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Symmetry analysis of the Infeld-Rowlands equation
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A fourth-order nonlinear evolution equation in 2+ 1 dimensions, arising in the study of soliton stabili-

ty, is analyzed. Its symmetry group is shown to be infinite dimensional and is used to obtain particular
solutions. The equation is shown not to have the Painleve property.

PACS number(s): 03.40.Kf, 02.20.Tw, 02.30.Jr, 47.10.+g

I. INTRODUCTION

An important problem in the study of nonlinear phe-
nomena in physics and other sciences, is the extension of
results obtained in 1+1 dimensions of space-time, to
higher dimensions. Large classes of "integrable" equa-
tions exist in 1+1 dimensions, having soliton and mul-
tisoliton solutions, infinitely many conservation laws, and
all the other attributes of integrability [1—4]. Typically
such equations arise in the description of weakly non-
linear and weakly dispersive phenomena and the ex-
istence of stable solitons is due to a compensation be-
tween nonlinearity and dispersion. Mathematically, the
same equations occur as compatibility conditions for Lax
pairs. These are pairs of linear operators, providing sys-
tems of a priori, incompatible linear equations [1—4].

Typical integrable soliton equations of this type are the
Korteweg —de Vries (KdV) equation, the nonlinear
Schrodinger equation, the sine-Gordon equation, the
Boussinesq equation, and many others [1—4].

A much larger class of nonlinear partial differential
equations with two independent variables also has soli-
tary wave solutions, without being integrable [5]. In
some cases the solitary waves are stable with respect to
perturbations. The existence of n-soliton solutions with n

arbitrary is, on the other hand, a characteristic of inte-
grable systems. Typical examples of nonintegrable equa-
tions with solitary wave solutions are the Landau-
Cxinzburg equation [6] and nonlinear Schrodinger or non-
linear Klein-Gordon equations with various polynomial
nonlinearities (for recent studies of exact solutions and
their stability, see, e.g., Refs. [7—9]).

Soliton equations in n+1 dimensions with n ~2 are
much more dificult to find than in the case n =1. Well-
known integrable equations involving three independent
variables are the Kadomtsev-Petviashvili equation [10],
the Davey-Stewartson equation [11], the full three-wave
resonant interaction equations [12,13] and a few others.
All of these equations have infinite-dimensional Lie point
symmetry groups with a specific Kac-Moody-Virasoro
structure [14—17].

Soliton equations in higher dimensions are usually gen-
erated in two different manners. One is a mathematical
one [18—21] starting from a formalism that guarantees in-
tegrability. The specific equations are then obtained by
making restrictions on the formalism. The other ap-

II. SYMMETRY GROUP OF THE
INFELD-ROWLANDS EQUATION

A. The symmetry group

Methods for calculating Lie point symmetry groups of
differential equations are well known and are explained in
many books [24,25]. Moreover, the methods can be im-
plemented on a computer or at least in a computer-
assisted way [26,27]. Using a MACS YMA package [27], we
find that the Infeld-Rowlands equations are invariant un-
der an infinite-dimensional symmetry group G.

A basis for the Lie algebra L of G is given by

P =B„P=0, a=4th, +3yB +xB„—uB„,

v(f)=f(y)& + —f'(y)— (2.1)

W(h) =h (y)B„,

proach is more physical. The starting point is a soliton
equation in one space dimension. The stability of solu-
tions with respect to small-amplitude noncollinear per-
turbations is investigated and this leads to a new non-
linear equation. There is of course no guarantee that this
equation will be integrable and will allow for the ex-
istence of soliton solutions. Luckily, some physically in-
teresting equations are produced by both approaches,
e.g., the above-mentioned Kadomtsev-Petviashvili and
Davey-Stewartson equations.

