = (2KM 'Std + 5 )&"T, . (52)
and, of course, the field g is the inverse transform

Equations (51) and (52) show that %'ss (%'cs whenever

M )8~(1——2& ') (53) 1(j(x,z) = f P(a, zo)

an inequality that is readily satisfied. For example, some
data in Sec. IV are K =500, cj& =3, and M =50.

To advance the fields everywhere by one Z length, a
calculation can proceed sequentially through the Z-
length axial cells. This process requires the storage of the
two successive approximations g;, and g, [Eq. (45)] in
addition to the backward and forward fields for a given
cell. Since the storage for these approximations can be
overwritten for each successive cell, the total storage for
a sequential computation is 2(N+2) J, where J equals the
single-field storage in one transverse section. All the cal-
culations in Sec. IV were obtained sequentially.

If there is sufficient storage to allocate the successive
approximations f;, and g; in each of the N Z-length
cells, the shooting-secant algorithm can proceed parallel-
ly in these cells. The total storage becomes 2(2N + 1)J,
which is less than the conventional-strategy storage
2(MN + 1)J when M & 2. Thus the shooting-secant algo-
rithm admits parallel computation in a very natural way.
A large reduction in the sequential computing time
should be relatively easy to achieve via parallel computa-
tion.

C. Transverse discretization

The discretization of the vacuum operator exp(aViz)
[Eq. (22)] can be done in many ways. Even though
several authors have discussed this subject, I review it not
only to explain the computations in Sec. IV, but also to

imA, aX exp i 2rrax — (z —zo ) d a .
Qe.

(58)

The unnormalized far-field angular distribution is ob-
tained by the following substitution for the independent
variable e of the Fourier transform:

$„„(8)=$(+e,8li, ,zo), 8=
Z ZQ

(59)

A discrete Fourier transform (DFT) and a fast-Fourier
transform (FFT) algorithm based on powers of 2 are pop-
ularly used to approximate the foregoing continuous
Fourier-transform analysis. It is worthwhile to note that
there are more general and very efficient FFT algorithms
based on any highly factorable integer. Such algorithms
greatly increase the selection available for the dimension
of the transverse discretization, and this flexibility can be
crucial when a computation strains the storage. For ex-
ample, there are only the 13 powers 2" (n =1,2, . . . , 13)
for which 2~2"~10000, but 329 choices of the 4-set
(i,j,k, 1) are such that 2'315"7 satisfies this inequality.

When a computation taxes the storage, nonuniform
transverse zoning can also be very useful. It permits an
economy in which zones are clustered where there is
more variation of the fields. One can also impose the
transverse boundary conditions [Eq. (13)] much farther
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out into the wings of the transverse distribution. The
Fourier-transform approach necessitates uniform zoning.

Perhaps the most useful feature of the DFT analog of
Eq. (58) is that it allows a very efficient one-step calcula-
tion to any axial range whenever there is propagation

through a uniform medium without gain or refraction.
Such one-step computations can be done much less
efficiently through a finite series of the following Gauss-
Hermite modes [13],which constitute a complete and or-
thogonal set of solutions to Eq. (54):

x . x ~(z zo) i
fo(x, z) =m ' "acro/cr exp . — +i

2
——arctan

iree, o 0

A, (z —zo)

FaOp
(60)

X
P, (x,z) =2—$0(x,z) exp i a—rctan

A,(z —zo)

7T C~ C7O

(61)

2 x
g„+,(x,z ) = —g„(x,z ) exp i are—tann+1 o

A,(z —zo)

7T E~O p

n

n+1

I /2

,(x,z) exp 2i arcta—n
A, (z —zo)

E~ CTp

(n =1,2, . . . ), (62)

where

o (z)=o.o. 1+

and

A, (z —zo)

77 E~OO
(63)

J P* (x,z)g„(x,z)d (&2x /o ) =
CO a (64)

where 6 „ is Kronecker's delta. Every solution g(x, z) of
Eq. (54) can be represented by a series

by piecewise parabolic interpolation even when the grid is
nonuniform, as long as it sufficiently resolves the trans-
verse distribution of iij(x, z).

The rate of convergence of the series in Eq. (65) varies
widely with the value of the spot-size parameter o.

p in Eq.
(63). There is, in fact, an optimal choice of o.o. The
width [14] of a Gauss-Hermite mode of index n is about
2&n oo. The sum in Eq. (65) must include terms whose
width equals or exceeds the width I of the distribution
P(x, z) so the maximum index N of a finite-series approxi-
mation of Eq. (65) must satisfy the inequality

lt (x,z) = g c„g„(x,z)
n=0

in which the coefficients

c„= f g„*(x,z)itj(x, z)d (&2x /o )
~o

(n =0, 1, . . . ) (66)

Q„F(8)= g c„p„(8), 8=
n=0 Z ZQ

(67)

are constants, i.e., are not dependent upon z. It follows
from Eqs. (60)—(66) that the unnormalized far-field angu-
lar distribution is given by the following series with the
same coefficients c„:

&N&
20p

4O.
O&N & (72)

The right-hand sides of Eqs. (71) and (72) depend upon
o.p, respectively, in hyperbolically decreasing and linearly
increasing fashions. The intersection of these curves,
which occurs at the spot size

Furthermore, the Gauss-Hermite mode of the maximum
index N has about N/2 periods [14] across its full width
2&N oo, so its period is about 4o 0/V N, which must not
exceed the smallest period y of the significant Quctua-
tions of g(x, z), i.e., 4oo/&N ~ y, or

o =
—,'&yr/2 (73)

$0(8)= exp( m~e, grok 8 ),—
P, (8)= 2i m+e, —o OA. '8$O(8 ),.

and

(68)

(69)

4.+i(8)=— 2l 7TQ eao'ol,
&n+ I

I /2

n+I

8$„(8)

,(8) (n =1,2, . . . ) . (70)

The integrals in Eqs. (66) can be calculated accurately

yields the minimum index N that satisfies Eqs. (71) and
(72) simultaneously. This minimum index corresponds to
the optimal convergence of the sum in Eq. (65).

If the distribution itj(x, z) has a certain overall curva-
ture to its phase, a proper choice of the waist-location pa-
rameter in Eq. (63) can also increase the rate of conver-
gence in Eq. (65).

A one-step DFT calculation approximates the trans-
verse distribution of g(x, z) by a periodically extended
function. Therefore, a one-step calculation to a large axi-
al range breaks down if the field spreads beyond the grid
boundaries. Then, an overlapping or "aliasing" from ad-
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jacent segments of the periodic function occurs. Of
course, this difficulty can be avoided by accurately inter-
polating the field onto a larger grid before the onset of
aliasing. Monotone piecewise-cubic interpolation [15] is
particularly useful for this task because one obviously
does not want to introduce extraneous oscillations or
overshooting. However, it should also be realized that
monotone interpolations of the real and imaginary parts
of the field are not necessarily equivalent to monotone in-
terpolations of its amplitude and phase. Monotone
amplitude-phase interpolation onto a uniform grid is used
in Sec. IV to obtain DFT far-field approximations from
nonuniform-grid data.

The aliasing of a DFT approach does not occur in a
Gauss-Hermite one-step calculation. If a finite-series ap-
proximation to Eq. (65) is sufficiently accurate when the
field is confined inside the grid boundaries, accuracy over
the grid remains if the field spreads beyond the grid
boundaries —the solution merely "Aows out" through
them. Even though the Gauss-Hermite calculation is
considerably less efficient than a DFT approach, the
Gauss-Hermite avoidance of aliasing may be preferable,
especially if the one-step calculation is a small part of the
total calculation. The Gauss-Hermite method is too

I

inefficient, however, to be practical for the many-step cal-
culations inside the laser.

The cylindrically symmetric analog of Eq. (54) is

aq
4~+~ r Br Br

where g(r, z) satisfies the transverse boundary conditions

(74)
az

a
(O, z) =0, lim g(r, z) =0 .

Bl' r~ co
(75)

The foregoing continuous Fourier-transform analysis of
Eq. (54) [i.e., Eqs. (55)—(59)] translates into a continuous
Hankel-transform analysis of Eq. (74). Unfortunately,
despite considerable research, there seem to be no fast-
Hankel-transform algorithms as satisfactory as the FFT
algorithms for Eq. (54). Feit and Fleck's explicit fourth-
order expansion [16],which avoids the Hankel transform
altogether, is clearly unsuited for cylindrically symmetric
long-range one-step calculations. Such calculations in
Sec. IV rely upon Gauss-Laguerre analogs of Eqs.
(60)—(70), even though the fast Hankel transforms are no
doubt superior.

