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Internal dynamics of a vector soliton in a nonlinear optical fiber
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We analyze the dynamics of a vector soliton governed by a nearly integrable system of coupled non-
linear Schrodinger equations. Inserting a Gaussian ansatz into the Lagrangian density, we derive a sys-
tem of ordinary differential equations for the evolution of the ansatz parameters. We find a continuous
family of stationary solutions to these equations which can be interpreted as vector solitons with an arbi-
trary polarization. Examining small internal vibrations of the vector soliton, we find three eigenmodes,
of which only two were previously known. The additional internal oscillation eigenmode gives rise to
antisymmetric oscillations of the symmetric soliton (45 polarization). We also find the small-vibration
eigenmodes for arbitrary polarization, though in an implicit form. Additionally, we find a threshold
value of the relative velocity of the two polarizations that leads to splitting of the vector soliton for arbi-
trary polarization.

PACS number(s): 42.81.Dp, 42.65.Re, 03.40.Kf

I. INTRODUCTION

The fast-approaching major engineering application
that features solitons as the medium of telecommunica-
tion transmission continues to evoke intense interest in
the characterization of soliton's behavior in a variety of
real-world situations. For their use as information bits in
a fiber-optic communication system one would ideally
wish the governing equations to be completely integrable,
making the bits true solitons, hence not subject to pertur-
bation, decay, or other forms of signal degradation. The
tensor character of the g' ' nonlinear susceptibility, how-
ever, generally leads to unequal coefficients of nonlinear
self-phase and cross-phase modulation (P&1 in our nota-
tion below), destroying integrability. Whereas the com-
pletely integrable system is well understood, the nonin-
tegrable system has a qualitatively more complex
behavior and is more difficult to analyze.

Vector solitons in nonintegrable models may exhibit,
for example, the following effects not found in completely
integrable systems. Two colliding vector solitons will
give rise to radiation [1,2]. Below some threshold of rela-
tive velocity and ratio of amplitudes, colliding solitons
may interact so as to either merge into a single soliton or
destroy each other in the collision process [1,3]. On an
even more basic level, vector solitons do not possess the
characteristic (for true solitons) hyperbolic secant shape;
rather, they are subject to nonsymmetries between the
two polarization modes [1]. Each polarization mode
takes on a slightly asymmetric form, with the tails in par-
ticular exhibiting complex behavior [1]. Additionally,
vector solitons near equilibrium are subject to a frequen-
cy chirp and oscillations about the minimum potential
point [4,5].

Though computational studies have explored the

mathematical terrain (see, for example, Ref. [1]), useful
analytic results have been found only in a few relatively
simple instances. The completely integrable limit (P=1)
may be solved by the inverse scattering transform [6].
When the system. is not integrable, however, even station-
ary vector solitons are known in a closed form only when
the amplitude of one of the polarizations is zero or when
the two amplitudes are equal (though there are exact
solutions for arbitrary polarization in other closely relat-
ed systems [7]). Numerical simulations have yield many
interesting dynamical results, though of course not with
the universality provided by analytic methods. Some ap-
proximate analytic results have been found for the vector
soliton dynamics when the initial conditions are sym-
metric with respect to the two polarization modes [5].

In the current work, by first taking one step backward
in employing an oversimple approximation of the vector
solitons' form, we have been able to take two steps for-
ward in providing alternative qualitatively accurate ana-
lytic descriptions of the vector solitons' dynamics. We
make the assumption that vector solitons maintain a
prescribed wave form, in this case one with a Gaussian
shape. We choose this form because it is the only one
that allows us to solve all the necessary integrals in the
general case, in which the vector soliton is not presumed
symmetric. Furthermore, the Gaussian shape is not real-
ly that different from a sech function, differing only in the
shape of the tail. (If one matches amplitudes and curva-
tures at the top. ) Earlier work has been done using a
Cxaussian shape [8] and the qualitative results were essen-
tially identical with those [4] for a sech shape. Even the
qualitative results were essentially equivalent, with each
model providing a good description of the evolution of
the pulse. We allow all of our pulse parameters—
position, phase, width, amplitude, frequency, and
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chirp —to vary independently in each polarization. Sub-
stituting such an assumed form of the solution into the
Lagrangian density reduces the number of variables from
an infinite number to an finite one. Integration of the La-
grangian density over time reduces the problem from a
partial differential equation in two dimensions to an ordi-
nary differential equation (ODE) in the spatial dimension
alone. The system is sufficiently tractable at this point
that we may derive analytically a number of interesting
dynamical properties of the system.

Ueda and Kath I5] have used the same technique, but
with hyperbolic-secant-shaped pulses, as opposed to our
Gaussian-shaped pulses. Though the former is in princi-
pal more accurate, Ueda and Kath were forced to
artificially set the pulse widths in the two polarizations to
be equal in order to make the equations tractable. Our
model, though it may give greater quantitative error, al-
lows for a more complete qualitative description of the
vector solitons' behavior. Also important is that this
model may be extended much more easily to the descrip-
tion of interacting vector solitons. (Analysis of collisions
between vector solitons, however, is deferred to another
work. )

'&u
u =e "cos(a)uNis(x, t),

ip„v=e "sin(a)uNis(x, t) .