The perturbative approach to solitons in higher dimen-
sions has recently been adopted systematically by Frycz
and Infeld [22] and by Infeld and Rowlands [5,23]. In
particular, a study [23] of the stability of the Landau-
Ginzburg equation has led to a fourth-order nonlinear
evolution equation, which after a rescaling, we write as

u +2u u +u „„+u„=O.
We shall call Eq. (1.1) the Infeld-Rowlands equation

and abbreviate it as IR.
In Sec. II we find the symmetry group of this equation

and present a classification of its one- and two-
dimensional subgroups. In Secs. III and IV we use these
subgroups to perform symmetry reduction and to obtain
some group invariant solutions. Some conclusions are
drawn in Sec. V.
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where f(y) and h (y) are arbitrary functions of y (C
functions on some open subset of R, to be more precise).

The structure of the Lie algebra is that of a semidirect
sum

One conclusion that can be drawn directly from the
commutation relations in (2.4) is that the Lie algebra L
does not contain a Virasoro subalgebra, typical for inte-
grable equations in 2+ 1 dimensions [14—17].

L =FI&N, [F,F]CF, [N, N] CN, [F,N]CN, (2.2) B.Low-dimensional subalgebras of the symmetry algebra

where

F= [D,Po, P2 j, N= [ V(f), W(h) j . (2.3)

The commutation relations are

[Po,D ] =4Po~ [P2,D ]=3P2,

[V(fi»«f2)]= —,'W(f&f2 flf2),
(2.4a)

[V(f), W(h)]=0,
(2.4b)

[ W(h i ), W(h2)] =0,

[D, V(f ) ]= V(3yf f), [D, W(—h ) ]= W(3yh '+ h ),

The main application of the symmetry group of a par-
tial diff'erential equation (PDE) is to perform symmetry
reduction. This amounts to requiring that a solution be
invariant under some subgroup Go of the symmetry
group (rather than be transformed into another solution).
Invariance leads to a "dimensional reduction:" fewer in-
dependent variables. The IR equation involves three in-
dependent variables. We wish to reduce that number to
two or one. For this it will suffice to make use of one-
and two-dimensional subgroups. To do this systematical-
ly, we need a classification of one- and two-dimensional
subalgebras into conjugacy classes under the action of the
symmetry group G. Algorithmic methods for doing this
exist. They are explained in Ref. [25], which gives refer-
ences to the original work. Here we will only present the
resulting lists.

We shall present complete lists of the subalgebras,
though only some of them will actually be useful.

[Po, V(f) ]= —
—,
' W(f"), [Po, W( h ) ]=0,

[P2, V(f)]= V(f'), [P2, W(h)]= W(h') .

(2.4c)

1. One-dimensional subalgebras

The subalgebra (Po, P2, D ) simply corresponds to the
invariance of the IR equation (1.1) under translations in
time and in the y direction, and under appropriate dila-
tions. The operator W(h) for any chosen h(y) corre-
sponds to a certain gauge transformation:

S, 2= [P2}, Si,s=[D j, (2.7)

i, 3=I o
—2} i,6=I (»j .

S, , =IP j, S, =[P +V(f)j, S, =[W(h)j,

u (x,y, t ) = u (x,y, t )+Ah (y), (2.5) 2. Two-dimensional non-Abelian subalgebras

x =x+Af(y), y =y, t =t,

u =u+ [xf'(y) tf"(y))+ —f(y)f'(y)—,
2

(2.6a)

i.e., if u (x,y, t) is a solution of Eq. (1.1), then so is

u(x, y, t) =u [x —Af(y ),y, t]+—[xf'(y) tf"(y)]—

i.e., an arbitrary function of y can be added to any solu-
tion.

The generator V(f) is more interesting. It can be in-
tegrated to yield

S2, = [D,Po —
—,
' V(y ')+a W(y ~ j, a&0,

S2 2= [D,Po+aV(y ') j, a&0,

2, = ID, P2 j,
S2 4= [D,Po j

S2 5
= ID, V(y") j, bW

Sz 6= [D, W(y ) j, bW —
—,
'

S =IP, V(e «)j

S =IP, W(e «j,

(2.8)

f(y)f'(y) . (2.6b)
A,

2

S2 9
=

I Po P2, V(e ) — W(ye —)j,
Notice that for f =1, transformation (2.6) is a transla-

tion in x. For f (y) =y it is a "shear" transformation. In
any case, y is invariant, an arbitrary function of y is add-
ed to x (and u is appropriately adjusted).