The Gauss-Laguerre modes of Eqs. (74) and (75) may
be written in the form

A,(z —zo)

E~op

k(z —zo)

E~o p

„2 A(z —zo)
2 2 2

+i —i arctan
77 6'ao p

op
$0( r, z) = exp

g&(r, z) =(1 2r o )$0(r, z—) exp 2i arcta—n

(76)

(77)

g„+,(r, z) = 2n +1—2r o.

n+1 g„(r,z) exp . 2i arctan—
A,(z —zo)

E'~o p

n
n —1 ( r, z ) exp ~ 4i arctan—

A, (z —zo)
(n =1,2, . . . ),

7T &~op

(78)

where o (z) is given by Eq. (63). These modes satisfy the
orthogonality relations

where the coefficients c„ in Eqs. (80) and (82) are identi-
cal, tI)o(8) is given by Eq. (68), and

2

f f (r,z)g„(r,z)d(2r /o )= 5 (79) P, (8)= —(1 2m e, o AD, 0 —)$0(8), (83)

where 6 „ is Kronecker's delta, so every solution of Eqs.
(74) and (75) has a series representation 4.+ i(() ) =— 2~2~ O 2g 2g2

n+1

P(r, z) = g c„P„(r,z)
n=p

(80) )(0) (n =1,2, . . . ) .
ft +1 (84)

with the constant coefficients

c„=
2 j g„*(r,z)f(r, z)d(2r lo )

op

(n =0, 1, . . . ) .

The far-field analogs of Eqs. (67)—(70) are

(81)

Piecewise parabolic interpolation leads to accurate
evaluations of the integrals in Eq. (81), while Eq. (73) pro-
vides an optimum-convergence estimate of the spot-size
o Q when the parameter I is interpreted to be the full
width of the cylindrically symmetric distribution lit(r, z).

2. I'inite difference meth-ods

$„„(0)=g c„g„(8), 8=
n=0 Z Zp

(82) A finite-difference discretization of Eq. (54) can closely
parallel the usual treatments of the di6'usion equation.
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Let me discuss this subject within the framework of the
well-known Hermitian method [17] for deriving high-
accuracy finite-difference expressions. My goal is to ar-
rive at results having the smallest truncation errors and
adapted to nonuniform grids.

Consider first a semidiscrete analysis, continuous in z
and having the not necessarily uniform grid x;
(i = n—, n+—1, . . . , n) Let the column vector

f= [g(x „,z), f(x „+„z),. .. , g(x„,z) ] (85)

denote the corresponding x discretization of a field g(x, z)
that is twice continuously differentiable in x and continu-
ously differentiable in z. If the transverse extent of the
grid is large enough in relation to the transverse distribu-
tion of g(x, z), transverse boundary conditions like Eqs.
(13) can be satisfied sufficiently well. If P(x, z) is another
continuous field, the two-point boundary-value problem

(x „,x „+,) yields

a —.„+ (x „~)—x „)
BX

+ f "
dt f P(p, z)dp ,—n

(92)

0—n+1 0 n-
—n X —n+1 X —n

—n+1

—n

X-.+1
X —n+1 X —n

P( t, z)dt =0, (93)

Similar manipulations at the other boundary produce

which may be integrated by parts and combined with Eq.
(87) to furnish the integral boundary condition

82

BX

Ag(x „,z)+B (x „,z)=0 (A +B )0),8

(86)

(87)

Cg„+D + f P(t, z)dt =0 .
Xn Xn —1 tt & Xn Xn —1

(94)

Cg(x„,z)+D (x„,z) =0 (C +D )0)
8

(88)

is well defined. The most general application of the Her-
mitian method yields (2n + 1)X (2n + 1) matrices M and
N such that Eqs. (86)—(88) are approximated by the im-
plicit finite-difference relations

MP=Ng+0 [(x;—x;,)J]

(i = n+1, n+—2—, . . . , n; j=1,2, . . . ), (89)

where the truncation errors generally decrease (i.e.,j in-
creases) as the number of nonzero elements in M and N
increases.

The computations in Sec. IV involve only tridiagonal
matrices M and N, and M is also diagonally dominant.
Therefore, M and N have relatively simple forms while M
is particularly easy to invert. The matrices M and N are
not uniquely determined by the Hermitian method. A
convenient and elegant approach to tridiagonal Hermi-
tian approximations first converts Eq. (86) into Rose's
patch equations [18] for the interior points:

f K;(t)P(t, z)dt=P, f K, (t)dt =
i —

1 i —1

where

(95)

Xr'+ 1 Xi (96)

Equations (90) and (95) thus provide the finite-difference
expression

Rose's patch equations [i.e., Eq. (90)] are easily derived
via a similar integration by parts coupled with the elim-
ination of the first-order spatial derivative. Every solu-
tion of the continuous problem [Eqs. (86)—(88)] exactly
satisfies these integral relations [Eqs. (90), (93), and (94)].
The discrete terms in these expressions make up the ele-
ments of N. Constant, linear, and parabolic interpolation
of P inside the integral terms determines the elements of
M.

If the integral in Eq. (90) is approximated by constant
interpolation,

f K, (t)P(t, z)dt =
i 1 XI+1 XI' X X;

l; 1+l; 0;+i—0;
l;

(97)

(i = —n +1,—n +2, . .. , n —1),
where the kernels are

(90)
which has the constant-interpolation truncation error

K, (t)='.t —X;

Xq XI-

Xi+1

X)+1.

(x;,~t ~x;)

(x; ~t ~x;~, )

(i = n+ 1, n+ 2, .. . , n———1 ) . (91)

A twice-repeated integration of Eq. (86) over the interval

2 2 3 3l; —l;, „, ) I; 1+l;+ +.
3 ls —,+l, ' l2 l;,+l

(98)

Equation (97) reduces to the usual central-difference esti-
mate when the grid is uniform. Note that this truncation
error, which is second-order for a uniform grid, is not
even first-order when the grid is nonuniform.

If P is linearly interpolated, i.e.,
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Xi Xl

X X;
, + P; (x;,~x ~x, )

Xi Xi

The associated linear-interpolation truncation error is

X X.
P;+ P, +, (x; ~x ~x;+1),

Xi +1 Xl Xi +1

(99) l;, +li
12 1, , +1,

(101)

Eq. (90) leads to the implicit relation

li, l;,+l,- l,
0 -1+ 0 + 0+—13 ' 6

0;+1—0;
li

(100)

which is second-order whether the grid is uniform or
nonuniform.

The smallest truncation errors are obtained by parabol-
ic interpolation. Consider boundary conditions in which
the gradients vanish [i.e., A =C=0 in Eqs. (87) and
(88)], and approximate P by the piecewise parabolas

(x „+,—x „) —(x —x „)
2

—n
(X —n+1 X —n )

X X

X —n+1 Xn

2

(t' —n+1 (X —n —X —n+1) ' (102)

X Xi+1

Xi Xt' —1 Xi +1 Xi —1

X X 1 X X.

Xi —1 Xi+1 Xi Xi+1 Xi —1 Xi+1

(x;,~x ~x;+, , i = n+—1, n+—2, . . . , n —1), (103)

Xn Xn -1
(x„—x„,) —(x„—x)

(x„—x„,)
(x„,~x ~x„) . (104)

Then Eqs. (90), (93), and (94) generate the following implicit finite-difference relations:

1t —.+1
—0—.

0—n 12 w —n+ 1+ (105)

1

6(l, , +1;) 2li
, + —1;, 1+ +1; 1+

3 i i —1

l, , +—
6(l;,+1 )

' ' ' 2

l„, sl„,
12 " ' l2

I
Pi+1

E

0;+1—0;
li

(i = n+ 1, n+ 2, ..—. , n ——1),
i —1

(106)

(107)

The truncation error of Eq. (106) is metric analog of the two-point boundary-value problem
in Eqs. (86)—(88), i.e.,

+21;,1; +31; )P;''+
1 a aqr
r Br Br

(109)

(108)

which is third order for a nonuniform grid and fourth or-
der for a uniform grid. For the simplest second-order
differential operator in Eq. (86), the differential and in-
tegral Hermitian procedures lead to the same finite-
difference expressions. In general, however, the two
methods generate different approximations. The uniform
fourth-order error in Eq. (108) is exceptional-
tridiagonal differential Hermitian estimates generally
yield no smaller than third-order errors [17].

The integral Hermitian method is especially useful for
curvilinear coordinates. Consider a cylindrically sym-

a~' (O,z)=0,
Br

av'(„, )=0.
Br

(110)

g, —g, = f t ln(r, !t)P(t,z)dt,
0

(112)

(113)

The cylindrically symmetric analog of the Cartesian in-
tegral boundary conditions [Eqs. (93) and (94)] have the
forms
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(1 14)

f tK, (t)P(t, z)dt =
i —1 ln r, +, I.r, ln(r, /r, ,. )

(i =2, 3, . . . , n —1), (115)

where the kernels are

Rose's patch equations [18] for the interior points are

f tK, (t)p(t, z)dt =f2
O

K, (t)=

ln(t/r, 1)

ln(r;/r, , )

ln(r, +, It)
ln(r, +, /r, )

(r;, t r)

(r, ~t~r, +, )

(i =2, 3, . . . , n —1) . (117)

ln(r2lr, ) (O~t~r, )

ln(r2/t) (r, ~ t ~ r, ), (116) Parabolic interpolation in Eqs. (112)—(115) gives the fol-
lowing finite-difference equations:

3"
40+1641 Pl ~0'

(r2 —r 1 )(7r 1
—20r lr2+7r2) 9r 1

—16r lr2+7r2 7y1 —16rlr2+9y2
144r, r2

y+ y+
144rl(r2 —yl) 144r2(r, —r, )

(118)

(119)

[9(y4+1 —y~4) —16(r;+r;+1)(r;+1 r, )+36r;r;—+1(r, +1 —r; )].
ln(r;+, /r, )

[9(r, r, 1)—.1—6(r,. +r, +1)(r, . r, 1)+36r;—r;+1(r, —r, 1)] ..p;ln r;Ir,

rt. +i+ [9(r4 r4 1)—16—(r, +1+r, 1)(r; —r; 1)+36r, lr, +,(r; r; 1)]. —
ln r, lr,

yi+1 ri —1 4[9(r,. +1 r, ) —16(r,—+1+r, 1)(r;+1 r; )+.36r, lr, +—1(r, +1 —r;. )]ln(r, +, /r;

11 4+ [9(y,.+1 —y~4) —16(y,. +r, 1)(r, +1 r; )+3.6r, lr, (r;+—1
—r, )]ln r, +, /r, .

