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Autoresonant interaction of three nonlinear adiabatic oscillators
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The autoresonance phenomenon in a system of three weakly interacting nonlinear oscillators with

slowly varying parameters is studied. When excited, the triple autoresonant interaction yields an

efficient and continuous energy exchange between the oscillators while the nonlinear resonance condi-
tion is preserved, despite the variation of the parameters of the system. It is shown that the autoreso-
nance is stable with respect to the addition of sufficiently small friction and fluctuations in the system.
The amount of the allowed noise is estimated and the theory is illustrated by numerical examples.

PACS number(s): 03.20.+ i, 03.40.Kf, 52.35.Mw, 05.40.+j

I. INTRODUCTION

In contrast to the harmonic oscillator, the frequencies
of nonlinear oscillators depend on their energy, or action.
Because of this dependence, it was noticed long ago [1,2]
that one can resonantly transfer a nonlinear oscillator
from any of its allowed energy states to another state by
applying an external alternating perturbing force with a
slowly varying frequency. If, initially, the system is in res-
onance, then later in time the frequency of the nonlinear
oscillator will follow the frequency of the driving pertur-
bation so that the resonance condition is preserved on
average. The energy of the nonlinear oscillator changes
accordingly. This effect was called the phase stability in
earlier studies [2] and the dynamic autoresonance (DAR)
in more recent works [3,4].

In studying systems of weakly interacting nonlinear os-
cillators with constant parameters the most important
are the pairwise resonant interactions between the oscilla-
tors in the system. When such resonances are isolated
one can understand the system's dynamics by using the
si ngle resonance approximation [5,6], since the non-
resonant contributions are usually averaged out. If the
parameters of the interacting oscillators vary adiabatical-
ly, then one again finds the DAR type interactions be-
tween pairs of oscillators in the system which adjust their
energy states so that the nonlinear resonance condition is
preserved despite the time variation of the parameters.
An important case of this type is the spatial autoreso-
nance in mode conversion [7], which is the spatial analog
of the DAR for multicomponent weakly nonlinear waves
in nonuniform mediuxn.

If pairwise resonance conditions in a system of weakly
interacting oscillators are not satisfied, then resonances
between more than two oscillators in the system may be-
come important. For instance, three-wave resonant in-
teractions in weakly nonlinear systems supporting mul-
ticomponent waves comprise the lowest order (in terms of
the wave amplitudes) nonlinear resonant effect and are
therefore very important. The generalization of the
DAR idea for applications to such systems was suggested
recently [8]. In the present work we also consider the
problem of the triple resonance by using a model of three

II. THE MODEL EQUATIONS

A classical system of three weakly interacting oscilla-
tors exhibiting the triple resonance phenomenon is de-
scribed by the Hamiltonian

p Q.x.
H( xp, t)= g + +ex, x2x3

~ = 2 2

where c. is a small parameter. In the past this model
served as a prototype for studying resonant three-wave
interactions, where the term cx&x2x3 represented the
1owest-order nonlinear effect allowing the resonances of
the type 0,+02+03=0. Important generalizations of (1)
included the possibility of adiabatic variations of the pa-
rameters of the system (such as frequencies Q ) and the
addition of weakly nonlinear frequency shifts [9—11]. In
this work we further generalize the theory by removing
the weak nonlinearity assumption on the oscillators, but
still a11ow adiabatic variations of system's parameters and
preserve the interaction term as in (1). Thus, our Hamil-
tonian is

3 p.
H(x, p, t)= g +VJ(xI, A,, (t)) +Ex,x2x3,

2
(2)

where k (t) represents a set of slowly varying parameters
characterizing the jth oscillator.

At this point it is convenient to introduce the action-
angle variables (Ij., yj ), j =1,2, 3 of the unperturbed os-
cillators instead of (p. ,x. ). Then (2) yields the following

weakly interacting oscillators with slowly varying param-
eters, but remove the weak nonlinearity assumption of
previous studies. We shall show that if the system is res-
onant initially, then, under certain conditions, the prob-
lem reduces to that of the nonlinear resonance in a sys-
tem of one degree of freedom and yields the autoresonant
solution for which the triple resonance is preserved
despite the variation of the parameters of the system. Fi-
nally, we shall study the effect of a weak dissipation (fric-
tion) and fluctuations (collisions) on the stability of the
triple DAR.
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equations of motion:

BX
I~— 6 XpXy~f'a

(3)

small and of order c,
'

If the parameters of the oscillators vary adiabatically,
i.e., co is a function of time, but

Xa
g~ =Q~+ E XpXBI

(4)

dt's

2((v
dt

(15)

x = g a"(I,A, )e, a "=a+"*
k= —oo

(5)