S2, io
= [Po P2 W(e

Throughout (2.8) we have A, WO, A, H R.
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3. Two-dimensional Abelian subalgebras

Sz» = [Pz,P0 —aV(1)+PW(1) j, a=0, +1,
Sz 1z

= [Pz, V(1)+aW(1)j,
Sz 13= [Pz, W(1)j,
sz 14

= [Po v(y)+ W(g) j

Sz 15
= [P0 V(1)+ W(g) j

Z16=[ 0 «)j
Sz,7

= [P0 Pz, V—(1)+a W(1)j, (2.9)

PDE's that we are not able to solve. They will be re-
duced further to ordinary differential equations (ODE's)
in Sec. IV, where we use the appropriate two-dimensional
subalgebras.

Putting

Qx =U (3.2)

A. S» =Pa and static solutions

The invariant solutions are time independent
u =u (x,y) and Eq. (1.1) reduces to

(3.1)

S,„=[P,+ V(f), W(g) j,
Sz,9= [p0+ V(f), V(F)+ W(g) j with F Ff+—Ff

we obtain the Korteweg —de Vries equation

Uy +2UVx +Vxxx
=0, (3.3)s„,= [ v( f), w(g) j,

Sz z, = [ W(g, ), W(gz ) j,g „gz linearly independent,

Szzz=[D, V(y'~ )+aW(y ' )j,
S =[D,W(y ' )j .

Throughout g =g (y), f =f (y) are arbitrary functions.

III. REDUCTIONS BY
ONE-DIMENSIONAL SUBGROUP S

V=F(g), g=x+ay
with F satisfying

(3.4)

in which y plays the role of time. This is the prototype of
an integrable equation [1—4] and of course, many solu-
tions are known. These will be static solutions and no
time dependence can be introduced by the group trans-
formations corresponding to the algebra (2.1). The in-
variant solutions in this case are, for instance, the analogs
of traveling waves:

We shall run through the list (2.7) of subalgebras of the
symmetry algebra and use the corresponding subgroups
to reduce Eq. (1.1) to a PDE involving two independent
variables. For the subalgebra [V(f)j we can solve the
PDE explicitly in full generality. For [P0 j we reduce to
a well-known integrable equation, the KdV equation.
For [P0+ V(f) j we reduce to a specified forced KdV
equation. The algebra [ W(h) j does not provide a reduc-
tion, since it does not act on space-time. The remaining
algebras [Pz j, [P0 Pz j, and [D—

j Provide reductions to

F& = —', F aF +—PF+—y,
where p and y are integration contants.

We rewrite Eq. (3.5) as

F~& ————', (F—F1)(F—Fz )(F—F3 ), F, =const.

In particular for

F2=F3 +F+F),
we obtain "solitons"

(3.5)

(3.6)

(3.7)

(x +ay —g0)
2(F, Fz)—F=F + (F F) cosh——

2 1 2 2 3

—2

(3.8)

These are time-independent structures that are finite for x and y real and have a maximum along some line
x +ay —$0=0 in the (x,y) plane. More general solutions that are real, finite, and periodic occur for

F3 (F2 F &F, (3.9)

and these can be given in terms of Jacobi elliptic functions [28] as

F=F3+ (F, F3 )(Fz F3 )— —
1/2

2(F, F3)—
(F1 F3 ) —(F, Fz )sn- — (x +ay —(0),k

F, —F
k = —F

(3.10)
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II. S& 6
= V (f ), f (y)%0, and explicit solutions

The reduction formula in this case is

x f' tx f +F(, ),
4 f 2 f

and Eq. (1.1) reduces to a trivial equation

g,
III

F =—

(3.11)

(3.12)

Solutions (3.8) and (3.10) are just examples. Any solution
of the KdV equation will in this manner produce solu-
tions of the IR equation. Moreover, more complicated
patterns in the (x,y) plane will result as wave crests if we
apply the transformation (2.6) to such solutions.