[9(r4 r4, )
—16(r,—+r, , )(r; —r;, )+36r;,r, (r; r;, )] p;+1-

ln r, lr;

0+1—0= 144(r, —r, , )(r;+, —r; )(r, +, —r;, )
ln(r, . + 1 lr, ) ln(r, /r, , )

(i =2, 3, . . . , n —1), (120)

[13r4—36r2r2 1+32r„r„ 1
—9r„ 1

—12r„ ln(r„lr„ 1 )]p„-1+[9r„—32r„r„ 1+36r„r„

—13r„ 1
—12r„(3r„—8r„r„ 1+6r„ 1 ) ln(r„lr„ 1)]$„=144(r„r„ 1) (g„—g„-1) . —(121)

The foregoing semidiscrete analysis approximates Eqs.
(54) and (74) by relations of the form

P"+'= expIiaz [M 'N+O(b. )]]@"

d =ia[M 'N+O(b, )]f (m =0, 1,2, 3,4),
z

(122) I M'—N+O(b, )
2

where 6 is a transverse spatial increment and
a=~/(4n+e, ). If one introd. uces an axial discretization
having the constant step z and labeled by the superscript
n, the exact solution of Eq. (122) can be approximated by
an axially centered two-level scheme:

X ~ I+ M 'N+O(b, ) c/i"+O(z ),
2

(123)

which &mpl&es that
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M —' 'N 1i"+'= M+' 'N 1i"+O(z'+za-)
2 2

(m =0, 1,2, 3,4) . (124)

The different truncation errors in Eq. (124) arise from the
accuracy of the various integral interpolations leading to
the matrix M —the tridiagonal matrix iV is the same for
all these interpolations. Constant interpolation produces
a diagonal M. With linear or parabolic interpolation, M
is tridiagonal and has more complex elements. After the
initial computation of these elements, the extra comput-
ing burden of the higher-order interpolations is
insignificant. Therefore, as long as the solution of the
continuous problem has continuous derivatives of a high
enough order to justify higher-order interpolation, it is
worthwhile to use such interpolation. All the finite-
difference computations in Sec. IV use parabolic-
interpolation formulas for nonuniform grids.

3. Comments on various methods

Numerous authors use tridiagonal finite-difference ap-
proximations of lesser accuracy and/or Aexibility. Gar-
rison et al. [5] and Scarmozzino and Osgood [19] esti-
mate second-order derivatives by the usual three-point
central-difference formula —constant integral interpola-
tion restricted to a uniform grid. Fleck's analysis [20]
based on "cylindrical cubic splines" is equivalent to
linear integral interpolation over an arbitrary grid, but
his treatment loses efficiency and wastes storage because
it introduces unnecessary intermediate steps involving
spline coeKcients.

No tridiagonal finite-difference algorithm like Eq. (124)
can match the accuracy of the corresponding DFT-FFT
procedure outlined in Eqs. (54)—(59). However, this
greater accuracy may have little consequence for the
split-operator numerical solution of Eq. (17) because the
splitting of the operators in Eqs. (20) and (21) incurs an
error of order O(z ). In most cases, this error is large
enough to obscure any benefit arising from the extra ac-
curacy of the DFT-FFT calculation. There are excep-
tions, however. If the coefficient p in Eq. (17) is
sufficiently small in relation to the coefFicient a in the
same equation (as it can be, for example, in atmospheric
propagation), the splitting error of order 0(z3) is rela-
tively small even with large axial steps. Then the DFT-
FFT method, which permits arbitrarily large axial steps
through a uniform medium, also allows much larger steps
through a near-uniform medium and thereby performs
more efficiently. On the other hand, the coefficient p for
x-ray lasers is much larger so that the added accuracy of
a DFT-FFT calculation has a rather marginal effect on
the overall computation.

This conclusion —that the split-operator DFT-FFT
calculation is marginally more accurate than the split-
operator parabolic-interpolation finite-difference (PIFD)
approach —does not contradict the findings of Scarmoz-
zino and Osgood [19], who determine for their
integrated-optics applications that their finite-difference
technique offers an order-of-magnitude improvement

over the DFT-FFT method. Their finite-difference
analysis eliminates the splitting of operators whereas a
standard DFT-FFT calculation cannot do so because of
the space-dependent coe%cients in their applications.
This difference skews the comparison in favor of their
finite difFerences. They consider a more general problem
than Eq. (54), namely

a= a'
=a(x,z) +p(x, z)g .

Bz ()x

Equation (86) generalizes to the form

a2
a +pg=p,

(125)

(126)

and the foregoing integral Hermitian analysis generates
different matrices M and N inside Eq. (124), which then
approximates the propagation without the errors of
operator splitting. Moreover, calculating the matrix ele-
ments via parabolic interpolation would yield smaller
transverse truncation errors than the central-difFerence
approximations used by Scarmozzino and Osgood [19].

The elimination of operator splitting is not possible for
a standard DFT-FFT approach whenever there are
space-dependent and/or field-dependent coefFicients.
However, Feit and Fleck's explicit fourth-order expan-
sion [16] of the evolution operator on the right-hand side
of Eq. (17) avoids operator splitting and still permits FFT
computation. Because their method is explicit, the size of
the axial steps is strictly limited by considerations of con-
ditional stability and accuracy. Such restrictions may be
inconsequential when the coefficient p in Eq. (17) is large
enough to dictate small axial steps. It would be especially
interesting to compare their method to a cylindrically
symmetric analog of Scarmozzino and Osgood's study
[19].

When space-dependent refraction and nonlinear gain
are in effect, the coefficient p in Eq. (17) depends explicit-
ly upon the transverse coordinate and the field. In the
lowest approximation, the elimination of operator split-
ting yields the following generalization of Eq. (124):

M — N ——MD
2 2

M+ N+ —MD
2 2

(127)

where the diagonal matrix D has the nonzero entries
p(x;, p,". ) (i = n, n+1—, . .—. , n). Because of the para-
bolic integral interpolation, the matrices M and X impli-
citly provide high-accuracy tridiagonal representations of
the derivative 8 /3x when there is no refraction or gain.
On the other hand, the accuracy of Eq. (127) is reduced
because the matrix D represents refraction and gain only
diagonally. Complicated coeKcients like those in Eqs.
(118)—(121), arising from an analytical evaluation of Her-
mitian integrals, certainly tax one s patience and/or
tolerance for complexity. However, such integrals can be
evaluated numerically. Because the practical accuracy of
finite-difference expressions is relatively insensitive to
how accurately their coefFicients are evaluated, the Her-
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mitian integrals require only modestly accurate evalua-
tion. Therefore, to obtain tridiagonal estimates with the
greatest possible practical accuracy, the analytical PIFD
can be replaced by its numerical implementation, applied
to the entire right-hand side of Eq. (17), and imposed at
sufficiently regular axial intervals when its coefficients de-
pend explicitly upon the axial and dependent variables.
Instead of speculating about the resulting accuracy
and/or efficiency, I defer further comment until ongoing
work is completed.

Another economy is possible for problems requiring
sufficiently small axial steps. A CRAY-Y/MP8 central-
processor time needed to evaluate exp(z) is 8 —9 %
greater than the computing time for its third-order ap-
proximation (1—

—,'z) '(1+—,'z). One expects a, similar

comparison for the "diagonal" exponential operators in
Eqs. (20) and (21). Furthermore, Sec. IV illustrates that
the central-processor time for the exponential factors
exceeds the time for a DFT-FFT or PIFD vacuumlike
step by a factor ranging between 4 and 8, i.e., most of the
computing time (76—89%) is used to compute the ex-
ponential terms. Replacing the exact exponentials by
their third-order approximations, which are accurate for
sufficiently small axial steps, can therefore save an appre-
ciable amount of computing time.