If (5) is substituted in (4), and only the resonant contri-
bution in the interaction term kQ, +mQ2+nQ3 is kept,
we obtain the following system of equations:

I =2sk Im[Fe' ),
o =(kQ, +mQ2+n0&)+2e Re[Ge'

(6)

(7)

where k is either k, m, or n depending on whether 0. is
1, 2, or 3, o.=kg, +my2+ny3, and

F=a kama1 2 3

G F k, + +
Ba" Ba Ba"

a1 BI1 a2 ~I2 a3 BI3

Equation (6) yields the Manley-Rowe conditions:

I /k I&/k&=C —p=const, a&P,

(8)

(9)

(10)

which allow one to express any pair of the amplitudes in
terms of the third amplitude, so we have just two in-
dependent equations, say, for I1 and cr. As a final prelim-
inary step, we now introduce the real amplitudes and
complex phases of a", i.e. , a" =8"exp(if"), and define
the phase shift /=kg, +mfa +ngi+cr Then .(5) and
(6) can be rewritten as

with a=1,2, 3, P&y&a, and 0 representing the non-
linear frequencies of the unperturbed oscillators. Next,
we can expand x in Fourier series in terms of the angle
variables:

then the system exhibits the DAR phenomenon [3,4,7,8],
where I and P again oscillate, however, (co(I, t ) ),„=0
despite the variation of parameters with time. In other
words, (I ),„adjusts itself automatically in time to
preserve the nonlinear resonance cond. ition.

An important problem associated with the DAR
phenomenon is the passage through the resonance. Gen-
erally, if at the initial interaction time, co is far from the
resonance by more than its characteristic width (which
scales as &E), the system cannot enter the autoresonance
by varying its parameters adiabatically, since the trap-
ping into the resonance requires the crossing of the
separatrix between the trapped and untrapped trajec-
tories in the (I, P) phase plane. Nevertheless, an impor-
tant exception exists in our system, when, initially, one of
the oscillators, say, oscillator 1, is not excited
significantly. In this case, if the fundamental harmonic
(k =+1) of this oscillator is of interest, the trapping is
guaranteed in spite of the adiabaticity of the system.
This eff'ect was noticed'in Ref. [7] and is due to the fact
that for a weakly excited oscillator, one usually has
a —,

' -QI, and therefore G in (12) is singular. A simple
analysis then shows that this singularity leads to the
above-mentioned trapping into the resonance [7].

At this stage, we shall proceed to an example. Consid-
er the case of two linear oscillators, denoted by subscripts
1 and 2, and one nonlinear oscillator, denoted by 3. We
choose the frequencies of the linear oscillators to be
0, z(t), while the third oscillator corresponds to a parti-
cle trapped in a stationary square well potential in the re-
gion ~xz~ (i/2. For the linear oscillators with the equi-
librium points at x, 2 =0 we can write

I =2Ek F sing,

P =co+2EG cosP, (12)
and

max )2
Q12

(16)

where F and G are given by (8) and (9) with a" replaced
by B"and ~=k Q, +m Q2+ n Q3.

In the case of constant parameters in the system (where
a~ is independent of time), Eqs. (11) and (12) are similar to
the we11-known equations characteristic of the classical
nonlinear resonance [6]. In this case and when s satisfies

X1 2—
1/2

1,2

Q12
COS+1 2, (17)

where x1 2" are the amplitudes of the oscillations. There-
fore,

dc' 1

dI~ co
(13)

QIi ~/2Qi ~ for k=+1
1,2

0, otherwise .
(18)

—dc'v~ 2ckaF
dI (14)

this system yields, in the vicinity of the resonance co=0, a
solution in which both I and P exhibit an oscillatory
behavior with a characteristic frequency [5,6]

1/2

On the other hand, the nonlinear oscillator satisfies

I,=t[ui/~, (19)

where u is the velocity of the trapped particle. Then the
nonlinear frequency is given by

while the amplitudes 6I and 5$ of these oscillations [and
therefore also the amplitudes of 5co=5I (Bco/BI )] are

m I3
Q = (20)
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and I,=I,„(t)+5I, (30)

COS( m 1P3 )
x, =—g2 m=1

(21)
where 13~(t) is given by (29) and 5I is of O(E'/ ) and os-
cillates. Then, to order O(E'/ ), Eqs. (24) and (25) give

Hence

0 for n=0
n

I /(4mn . ), otherwise . (22)

~ c.l5I = — f(I3, ) sin/-
4m.

j'2
01—Q2 (31)

(32)

I3+Ii C31

I3 I2=C32 ~

(23)

Now, consider the resonance 01—Q2 —Q3 =0
(k =1, m = —1, n = —1). The Manley-Rowe relations
[Eq. (10)] in this case are

where

f(I3, )= 31 3e 32 3e )]