W + WW + W„++(K")(E') p —
—,'r) =0 .

(3.20)

Here q plays the role of time and K is to be viewed as a
function of g [via Eq. (3.19c), we have y =K '(g/8)]. If
Eq. (3.20) were to be taken literally, rather than as an
auxiliary equation for obtaining H(g, y ) and ultimately
u(x, y, t) of Eq. (3.14), it would describe, e.g. , the propa-
gation of water waves towards a shore. The depth de-
creases linearly and the slope may be "time" (rI) depen-
dent.

For the remaining subalgebras we just give the reduced
PDE for completeness.

I. Sg 2= [P2 j
We obtain an explicit family of solutions depending on

two arbitrary functions of y, namely, f (y) and h (y): u =u(x, t), u, +2u u„+u„,„=0. (3.21)

u = — +— +h(y) .
4 f 2 f 4 f (3.13)

2. St 3= [Po —P2 j

C. S, 4
= [Po+ V(f ) j, f%0, and

reduction to a forced KdV equation

The reduction formula in this case is

u = f' —t'+F(y, g), g=x tf (y ), —(3.14)

u =u(x, g), g=y+t,

g+ x xx+ xxxx+ xg

3. Sz,s=[&j

(3.22)

where F(y, g) satisfies

F(gg+2F(FgfF. ~+F( +.g— =0. (3.15)

u =t '~4F(g, rt), g=xt '~, rt=yt

F~~~~+2FgF~~+Fg„——'(gFg+3rIF„+F)=0 .

(3.23)

(3.24)

Putting

F(=H, (3.16)

IV. REDUCTIONS BY
TWO-DIMENSIONAL SUBGROUPS

we obtain a third-order ODE,

H~~t+ 2HH~ fH +H +g
—=0 . (3.17)

f= , , rC', rC"Wo. —1 K"
(3.18)

We then transform from the variables (H, g,y ) to
(W, p, g), putting

II

H(k, y)=2~'" W(p, g) ————,g, (3.19a)
2 6E'

p=2(&')' /+4Ã(y), (3.19b)

iI=8Ã(y) . (3.19c)

The dependent variable W(p, rI) satisfies the forced KdV
equation

Equation (3.17) can be transformed into a forced KdV
equation of the type that occurs in the study of water
waves in shallow water of variable depth [29]. To do this,
we first introduce a function K (y), related to f (y) by the
equation

We have seen that the symmetry algebra has 23 classes
of subalgebras [Eqs. (2.8) and (2.9)]. Many of them can
be discarded ofFhand as far as symmetry reduction is con-
cerned. First of all, subalgebras containing W(g) as an
element [with g (y) general, or particular] will not provide
reductions to ODE's. Subalgebras containing the ele-
ment I'o will lead to particular solutions of the KdV
equation (and we already know that any solution of the
KdV equation yields a solution of the IR equation).
Subalgebras containing an element of the type V (f) [or
an element conjugate to V(f)] will give special cases of
solution (3.13).

Taking all the above comments into account, we see
that the only subalgebras that will provide reductions to
ODE's that would provide alternative solutions are S2 &,

S~ 2, S2 3 and S2» of the previous section. We shall run
through these four cases below and in each case establish
whether the reduced equation has the Painleve property
[30]. We recall here that a nonlinear QDE is said to have
the Painleve property if its general solution has no mov-
able critical points [30—34]. A critical point is a branch
point, or an essential singularity, or any singularity, other
than a pole. Movable means depending on initial condi-
tions. Equations having this property are much easier to
solve than those that do not.
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An algorithmic test for the Painleve property exists
[30]. It has been implemented as a MAcsYMA program
[35]. The test is passed for an ODE of order n if it is pos-
sible to expand the general solution in a Laurent series
about a generic singular point $0:

(4.1)

The expansion must satisfy (i) p is a negative integer; (ii)
(n —1) of the coefficients ak are arbitrary (the corre-
sponding values of k are called resonances); (iii) the "res-
onance condition, " i.e., a certain compatibility condition,
is satisfied at each resonance. For a full description of
the test see Refs. [30,34,35].