There is also another issue in comparing the DFT-FFT
and PIFD methods. Scarmozzino and Osgood [19],
working on a personal computer, observe that their
finite-difference computing time per axial step is
10—20 fo less than the corresponding DFT-FFT step
when 64~N~1024. The number of arithmetic opera-
tions in a DFT-FFT step is proportional to X in%
whereas a PIFD step such as Eq. (124) needs only N
operations. Therefore, one expects a PIFD step to re-
quire less computing time than a DFT-FFT step when N
is sufficiently large. However, Sec. IV displays a typical
CRAY-Y/MP8 calculation in which a PIFD step re-
quires about twice as much computing time as a DFT-
FFT step even when N =5760 (which has the highly fac-
torable form 2 X 3 X 5 so that the DFT-FFT computa-
tion is efficient). Any comparison of computing methods
should obviously consider factors other than the number
of arithmetic operations —for example, the relative
efficiencies of DFT-FFT versus PIFD algorithms may de-
pend upon how well these algorithms can be vectorized.

The computer codes behind the results in Sec. IV are
based upon the splitting of operators and the evaluation
of exact exponentials. These codes can easily be adapted
to third-order expansions of the exponentials or the elim-
ination of operator splitting. Because of the fairly wide
range of the electron density, the coefficient f3 in Eq. (17)
is relatively large. Therefore, Eq. (127) is also checked to
see whether it yields, like the results of Scarmozzino and
Osgood [19], significant improvements in speed and/or
accuracy. Even though a non-split-operator approach
sidesteps the axial error of order 0 (z ) in Eq. (21), an ax-
ial error of the same order emerges from the axial-
centered two-level expansion in Eq. (123). Thus the
finite-difference algorithm in Eq. (127) can be less efficient
for reasons besides the low accuracy arising from the di-

agonal matrix D.

D. Miscellany

1. Free-electron density and small-signal gain

Section IV uses either a parabola or a Gaussian func-
tion to model the free-electron density n, [Eq. (1)]:

T

n, (0)(1—4x /w ) (~x &w/2)
n, (x)= .

0 (ixi )w/2),
(128)

n, (x)=n, (0) exp( —4x /w ), (129)

where w is the width of the laser. The derivative of the
parabolic distribution has an unphysical discontinuity at
the edge of the laser. Since a first-order Taylor series of
the exponential function equals the parabola inside the
laser, the exponential distribution matches the parabola
near the center of the laser and replaces the foregoing
discontinuity by a smoothly decaying variation at the
laser's edge.

The small-signal gain go [Eq. (9)] is also modeled by
the parabolic or exponential distributions in Eqs. (128)
and (129).

Z. Spontaneous-emission modeling

The spontaneous-emission amplitude A — [Eq. (10)] is
simulated in two ways: (a) A — has the profile of the
small-signal gain [Eq. (9)] and a maximum equal to a con-
stant 3; and (b) A+— equals a constant A inside the laser
and rapidly decays outside the laser via the function

(x +w/2)
A exp

(2w 2

(
—w /2 & x & w /2 )

(x —w/2)
A exp

gw

(
—~ &x & —w/2)

(w/2&x & ~ ),

(130)

where w is the width of the laser, and where the parame-
ter g ( =5.43 X 10 ) is chosen so that the field intensity
is reduced by the factor 10 at a distance from the edge
of the laser equal to w/20. Either specification of the
amplitude ensures that all the spontaneous-emission in-
crements have the same power.

The phases @+—[Eq. (10)] of the spontaneous emission
are selected randomly by a real sequence of pseudoran-
dom numbers. This sequence is associated with a set of
phase gridpoints that is less dense than the transverse
grid. A standard cubic spline, satisfying the boundary
conditions that its first derivative vanishes at its end
points, is passed through the phase grid and used to inter-
polate the phase curve onto the transverse grid. If the
phase grid is sufficiently less dense than the transverse
grid, one obtains stochastic phase curves leading to
smooth transverse Laplacians [Eq. (12)]. The calcula-
tions in Sec. IV indicate that this stochastic modeling of
the phase produces a rather uniform spectral distribution
over all modes up to a maximum frequency that increases
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with the density of the phase grid.
The amplitude A [Eq. (130)] of the spontaneous-

emission increments must vary with the number of axial
cells N [Eq. (50)] in order that the total spontaneous emis-
sion be fixed. Even though the gain of the laser is satur-
able, it is approximately linear over small cells. The rela-
tionship between amplitudes for different cells may there-
fore be characterized as a random walk with linear gain.
Let A and a denote, respectively, the amplitude of a large
cell and the common amplitude of n small cells that refine
the large cell. Because the spontaneous emission is ran-
dom, the amplitude A and the n random-phase ampli-
tudes a satisfy the usual relation

(131)

where there is no gain. If a field g(0) undergoes "linear-
ized" gain in accordance with Eqs. (9) and (12), its ampli-
tude at the end of an axial increment of length z is

f(z) = t/f(0) exp(gz/2) . (132)

Thus, if the amplitude 2 is injected at the beginning of a
cell of length nz, it grows to the squared amplitude
A exp(ngz) at the end of the cell. If the small amplitude
a is injected at the axial position mz (m &n), it grows
only to the squared amplitude a exp[(n —m)gz] at the
end of the cell. If the output from the injection of ampli-
tude A equals the output from n distributed and
random-phase injections of amplitude a,

A exp(ngz)=a exp(gz)+a exp(2gz)

+ +a exp(ngz) . (133)

[1—exp( —gz) ]
(134)

which represents a linear-gain generalization of Eq. (131)
since

Summing the geometric series on the right-hand side of
Eq. (133) indicates that

where w is the width of the laser, A(x, l, t) is the paraxial
field at the output of the laser, and the angular brackets
( ) denote a time average. An analytic investigation of
coherence via modal analyses is rather difticult even with
linearized approximation (i.e., unsaturated gain) [23,24].
Of course, the calculation in Eq. (136) is an easy adden-
dum to any detailed numerical simulation [4,5,25].

After the sources of spontaneous emission are
"switched on, " the laser's evolution is nonstationary until
forward and backward waves propagate many times
through the laser. Then the gain-saturation term in Eq.
(12) "settles down" as the stochastically driven laser
evolves into a stationary random process, which takes
about four or five laser-transit times to establish. When
the laser is nonstationary, the angular brackets ( ) in Eq.
(136) should really denote an ensemble average, whose
computation is much more involved than a time average
of the laser's output. The gain probably subsides before
the passage of five laser-transit times so a serious calcula-
tion of coherence should really be nonstationary. The
difhculty and large cost of nonstationary calculations,
considered in relation to the computational economies
provided by the iterative methods in Sec. IIIB, make
those methods all the more valuable.

IV. CALCULATIONS AND DISCUSSION

The computations below are selected in accord with
three purposes: (a) to illustrate and/or justify various re-
marks and analyses in what precedes; (b) to ascertain
some deficiencies in previous work; and (c) to discuss cer-
tain properties of the x-ray output. The discussion
focuses on the exploding-foil ¹ like selenium laser-
collisionally excited 3p and 3s levels, and inverted on the
3p-3s transition by virtue of the fast radiative decay of
the 3s level to ground. All that follows derives from
Table I and certain variations of its data.

A. One-way calculations

lim F (n, g, z) = n .
g —+0

(135) Relatively inexpensive one-way computations provide
much insight for modeling x-ray lasers.

Equation (134) is used in Sec. IV to provide approximate-
ly equal amounts of spontaneous emission in calculations
with different axial cells.

3. Coherence calculations

Anticipated applications of x-ray lasers require a
sufficiently high degree of coherence. Although the tem-
poral (or longitudinal) coherence of x-ray lasers is expect-
ed to be satisfactory, their transverse (or spatial) coher-
ence needs to be improved by narrowing their width, in-
creasing their gain length, and avoiding gain saturation
as much as possible [7]. Section IV includes calculations
of the complex coherence factor [4,5,21,22]

( —iU/2 &x & w/2), (136)

I. Su+ciently dense grids

Let me first determine how dense a grid must be to get
convergence with the data in Table I. Consider a family
of calculations, differing in the number of axial steps, but
having in common the following features:

(a) An xz Cartesian geometry describes the amplifier.
(b) There is no spontaneous emission inside the

amplifier.
(c) The free-electron density and the gain have the par-

abolic distributions associated with Eq. (128) and Table I.
(d) The steady-state Gaussian beam g(X, O)

= A exp[ —(x /0. 01) ] enters the amplifier ( A is given by
Table I while the waist of the beam is located at z =0).

(e) To allow for diffractive and refractive expansion of
the beam beyond the transverse boundaries of the
amplifier, the transverse grid uniformly covers the inter-
val ( —4.000X10,4.015X10 ) with 5760 (=2 X3
X5) points.



3146 JAMES W. GREENE 48

TABLE I. Parameters for the exploding-foil Ne-like selenium laser [3,4,26].