QQ, Q,
(33)

The stable quasi-steady-state solution of (31) and (32) is

and our system is fully described by the following set of
equations:

P, =~—arcsin
4l(Q1 —Q2)

sf (I3, )

(34)

I3 [(C31 I3)(C32+I3)] sin(5
4~ QQ, Q2

m20 —0 — I1 2 I2 3

(24)
5I=0,

and exists only if

4l(Q, —Q2) &1.
Ef(I3„)

(35)

(36)

cl
8m. QQ)Q2

(( I )1/2 (C +I )1/2
cos

32 3 31 3

Equations (31) and (32) are Hamilton-type, and are
similar to those characteristic of the classical nonlinear
resonance in which the parameters vary slowly in time [in
this case I3„=I3,(t) as follows from (29)]. For instance,
the differentiation of (32) yields the adiabatic nonlinear
pendulum-type equation

Assume, first, that 012=const. Then the system has
stable and unstable fixed points, given by

Ef(I3„)
sing —(Q, —Q2) . (37)

cosP =+1

1
—2 —,I3 + c.l

8~+Q Q

(C I )1/2 (C +I )1/2

(C32+ I3) (C31 I3)
=0,

(26)

(27)

The characteristic frequency of this pendulum
v=3/Ef/4l then scales as -3/E, and the resonance
width i.e., the maximum value of ~51 in the trapped re-
gion of the phase space, can then be estimated as

(I3„)
b,I= (38)4

and therefore the steady-state solutions are

~=0,m,

I„=(l'/7r')(Q, —Q, )+0(E)

(28)

(29)

and a simple linear analysis then shows that the stable
phase corresponds to P, =m.

Next we allow the adiabatic variation of the parame-
ters (in our example the frequencies of the linear oscilla-
tors). We observe, that the right-handside of Eq. (25) has
two terms. The first term b,Q=(Q, —Q2 —Q3) is small
near the resonance. The second term may be large if ei-
ther I, or I2 is small. As mentioned earlier, in such a
case, this singularity causes the trapping into the reso-
nance [7]. Due to the variation of Q1 2 with time, one ap-
proaches the point where AQ~O. After the trapping,
the O(s) term in (25) can be neglected. Now we seek
solutions for Eqs. (23) and (24) in the form

~2
Q —Q — I1 2 (2 3 (40)

If we repeat the same procedure that was used to ob-
tain (31) and (32), we get

5I= — f(I3) sin/-
4m

I2
(Q, —Q2) —2)51, (41)

III. DISSIPATION

Now we depart from the Hamiltonian description by
introducing the simplest dissipation term in Eq. (24) for
the action, while leaving the equation for the phase P un-
changed:

32+ 3]c,l 1/2

4~ Q, Q2
(39)
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51.
lz

We find the DAR e6'ect Q&
—Qz —(Q3) =0, provided

[compare to (36)]

I] — Iz I3

14.2

14
4l(Q, —Q~)+ i)(Q, +Q~) &1,

Ef(I3, )

while the pendulum equation analogous to (37) is

(43)

13.8

0.8

sing —(Q, —Q2)— (44) 0

Thus, we conclude that the addition of a sufficiently
small dissipation still allows a stable DAR effect with a
nonlinear resonance preserved for an extended period of
time despite both the variation of the parameters and the
dissipation. In the special case when the parameters of
the system are constant, the weak dissipation does not
destroy the resonance condition Q&

—Q2 —(Q3) =0 be-
cause the energy dissipated from the nonlinear oscillator
is replenished at the expense of the energy of the linear
oscillators, as long as Eq. (43) is satisfied, i.e., as long as
the energy of both linear oscillators is sufficiently large.
We demonstrate this effect in Fig. 1 showing the evolu-
tion of I, z 3 for Q&=7, Qz=5, and the initial value of
Q3 2. The values g = 10, c= 10, and the initial con-
ditions x& 0 0~ xz=1 0, x3=0 2, x& = —2 5, xz=0 0,
x 3 1 .273 were used in these calculations. We see in the
figure that the action I3 of the nonlinear oscillator
remains constant on average despite the dissipation, as
required by the resonance condition for constant Q, z.
I& z in contrast, vary in time as their energy is transferred
to the nonlinear oscillator. The DAR interaction disap-
pears when one of the linear oscillators almost completely
loses its energy, violating (43). In contrast, Fig. 2 shows
the evolution of I