Let us now run through the individual cases.

A. AlgebraS»

with F(g) satisfying

Ft~t+F( ,'—gF—+y =0, (4.7)

=3 6
(4.8)

=7 6 1F=—+
36

(4.9)

where y is an integration constant. The Painleve test for
Eq. (4.7) yields p = —1, a 0

= 6, and resonances at k = 1

and k =6. The resonance condition at k =1 is satisfied,
at k =6 it is not.

Particular solutions of Eq. (4.7) can be obtained by ex-
panding as in Eq. (4.1) and truncating at some value of k.
If we truncate at k =6 (the second resonance) and choose
$0=0, we obtain two different cases:

Invariance in this case tells us that the solution must
have the form We put

D. Algebra S2 g)

u= + 3+aty / +y '/F(g),xt 13t
12y (12) y

y
—1/3

6y

u =pt+F(g), g=x+at, W=F&,

and obtain

W~g+2WW~+a W+P=O .

(4.10)

(4.11)

Putting I'& = 8'we obtain an equation for 8':

Wgg+2WWg —
—,
' W —

—,'/a+a+ —,', g=O . (4.3)

This equation fails the Painleve test. We obtain p = —2,
a0 = —6 in expansion (4.1). There are two resonances, as
required for a third-order equation, namely, k =4 and
k =6. The compatibility condition is satisfied for k =4,
not, however, for k =6.

W~~
= —W —Pg —y, P&0 .

Putting

(4.12)

W(g) — 6
—3/5P2/5~( )

The Painleve test is passed successfully if and only if we
have a=O. This is allowed in the present case as long as
we have p&0 and we concentrate on this value. For
a=0, Eq. (4.11) can be integrated once to give

B. AlgebraS, 2

The situation is quite similar. We have
1/5

1g+
1/5

(4.13)

a xt + a(a —2) t2+ —i/3F(g)
2 y2 4y3

(4.4)
we reduce Eq. (4.12) to the standard equation for the first
Painleve transcendent PI [33,34]:

g= x — '
y

y

We again introduce 8 =I'& and obtain the equation
H„„=6H+g . (4.14)

2 1 e
W +2WW —a+ — W ——gW ——/=0 . (4.5)

Thus we obtain a solution of the IR equation in terms
of Pt(r/).

We obtain

u =t i/4F(g), g=xt-'"-, (4.6)

As far as the Painleve property is concerned, we again
have p= —2, a0= —6, and resonances at k =4 and 6.
The first compatibility condition is satisfied. The condi-
tion at k =6 is only satisfied for 0.=0. This case was ex-
cluded from consideration, since the algebra would be
[D,PD I =S2 4 and we would obtain similarity solutions of
the KdV equation.

C. Algebra S2 3

V. CONCLUSIONS

The Infeld-Rowlands equation (1.1) does not seem to
belong to the class of integrable equations in three dimen-
sions. Indeed, some of its reductions to ODE's do not
have the Painleve property, as was shown in Sec. IV. It
does not pass the Painleve test for PDE's [34,36] either.

Moreover, while the symmetry algebra of the equation
is infinite dimensional (2.1), it does not have the Kac-
Moody-Virasoro structure typical for integrable equa-
tions [14—17].

The symmetry group was used to obtain particular
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solutions. Thus, if v(x, y) is any solution of the KdV
equation (with y playing the role of time), then

Finally, Eq. (4.10)—(4.14) provide solutions in terms of
the Painleve transcendent Pl.

u(x, y)= f v(x', y)dx' (5.1) ACKNOWLEDGMENTS

is a static solution of the IR equation and all static solu-
tions are obtained in this manner.

A class of explicit solutions, that are second-order po-
lynomials in x and t, and involve two arbitrary functions
of y, is given in Eq. (3.13).

Further solutions are obtained from any solution of the
forced KdV equation (3.20), using Eqs. (3.14)—(3.19).
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