Quantity

Spontaneous-emission
amplitude'

Small-signal-gain
amplitude

Saturation intensity
Amplifier length
Free-electron-density

amplitude
Amplifier width
Average

permittivity'
Wavelength

Symbol

gp(0)
Isat
l

n, (0)
W

Value

8.682 X 10 V cm

6.000 cm
3.950 Wcm
4.000 cm

5.000 X 10 cm
4.000 X 10 cm

9.999X 10-'
2.QQQX 1Q2 A

Equation References

Eqs. (10) and (130)

Eqs. (9), (128), and (129)
Eqs. (9) and (11)
Eqs. (50) and (136)

Eqs. (1), (128), and (129)
Eqs. (128)—(130)

Eqs. (1) and (2)
Eqs. (3), (12), (54), and (74)

'This datum corresponds to an intensity of 1.000X 10 W cm
This datum was selected to yield a transversely averaged two-way axial-gain curve similar to recent

work discussed in the two-way calculations below. One can infer from Eqs. (11) and (12) that the vari-
ables A and I„,enter the computations only through the ratio A /QI„, .
'The value n, =2.5 X 10 cm, used to calculate e„ is the average of the minimum and maximum of
the free-electron-density distribution given by Eqs. (128) and (129) and the datum above for n, (0).

(f) The computations use the one-way time-
independent split-operator DFT-FFT method (Sec. III),
which is efficient because of the highly factorable trans-
verse discretization just mentioned.

Figure 3 overlaps the near-field intensities computed
with 100, 200, 300, 400, 500, and 1000 axial steps. A
curve for 2000 axial steps overlaps the 1000-step curve so
closely that their separation is barely discernible. Thus it
is clear that at least 500 steps, and preferably 1000 steps,
are required to obtain reasonably converged results (Feit
and Fleck [4] use only 100 axial steps).

Surfaces of constant phase, corresponding to the near-
field intensities in Fig. 3, are plotted in Fig. 4. It is again
clear that at least 500 steps are needed for satisfactory
convergence.

The converging near-field intensities of Fig. 3 widen as
their peaks diminish and eventually disappear. Since the
far-field angular distribution equals a certain rescaled
Fourier transform of the near field [Eq. (59)], one expects,
because of the uncertainty relations for the widths of
Fourier-transform pairs, that the corresponding far-field
distributions are successively narrower. Figure 5
confirms such a relationship and indicates that the con-
verged far-field angular distribution has prominent spikes
at about +1.38 X 10 rad.

The smoothness of the curves in Figs. 3 and 4 might
foster a mistaken impression that the uniform transverse
grid of 5760 points is far denser than what is necessary.
This zoning density is, iri fact, rather modest. The curves
of Fig. 4 are constructed in the following way. In order
to determine the phase of the field, the computed phase
P(x, z) of the paraxial envelope must be added to the

1, 5-
—0. 5-

1.0- E -1.0-

p 5
CD

1000~
-2. 0

0-4. 0

x (10 ' cm)

I

2, 0 4. 0

—2. 0 —1.0
l

1, 0 2. 0

FIG. 3. Near-field intensities of a steady-state Gaussian beam
passing through an exploding-foil ¹like selenium amplifier.
The various curves are labeled with the number of axial steps
used in their computation.

x (1() ' cm)

FIG. 4. Constant-phase surfaces corresponding to the inten-
sities in Fig. 3 and labeled by the number of axial steps used in
their computation.
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1.0-

0. 8-

0. 6-

The parabolic dependence in Eqs. (138) and (139) is
more or less to be expected. If there is no refraction or
gain, i.e., only diffraction, Eqs. (60)—(63) show that the
transverse phase varies as the product x (z —za), where
zo is the location of the beam waist. Similarly, if there is
no diffraction (i.e., no Laplacian term) and no gain, Eq.
(15) reduces to the steady-state form

0, 4- [e(x)—e, ]6',
XQe.

(141)

0 ~
2- which has the solution

I

-2. 0

1000
I

—1, 0
I

1.0
I

2. 0

6'(x, z) =8(x,za) exp, [e(x)—e, ](z —za) . .
E~

Scattering angle (10 2 rad) (142)

FIG. 5. Far-field angular distributions corresponding to the
intensities in Fig. 3 and labeled by the number of axial steps
used in their computation.

phase of a plane wave with wavelength A, /Qe, [Eqs. (2)
and (3)]. In paraxial calculations, the wavelength
of the field remains very nearly equal to this wavelength.
Consequently, the phase difference [P(x,z) —P(O, z) ]
corresponds to an axial displacement A, [P(x,z)
—P(O, z)]/2vr+e, Ave. ry good approximation Z(x) of
a constant-phase surface passing through the z axis at z is
thus

Z(x) =z— [P(x,z) —P(O, z)] .
2~+a.

(137)

The 1000-step curve in Fig. 4 very closely exhibits the
parabolic dependence

4—Z(x, 4) =3.38 X 10 'x

so the phase has the parabolic form

P(x, 4) =P(0,4)+ 1.06 X 10 x

(138)

(139)

x ) [2'/(1. 06X10 )]'i =2.43X10 (140)

Since the uniform transverse zones have length
1.39 X 10 ( =8.015 X 10 /5759), the on-axis
wavelength is represented by 175 points

[ =k, (0,4)/(1. 39 X 10 ) ] while only 11 points
[=A,,(0.02,4)/(1. 39X10 )] resolve a transverse wave

near the edge of the amplifier (Feit and Fleck [4] use
about 5 points). The phase grows quadratically [Eq.
(139)] only to the edge of the amplifier and then stays
nearly constant because the free-electron density
[Eq. (128)] extends no further. Thus A, , (0.02, 4)
( = 1.48 X 10 ~ cm) is the shortest transverse wavelength.

The transverse wavelength A, , (x,z), decreasing as P(x, 4)
increases quadratically, corresponds to a phase increase
by 2', i.e., 1.06 X 10 x +2m = 1.06 X 10 [x +A, , (x,4)],
so

A, , (x,4) = —x + [x +2m. /(1. 06X 10 )]'~

=n. /(1. 06X10 x)+. . .

Equations (1), (128), (129), and (142) again indicate a
transverse phase varying as x (z —za ). Csain affects
mainly the amplitude of the field although saturation of
the gain can also Aatten the transverse variation. In any
event, Fig. 4 illustrates that there is essentially an x vari-
ation of the transverse phase when diffraction, refraction,
and saturated gain are in effect simultaneously (the value
of I„, in Table I and the intensities of Fig. 3 imply that
saturation is appreciable). Figure 6 illustrates how the
transverse wavelengths decrease with axial propagation
into the amplifier.

In summary, the transverse phase of the field increases
approximately as the product x (z —za ) so, for a uniform
grid, the number of grid points per transverse wave at the
edge of the amplifier decreases inversely with the product
x (z —za). The shortest transverse wave with significant
amplitude arises at the end of the amplifier and near its
transverse edge. To provide some minimum number of
grid points for this shortest wave, the number of points in
a uniform grid must increase linearly with the length of
the amplifier.

2. Discrete Fourier transforms, Hermitian method-
ftnite differences, and Gauss Hermite expans-ions

The foregoing DFT-FFT 1000-axial-step calculation
can be done satisfactorily with a much sparser transverse
grid. Figure 7 displays the near-field intensity computed
with transverse grids of 5760, 1458, 1250, and 1176
points. Deterioration of the results becomes discernible
with 1250 points. Significant distortion is apparent at
1176 points, which correspond to having only two points
per shortest transverse wave [i.e., X,(0.02, 4)
X 1175/0.08=2]. Because of smaller truncation errors,
these DFT-FFT results are superior to corresponding
uniform-grid computations with the split-operator PIFD
method (Sec. III). As Fig. 8 shows, the PIFD approach
produces much larger sparse-grid distortions.

The advantage switches to the PIFD method when one
admits nonuniform zoning, which, of course, is not an
option with the DFT-FFT computations. Equation (140)
indicates that the transverse wavelength decreases ap-
proximately linearly between the center of the amplifier
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and its edges (see also the near field at z =4 cm in Fig. 6),
so one might expect the sparse-grid PIFD computations
to improve if the density of the grid is adjusted in accord
with this variation of the transverse wavelength. The
uniform-grid size for NX =1176 in Fig. 8 is 6.896X10
( =0.081 03/1175). Consider a nonuniform grid in which

(a) the interval ( —0.04, —0.03) is divided into 5 zones of
length 2.000 X 10 3 (=0.01/5); (b) the interval (

—0.03,0)
is divided into 575 zones in such a way that the first zone
has length 3.131X10 while each successive zone in-
creases by 7.270X10 (an arithmetic series of intervals
with increasing length) until the last zone has length
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FIG. 7. DFT-FFT 1000-axial-step computa-
tion of near-field intensity vs XX, the number
of points in the uniform transverse grid.
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7.304X10; (c) the interval (0,0.03) is divided into 575
zones in such a way that the first zone has length
7.304X10 while each successive zone decreases by
7.270X10 (an arithmetic series of intervals with de-
creasing length) until the last zone has length
3.131X10; (d) the interval (0.03,0.04103) is divided
into 20 zones of length 5.515 X 10 (=0.01103/20). The
PIFD curve in Fig. 9, obtained over this variable grid, is
quite satisfactory and clearly superior to the DFT-FFT
1176-point results in Fig. 7.