& z 3 in the case when

Q, =7.0+ 5 X 10 t, Q2=5 O, Q3=2. 670 init.ially (the sys-

I2

1000 2000 3000 4000 5000 6000
time (t}

FIG. 2. The dependence of the actions of the three interact-
ing oscillators on time when started outside the resonance. The
angular frequencies of the two linear oscillators 1 and 2 are
0,=7.0+0.0005t and Q2 =5.0. The friction coefficient
g=0.000035, v=0.01, and the initial conditions are x& =2.0,
x2=0.01, x3=0.2, x& = —1.0, x2=0.0, x3=1.7. The three ac-
tions are shown.

tern is out of resonance), c, =0.01, i) =3.5 X 10, and ini-
tially x, =2.0, xz=0.01, x, =0.2 x&= 1.0 xz=0.0,
x3=1.7. The trapping into the resonance is seen in the
figure. After the trapping, the linear time evolution of
(I3) is evident and illustrates the adjustment of (Q3) to
the linear time dependence of 0&. The detrapping occurs
in this case because of the breakdown of condition (43).

IV. FLUCTUATIONS

In order to study the effect of fluctuations on the au-
toresonance interaction we choose a model in which our
nonlinear oscillator collides with a gas of light particles.
We use the same model for the three oscillators, so that,
as before, the action I3 of the nonlinear oscillator is given
by Eq. (19) where we choose l = 1. We assume that if the
nonlinear oscillator has a velocity u, then after a collision
it becomes

3 u =u+5(v —u), (45)

0.4

0 200 400

2.7

I)

4

600 800 1000 1200
time (t)

where 5«1 is twice the ratio between the mass of the
gas particle and the mass of the oscillator, and v is the ve-
locity of the gas particle. We also assume that the veloci-
ties of the gas particles are characterized by some sym-
metric (in the one-dimensional velocity space) distribu-
tion function with (v ) =P and that P ))u .

Because of the collisions, the velocity of our nonlinear
oscillator will both drift and diffuse in velocity space.
The drift is due to the damping rate which is

FICi. 1. The dependence of the actions of the three interact-
ing oscillators on time. The angular frequencies of the two
linear oscillators 1 and 2 are 0& =7.0 and 02=5.0, and remain
constant. The friction coefficient g =0.001, c=0.01, and the in-
itial conditions are x, =0.0, x2 =1.0, x, =0.2, x& = —2.5,
x2 =0.0, x3 = 1.273.

(u —u ).„
(46)

where the averaging is over the distribution of the gas
particles and ~ is the average time between the collisions.
The effective diffusion coefficient in velocity space of the
nonlinear oscillator is
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1.0

N(action)

0.5

0.0

ional Monte1 ex —
~
u

~ /p) and used the conventiona

scillator is effectively trapped into the
ce. Nevertheless, later, t e is ritriple resonance.

s and a art of the distribu-b dens due to the collisions and a par oroa en
es the resonance for times greater than ttion escapes

le). This time can be es-(which equals 200 in our examp e. is
timated from

+Dr t'=EI, (49)

where is e w'b,I th width of the resonanc e see E . (38)].q.
Thus

lf~pt*=c.
2~ 5

(50)

D„=
2

(47)

and therefore t e if h d'ffusion coefficient in action space is
2

1 /5D
7rp

(48)

w roceed to a numerical example. Figure
h distribution of thet e evolution of t e is

the nonlinear oscil ator a
in = . =10.0 5=0.002, P=1.0, l=2,in the case c.=0.05, v.=10.0,= —1 0 x =0001, x3=1 0~ xi 2 0~ x2 ~

fL =5.0. We modeled the0 =6.0+0.0003t, and fL2=
b1

'
distribution function ygas-particle velocity

f the distribution function of ac-FIG. 3. The time evolution of e i
' ' ' f ac-

scillator. The parameters and t e ini iations of the nonlinear oscI ator. e e InI Ia

—00 nd the competition between02=5.0, so that t =2, an
toresonance an d diffusion can be observed.

V. CONCLUSIONS

We have stu ie ed' d the dynamics of three weakly in-
ractin osci ators wi'll 'th a strong nonlinearity an s y

1 esonance approximation
~ ~

rameters. T e sing e-res
DAR '

th tt e anal sis of the triple inwas used in t e a
tra in into the resonanceIt was demonstrated that the trapping in o e

rou h the resonance takes p ace iduring the passage throug

xam les that the autoresonance is sta e wi r
weak damping. Finally, weto the addition of sufficiently wea

died the effects of fluctuations on the

ms and simulated numerically by using t e on egas atoms an sim
h t th autoresonance isCarlo method. It was shown t a e

'1 the s stem es-ed in the resence of collisions unti e ypreserve in e p
f the action space diffusionca es the resonance because o t e ac icapes

The characteristic escape timethat is due to collisions. e c
was estima e at d nd verified in simulations.
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