Figure 10 illustrates three Gauss-Hermite expansions
of the 5760-point curve in Fig. 8. The expansion with the
spot-size parameter o.p=1.25 X 10 cm, having a some-
what smaller breadth than the expansions for
o Q 1 .00 X 10 or 1 .50 X 10 crn, thereby rejects the
optimal choice in Eq. (73). Figures 8 and 10 also demon-
strate how even a relatively smooth near-field intensity
can correspond to a very large Gauss-Hermite expansion.
A Gauss-Hermite synthesis with the coefficients in Fig.
10 very closely reproduces the 1000-axial-step far-field
curve in Fig. 5 and the 5760-point near-field curve in
Fig. 7—the reproduction is so good that an overlay of
the curves displays no discernible differences. A similar
Gauss-Hermite synthesis with respect to the same trans-
verse grid also yields the intermediate field at z =5 cm.
This field, depicted in Fig. 11, extends beyond the boun-
daries of the transverse grid. To avoid distortions due to
aliasing, such a computation via the DFT-FFT method
requires that the field first be interpolated on a larger
transverse grid.

If the 5760-point DFT-FFT distribution in Fig. 7 is
uniformly rezoned onto the larger interval
( —5.000X10,5.019X10 ) via a monotone interpola-

1176

0 8

CO 0. 6-

0. 2-

0
—4. 0

I

-2. 0

x (1() ' cm)

I

2. 0
I
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FICi. 9. PIFD 1000-axial-step computation of near-field in-
tensity vs XX=1176, the number of points in a nonuniform
transverse grid in which the density of zones is adjusted in ac-
cord with the near-field transverse wavelength given by Eq.
(140) or Fig. 6.

tion [15]of the real and imaginary parts of the field inside
the initial interval ( —4.000 X 10,4.015 X 10 ), and via
a zero-value extrapolation of the field outside the initial
interval, a one-step DFT-FFT calculation yields Fig. 12,
a noisy result that is clearly inferior to the Gauss-
Hermite curve in Fig. 11. Distributing 7203 points uni-
formly over the interval ( —5.000X10,5.019X10 ),
which yields the previous 5760 points over the smaller in-
terval ( —4.000X10,4.015X10 ), produces, without
rezoning, results that are indistinguishable from the



3150 JAMES W. GREENE 48

4.0-

3.0-

N X = 5 7 6 0

op =1,00x10 ~ cm 3.0-

(b)
NX=5760

op =1.25X10 ~ cm

2. 0- 2.0-

1.0-

3.0-

2. 5-

(c)
NX=5760

op =1.50x10 ~ cm

"egg+
0 I I

0 0. 5 1.0 1.5 2. 0 2. 5

10 ~n

1 ~
0-

0 I

0 0. 5 1.0 1.5 2. 0 2. 5

FIG. 10. Gauss-Hermite expansions of the
5760-point curve in Fig. 8 vs o.o, the spot-size
parameter in Eq. (63). These curves are con-
structed by straight-line interpolation. Be-
cause the coe%cients of the expansions alter-
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5760-point curves in Figs. 7 and 11. But then the compu-
tational time very nearly equals that of the PIFD-Gauss-
Hermite (PIFD-GH) approach. Table II summarizes the
time data for Figs. 11 and 12.

Even though the arithmetic operations for one-step
vacuum calculations via the PIFD and DFT-FFT
methods vary, respectively, as N and N in%, where N is
the dimension of the transverse grid; it turns out that the
PIFD vacuum step requires nearly twice as much
central-processor time as the DFT-FFT computation
when N equals 5760 or 11 520, which lie in the range of
the transverse dimensions needed for these calculations.
Table III lists the computing times not only for the vacu-

um steps, but also for the amplitude-phase multipliers
[Eqs. (22) and (23)] that complete the split-operator axial
algorithms. Why the DFT-FFT amplitude-phase multi-
plier requires about 9%%uo more time than the PIFD multi-
plier is puzzling since these calculations are theoretically
identical. The difference between the DFT-FFT and
PIFD vacuum steps narrows with the indicated doubling
of the transverse dimension. Assuming computing times
proportional to X and X 1nX, the aforementioned num-
bers of arithmetic operations, one infers from Table III
that the DFT-FFT and PIFD vacuum steps would re-
quire the same computing time with a transverse dimen-

6.0-

6, 0- 5. 0-

5, 0- 4. 0-

3.0-

3.0- 2. 0-

2. 0- 1.0-

0
—4. 0

I

—2. 0
I

2. 0 4. 0

0
-4 0

I

-2. 0

x (10 ' cm)

2. 0 4. 0

x (I 0 ' cm)

FIG. 11. Gauss-Hermite 5760-point synthesis of the field at
z =5 cm.

FIG. 12. DFT-FFT 5760-point calculation of the field at
z =5 cm. To avoid aliasing, the real and imaginary parts of the
near field are uniformly and monotonely rezoned onto a larger
transverse interval.
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TABLE II. Central-processor timing (CRAY-Y/MP8) of DFT-FFT and PIFD-GH calculations for
Figs. 11 and 12.

Calculation

Inside laser
Vacuum step'
Total time

5760-point
PIFD-GH time (s)

1.255 X 10
1.950 X 10'
1.450 X 10

5760-point
DFT-FFT time (s)

1.222 X 102

1.655 X 10-'
1.224 X 10

7203-point
DFT-FFT (s)

1.439 X 10
4.000 X 10-'
1.439 X 10

'The 5760-point DFT-FFT time includes the rezoning time.

sion of about 1.5X10 . In other words, with any practi-
cal transverse dimension, the PIFD vacuum step needs
about twice as much computing time as the DFT-FFT
vacuum step. However, Table III also shows that the
amplitude-phase multiplication requires 76—89%%uo of the
entire calculation (i.e., vacuum step plus amplitude-phase
multiplication), so these dift'erences in computing times
for the vacuum steps are relatively inconsequential.

A non-split-operator PIFD computation, performed in
accord with Eq. (127), converges more slowly than the
split-operator DFT-FFT (or PIFD) results in Figs. 3 and
4—about 4000 axial steps are needed to reach the degree
of convergence exhibited by the 1000-step curves in these
figures. Thus the elimination of operator splitting via Eq.
(127), an option not available in the DFT-FFT approach,
does not tip the scales in favor of the PIFD method in-
side the amplifier (cf. Scarmozzino and Osgood [19] and
the discussion in Sec. III C3). A numerical PIFD im-
plementation, mentioned in connection with Eq. (127),
may achieve more significant improvements like Scar-
mozzino and Osgood's results for simpler problems.

There is little practical difference between the DFT-
FFT and PIFD approaches. Because the PIFD tech-
nique allows more fiexible zoning and superior accuracy
with specially tailored grids, I prefer it inside the
amplifier. Outside the amplifier, the DFT-FFT one-step
calculations, even with an interpolation onto a uniform
transverse grid, are much more efIicient than a Gauss-
Hermite expansion. Moreover, for the more complicated
fields encountered below in the simulation of spontaneous
emission, it becomes practically impossible to obtain
reasonably convergent and e%cient Gauss-Hermite ex-
pansions. Consequently, the two-way results below are
based on PIFD techniques inside the amplifiers, a mono-
tone interpolation [15] onto a uniform grid when the
internal grid is nonuniform, and one-step DFT-FFT cal-
culations outside the amplifier.

3. Cylindrical symmetry and Gauss-Laguerre expansions

In some respects, a cylindrically symmetric analysis is
more realistic than the foregoing slablike calculations.
Consider an analog of the preceding considerations in
which (a) the amplifier is described by an rz geometry and
has no spontaneous emission; (b) the free-electron densi-
ty, small-signal gain, and initial Gaussian beam are cylin-
drically symmetric analogs of the above slablike forms;
(c) a radial grid uniformly covers the interval
(0,4.000X10 ) with NR (=2875) points, which corre-
spond to the 5760 points distributed over the interval
( —4.000 X 10,4.015 X 10 ); and (d) the computations
use the cylindrically symmetric PIFD method inside the
laser and a Gauss-Laguerre expansion outside the laser
(cf. Sec. III C2). Figure 13 summarizes a PIFD 1000-
axial-step computation of the near-field intensity, the
near-field surface of constant phase, the Gauss-Laguerre
expansion of the near field, and the far-field angular dis-
tribution. The intensity in Fig. 13 is about half of the
1000-axial-step curve in Fig. 3 while the corresponding
phase surfaces in Figs. 4 and 13 are very nearly identical.
The Gauss-Laguerre expansion coeKcients span about
half as many modes as their Gauss-Hermite analogs in
Fig. 10 and also generate a much smoother curve since
they do not alternate between nonzero and zero values,
respectively, for even and odd modal indices. The
Gauss-Lag uerre coefticients, like their Gauss-Hermite
analogs, also display an optimal spot-size parameter [Eq.
(73)] near cro= 1.25 X 10 cm. The far-field distribution
again displays a local peak at about 1.38 X 10 rad, but
its height is considerably less than its slablike analog in
Fig. 5. Because the r grid has half as many zones as the
preceding x grid, these cylindrical computations require
about half as much computing time. The Gauss-
Laguerre vacuum-step computation is reduced by anoth-

TABLE III. One-axial-step central-processor timing (CRAY-Y/MP8) of DFT-FFT and PIFD
methods for transverse dimensions of 5760 and 11 520.

Calculation

Vacuum step (5760)
Exponential amplitude-phase

multiplication (5760)
Vacuum step (11 520)
Exponential amplitude-phase

multiplication (11 520)

DFT-FFT method (s)

1.353 X 10-'

1.088X 10
2.785X 10 '

1.741 X 10-'

PIFD method (s)

2.582X10 '

9.979X 10
5. 150X 10

1.601 X 10
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[n and ~c„~ are, respectively, the modal indices

and coeKcients of the series in Eq. (80)], (d)

far-field angular distribution.
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er factor of —,
' since its coefBcients span about half as

many modal indices.

4. Refraction and gain computed separately

It is interesting to examine the effects of refraction and
gain separately. Figure 14 displays a DFT-FFT 1000-
axial-step computation with 7203 points distributed over
the interval (

—5.000X10,5.019X10 ). The small-
signal gain is zero while the preceding parabolic free-
electron density is retained. The far-field distribution has
even more prominent peaks at 1.38 X 10 rad because its
central portion is no longer amplified. The intricate in-
terference pattern, smeared together by the coarse scale
of the drawing, is well resolved by the 7203-point grid.

If the roles of the density and gain are reversed (i.e.,
use the preceding parabolic small-signal gain and zero
density), one obtains the much narrower and smoother
outer curve in Fig. 15. This zero-density distribution has
barely discernible peaks in its wings at about 1.6X10
rad. The inner curve in Fig. 15 is the Gaussian-beam dis-
tribution for vacuum transport, so the saturated gain pro-
duces a relatively small extra spreading. Consequently,
refraction due to the nonuniform density —and not
slightly greater gain along certain curved rays —causes
the prominent maxima in the wings of the far-field distri-
bution.

tensity. However, each realization of the phase differs
and has an arbitrarily high "mode content" —the longer
is the sequence of pseudorandom numbers used to gen-
erate the random phase, the greater is the spread of
modes in the distribution. Since the dimension of the
transverse grid must increase in concert with the length
of this sequence, the modal content of this modeling is
strictly limited.

What is an adequate modal content? As it increases,
the output of the laser decreases more or less steadily as
more and more radiation diffracts laterally and hence
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NX=7203

0. 8-

0. 6-
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0, 2-

—2. 0
I

—1.0 1.0
I

2. 0
5. Discretization, underestimated di+raction,

and overestimated power output Scat tering ang le (10 ~ rad)

When the spontaneous emission is modeled in accor-
dance with Eq. (130) and the accompanying commentary,
each emissive injection has the same smooth profile of in-

FIG. 14. DFT-FFT 1000-axial-step 7203-point calculation of
far-field angular distribution for parabolic density and zero
gain.
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does not undergo full amplification. For a laser of length
I and width m, the far-field radiation would be confined
approximately within an angle w /l ( = 1.0 X 10 ) if
there were no diffraction or refraction. However, Figs. 5,
13, and 14 show that even a simple Gaussian beam
exceeds such an angular divergence, i.e., the refraction by
itself directs radiation somewhat outside the geometric-
optics limits of the laser. It seems reasonable to use a
modal distribution extending up to where the diffraction

Scattering angle (10 4 rad)

FIG. 15. DFT-FFT 1000-axial-step 7203-point calculation of
far-field angular distribution (outer curve) for parabolic gain
and zero density. The outer curve has the barely discernible
peaks at 1.6X10 rad. The inner curve is the Gaussian-beam
distribution for vacuum transport.

spreading rivals this refractive divergence. All modes re-
ceiving full amplification are included, and adequate
statistics for coherence calculations should be realized.
Such a procedure obviously underestimates the total
diffraction and thereby overestimates the power output.

Present supercomputer storage and speed are very
many orders of magnitude less than what would be re-
quired to model the full modal content of real x-ray
lasers. If a calculation is to yield an observed power out-
put, the constant A in Eq. (130) must be adjusted. Even a
specification of A based on detailed microscopic model-
ing will result in too little diffraction and too much
power.

To estimate a modal distribution for which the
diffractive spreading is about the same as that of the re-
fraction, consider a computational experiment in which
(a) the emissive injections use the model in Eq. (130); (b)
these injections are separated by 0.1 cm (i.e., there are 41
injections in each calculation); (c) the DFT-FFT method
is used over the transverse interval (

—6.000 X 10
6.340X10 ), which is large enough to avoid aliasing; (d)
there is no refraction (i.e., only diFraction and saturated
gain are in efFect); (e) a series of calculations incorporates
successively longer sequences of pseudorandom numbers
to generate the random phases of the emission; (Q the
number of points in the transverse and axial grids in-
creases appropriately with the increasing phase complexi-
ty to ensure well-converged and well-resolved results; (g)
the near field, the power, and the far-field angular distri-
bution are monitored.

Figure 16(a) illustrates the common emissive profile of
intensity. A typical phase-curve realization for 151 ran-
dom points interpolated by 1401 x-grid points is
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displayed in Fig. 16(b). Figures 16(c) and 16(d) show, re-
spectively, the near-field intensity and the far-field distri-
bution. The near field spills slightly outside the trans-
verse boundaries of the laser, and the angular spread
(=8.0X10 rad) of the far field is approaching the
geometric-optics limits ( = 1.0 X 10 rad) of the laser.

Table IV summarizes the results of a family of such
calculations. The angular divergence increases until the
geometric-optics limit is attained at about 201 random
points while the total power fluctuates with increasing
phase complexity until it starts to drop off as significantly
greater amounts of radiation diffract laterally and thereby
receive less than the full amplification available. Even
with one-way computation, following this process of di-
minishing output demands formidable zoning dimen-
sions; and the goal is to perform two-way computations.
One would hope that about 151 random points lead to
adequate statistics for coherence calculations.

6. Single mode lik-e evolu-tion, refraction,
and saturation of the gain

Refraction enhances the evolution of a single-mode-
like intensity whereas saturation of the gain inhibits this
process. The word "single-mode-like*' has to be em-
phasized because, even though the intensity can have a
very simple profile like a low-order Gauss-Hermite mode,
the phase surface may differ greatly from such a mode
and thereby lead to a very large Gauss-Hermite
expansion —see Figs. 6 and 10.

Consider again the emission depicted by Figs. 16(a) and
16(b), and suppose that this emission is injected only at
the input of the laser. Cover the transverse interval
( —6.000X10,6.340X10 ) with a uniform grid of
4320 points, and use 1200 uniform axial points to trans-
port this emission over the length of the laser. Figures
17(a) and 17(b) depict, respectively, the 1-pass and 2-pass
outputs of a DFT-FFT computation in which (a) there is
no refraction and (b) the preceding parabolic small-signal
gain is unsaturated (i.e., I„,=1.000X10' Wcm ).
Figures 17(c) and 17(d) display the same 1-pass and 2-
pass results when refraction via the foregoing parabolic
charge density is in effect. Refraction clearly produces

the more rapid evolution of a single-mode-like intensity.
Figure 18 redoes the calculations in Fig. 17 with a sa-

turated gain (I„, has the value in Table I). The trans-
verse grid for Figs. 18(c) and 18(d) is augmented to 6400
points distributed uniformly over the interval
(
—9.000 X 10,9.283 X 10 ) in order to avoid too

much aliasing. That saturation of the gain reduces the
rate of single-mode-like evolution is evident from a com-
parison of Figs. 18(a), 18(b), 18(c), and 18(d) with Figs.
17(a), 17(b), 17(c), and 17(d), respectively.

Multi-mode-like behavior is still present after two
passes. Since the laser may deteriorate significantly by
the end of the second pass, some sort of modal filtering or
an unstable-resonator mirror may be needed to facilitate
the evolution of a satisfactory 2-pass output.

7. Near fteld-and far field sen-sitivity

to eha~ge density and small-signal gain

Because its slope does not possess an unphysical
discontinuity at the edge of the laser, the Gaussian profile
[Eq. (129)j may provide more realistic results. Reconsid-
er the DFT-FFT 1000-axial-step 7203-transverse-point
calculation for Fig. 14, assume there is no gain, and let
the charge density have the Gaussian profile of Eq. (129).
Figure 19(a) shows the corresponding near-field output,
which displays none of the intricate interference in Fig.
14. Moreover, this near field has an on-axis dip similar to
previous results [3,4] connected with a quartic profile for
the small-signal gain. An additional unsaturated gain,
extending flatly and more widely than the distribution in
Fig. 19(a), would produce a similar result.

If a Gaussian small-signal gain like Eq. (129) is added
to the computation behind Fig. 19(a), one obtains the
far-field distribution in Fig. 19(b), which differs remark-
ably from Fig. 14. There are no spikes or intricate in-
terference, while the flattening influence of saturated gain
is evident and produces output that is quite uniform
within the geometric-optics limits ( = 1.0 X 10 rad) of
the laser.

If the profiles for density and gain are interchanged in
the calculation leading to Fig. 19(a) (i.e., a Gaussian gain
and zero density), the very different and relatively narrow

TABLE IV. Near-field power density and far-field angular divergence versus dimension of random-
phase sequence.

Random-phase
dimension

21
101
151
201
401
601
801

XX'

640
4 320
4 320
6 040

12 005
18 144
24 010

SZ

400
800

1 200
1 600
8 000

16000
24 000

Near-field power
density' (W cm ')

3.085 X 10-'
3.051 X 10-'
2.873 X 10-'
3.094 X 10-'
2.798X 10
2.574X 10-'
2.481 X 10-'

Far-field angular
divergence (rad)

1.6X 10
6.0X10-'
8.0X 10
9.0X10-'
1.0X 10
1.0X 10
1.0X 10-'

'XX is the x-grid dimension.
NZ is the number of z steps in the calculation.
The power density along the slab {i.e., along the y axis) is computed by using piecewise parabolic inter-

polation to evaluate the x integral of the near-field intensity.
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Thus, Figs. 3, 5, 14, 15, and 19 demonstrate that both
the near field and the far field are sensitive to the profiles
of charge density and gain. Detailed hydrodynamics and

atomic kinetics are essential for an accurate simulation of
the output of an x-ray laser.

B. Two-may calculations

Much more involved computation becomes necessary
when an accurate simulation of two-way saturated gain is
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tion, which gives 500 samples for the time averages. Fig-
ures 21(c) and 21(d) result when the axial resolution of
this calculation is increased to 500 steps, which yield
2500 samples for the time averaging. In accordance with
the random-walk linear-gain relations in Eqs.
(131)—(135), the amplitude 3 in Table I is reduced to
4.069X10 3 Vcm '. Figures 21(a) and 21(c) have the
same qualitative relationship as the 100-step and 500-step
one-way curves in Fig. 3—very distorted results are ob-
tained with only 100 steps. Several curves in [4] have the
same broad two-pronged shape as Fig. 21(a) and thus
represent, I submit, very unconverged calculations.

The array storage and computing time for the calcula-
tion behind Figs. 21(a) and 21(b) are, respectively,
1 892 510 (decimal) 64-bit words and 17.4 min per pass on
a Cray-Y/MP8 machine. The corresponding storage and
time for Figs. 21(c) and 21(d) are, respectively, 8 934 510
and 430.5 min per pass, so properly converged nonitera-
tive calculations can tax supercomputers. Comparisons
between Figs. 21(a) and 21(c), and between Figs. 21(b)
and 21(d), indicate that the 100-axial-step calculation
produces a too narrow near Geld and an overly wide far-
field distribution.

The spatial-coherence curves [Eq. (136)] corresponding
to Figs. 21(a) and 21(c) are plotted, respectively, in Figs.
22(a) and 22(b) —the laser is not very coherent. The
wings of Fig. 22(b), based on 5 times as many time sam-
ples, are considerably smaller and less noisy than the
wings of Fig. 22(a). This pattern is common with coher-
ence calculations. The central portion of a coherence
curve emerges with a relatively few time samples, but the

amplitude and noise of the wings disappear relatively
slowly as the number of time samples grows. The wings
of the coherence curves in [4] are not nearly as noisy be-
cause, unlike Figs. 22(a) or 22(b), Feit and Fleck's results
appear not to be plotted at the full density of the trans-
verse grid.

In order to assess the accuracy of Figs. 22(a) and 22(b),
consider the more refined calculation in Fig. 22(c). The
number of transverse zones inside the interval
(
—0.06, 0.06) is increased to 9000, the rest of the grid is

unchanged, the number of random-phase points increases
to 301, and the number of axial steps is doubled via a 10-
axial-cell 1000-axial-step 3-cycle 5-pass computation
[M =100 and N =10 in Eq. (50), the time averages are
based upon 50 time samples, and the amplitude 3 in
Table I is increased to 1.792X10 Vcm ' in accord
with Eqs. (131)—(135)]. With only 50 time samples, the
wings of the coherence curve have greater amplitudes,
but the width of the central portion of this curve is sub-
stantially narrower. Figure 22(d) overlaps the central
parts of the curves in Figs. 22(a) —22(c) and labels each
curve by the number of time samples used for its compu-
tation. The coherence calculations in Figs. 22(a) and
22(b) are clearly optimistic.

3. Iterative computation

Although the computation for Figs. 21(c) and 21(d)
provides fairly well-converged results, the storage and
computing time are prohibitive, especially if one contem-
plates an integration with hydrodynamics and detailed
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atomic kinetics. Moreover, the one-way calculations in
Figs. 3 —5 indicate that more axial steps are desirable.
Iterative computation allows more axial resolution with
less computing time and greatly reduced storage.

Figures 23(a) and 23(b) display the near field and the
far field for a 10-axial-cell 500-axial-step 3-cycle 5-pass
calculation over the same transverse grid. The storage
and time are, respectively, only 352070 and 28.3 min per
pass. Figures 23(a) and 23(b) agree remarkably well with
Figs. 21(c) and 21(d). Of course, Figs. 23(a) and 23(b) are
noisier because their time averages are based on only 50
samples instead of 2500 samples. The intermediately

noisy 500-time-sample curves in Figs. 23(c) and 23(d)
derive from the calculation for Fig. 20. It uses a storage
of 1936520 and a time of 292.5 min per pass. The 50-
time-sample calculation for Fig. 23(a) and the 500-time-
sample calculation for Fig. 23(c) provide, respectively,
the coherence curves in Figs. 24(a) and 24(b). Figures
22(b), 24(a), and 24(b) have virtually the same central por-
tion, so the relatively few time samples available in an
iterative calculation do not constitute a significant disad-
vantage for the computation of coherence curves. Table
V summarizes the convergence, efFiciency, storage, and
time step of the foregoing iterative and noniterative com-

TABLE V. Convergence, storage, efficiency, and time step of various iterative and noniterative two-
way computing strategies.

Strategy

100-axial-step,
noniterative"

500-axial-step,
noniterative

500-axial-step,
10-cell, 3-cycle,
iterative

500-axial-step,
100-cell, 3-cycle,
iterative

Converged?

No

Yes'

Yes'

Yes'

Storage'

1 892 510

8 934 510

352 070

1 936 520

Cray- Y/MP8
time per pass"

(min)

17.4

430.5

292.5

Time step'

I+a, /100c

I+a, /500c

I+a, /10c

'The total array storage in a calculation is listed as a decimal number of 64-bit words.
"One pass means that the calculation transports light through one length of the amplifier.
'The parameters c, I, and e, are, respectively, the velocity of light in vacuum, the length of the
amplifier, and the space-time average of the dielectric constant [Eq. (2)].
This is the basic calculation in Feit and Fleck [4].

'The convergence would be perceptibly better with 1000 axial steps (cf. Figs. 3 and 4).
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puting strategies.
The much wider coherence curve in Fig. 24(c) results

when the number of random-phase points underlying Fig.
24(a) is reduced from 141 to 21. Thus, as one expects, the
coherence of the amplifier increases as the modal content
diminishes. When the calculation behind Fig. 24(c) is
redone with no refraction (e.g. , a uniform charge density),
one obtains the much narrower curve in Fig. 24(d). Re-
fraction therefore improves spatial coherence even
though it leads to many more transverse modes connect-
ed with a highly curved phase surface (cf. Secs. IV A 1

and IV A 2) and intricate interference at the edges of the
amplifier (cf. Sec. IV A 4).

V. CONCLUDING REMARKS

My primary message is that two-way paraxial wave-
optics simulations of x-ray lasers need not consume all
the resources of a supercomputer. One does not have to
accept calculations [4] that require at least five times
more points to yield only modestly converged results.
Because the near field and far field are so sensitive to the
profiles of the charge density and the small-signal gain,
serious modeling should include hydrodynamics and ade-
quately detailed atomic kinetics. Presently conceived
amplifiers probably do not attain stationary operation so
serious evaluations of coherence should be nonstationary
(i.e., ensemble averaged instead of time averaged). Such
computing refinements, which are accessible with present
hardware and the shooting-secant iterations outlined in

this paper, could help to optimize x-ray lasers.
Several techniques, not considered herein, could im-

prove the computations in question. Significant enhance-
ment of speed and/or accuracy may be possible with
parallel computation —the shooting-secant iterations are
intrinsically parallelizable. The numerical implementa-
tion of the integral Hermitian method applied to the non-
splitting of operators (Sec. III C 3) may also yield
significant improvement. Third-order expansion of the
diagonal exponential multipliers (Sec. III C 3) helps when
the axial steps are sufficiently small. Just as the fast-
Fourier-transform approach is, in most cases, superior to
Gauss-Hermite expansions (Sec. IVA2), a fast-Hankel-
transform algorithm may be mostly superior to Gauss-
Laguerre expansions in cylindrically symmetric calcula-
tions (Sec. IV A 3). Therefore, the performance of the
various fast-Hankel-transform algorithms should be
checked.
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