(4a)

(4b)

For general P there is a vector soliton polarized at 45':

u = v =7isech[&1+Prt(t —Vx) ]

X expi I Vt + —,
' [( 1+P)q —V ]x ] .

The ansatz that we choose in this work is

2t —y„
u =g„exp

2 8'„

b„
X expi o.„+2V„(t —y„)+ (t —y„)

Q

t —y,
v =g„exp

U

Manakov's equations [6] (P=1) have one-soliton solu-
tions in the form of the nonlinear-Schrodinger-equation
(NSL) soliton but with arbitrary polarization:

II. FORMALISM b
Xexpi o„+2V„(t—y„)+ (t —y, )

U

(6b)

Vector solitons in an optical fiber are governed by a set
of non dimensionalized coupled nonlinear Schrodinger
equations,

iu„+i5u, + —,'u«+( ~u
~

+P~v
~

)u =0,
iv„i5v, +—

—,'v«+(P~u +~v~ )v=0,
(la)

(lb)

i [—bt + (1/2)6 x]u ~ue 7

i [6t+(1/2)5 x]

(2a)

(2b)

and can therefore be set to zero without loss of generali-
ty, which we do henceforth.

Inspection of exactly known limiting cases guides the
selection of a suitable ansatz. The simplest limiting case
is that in which there is no interaction between the
modes, either because the coupling term in the governing
equations P, is nil or because all of the energy in a given
region is in one of the modes:

where the pulse width is the picosecond range, group-
velocity dispersion is negative (anomalous), the
birefringence is not too small, and a host of more obvious
assumptions such as negligible absorption, homogeneity,
etc., are implied. u and v are the nondimensionalized am-
plitudes of the two polarization modes. The constant P is
a fiber parameter which is in the range I

—', ~P~2], the
lower limit representing linearly birefringent fibers, the
upper limit circularly birefringent ones. The linear-
birefringence term 6 may be eliminated by the transfor-
mation

This assumed form of the solution allows us to indepen-
dently vary, for each polarization mode, the central posi-
tion, pulse width, and amplitude; there is also an indepen-
dent constant phase, carrier frequency, and frequency
chirp for each mode. Letting these parameters vary
dynamically under the obeisance of Eqs. (1) includes,
among some of the most important effects, internal ener-

gy excitations, pulsation of the vector sohtons' shape, and
attraction between the two modes. Not included is radia-
tion, asymmetries in the individual modes, and anything
but very simple changes in the pulse shape. We have
used Gaussian pulses rather than hyperbolic secant ones,
which would agree better with the limiting cases and are
presumably more accurate. The reason is simply that
Gaussian pulses, being easier to handle mathematically,
give tractable results for a variety of situations in which
hyperbolic secants do not. The bottom line is that using
Gaussian pulses sacrifices some quantitative accuracy in
exchange for a more complete qualitative picture.

III. EVOLUTION EQUATIONS AND
CONSERVED QUANTITIES

Substituting Eqs. (6) into the Lagrangian density from
which the governing equations may be derived,

X=—(u u* —uu')+ —(v„v*—vv*) —
—,'(iu,

i
+ iv, i )

+—,
'

I
u + —,

'
I
v

I +131ul I
v

I

u =g sechj7i(t —Vx)]e'

uNi s(xy t)

v=0. (3b)

integrating the result over time (t) from —~ to ~, and
taking the variation with respect to each of the parame-
ters in the ansatz gives a simplified system of equations of
motion.

We get, as a result, a six-dimensional phase space and
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d
Ay =XV,

dx
(8a)

b, V= — P(M„+M, )' (w„'+w,')'"
2

X exp W2+ W2
(8b)

four conserved quantities. We express the system as a set
of six first-order equations (it may also be written as three
second-order equations):

conjugate momenta of the positions y; the frequency
chirps b are the conjugate momenta of the pulse widths
W. Three of the conserved quantities, the two energies
and the Hamiltonian, play important parts in the dynam-
ics, but the fourth, momentum, drops out. Obviously
event this new system of ordinary differential equations,
Eqs. (8), is nontrivial to solve in general. But, as we show
presently, it allows us to surmount several difficulties that
had made the case of M„AM„ intractable in earlier stud-
ies.

W„=2b„,d
dx

4 M„
(2b„)=-

dx " W„V'2' W„ 2
++M

W„

(8c)

(8d)

IV. INTERNAL MODES OF THE VECTOR SOLITON

hy =AV=b„=b, =0, (12a)

Equations (8) possess, for any values M„and M„, ex-
actly one fixed point:

W, =2b, ,
d

dx

4
(2b„)=-

&2~W,
1 +

W

(8e) W„= 1+
M„ 1+a

r

&2' 2

M, 1+cx

3/2 M

M„
3/2 M

—1

(12b)

=a W„, (12c)

where

2
B—=2P[ (W+W)] '

1 —2
W„+ W„

M„ M,a — + a —1=0.
M„ M„

2

1+a

where a is defined by the equation
' 3/2

(12d)

2

Xexp W2+ W2

and

M„=&ail „W„,
M„=&~q', W, ,

the total momentum,

P =M„V„+M,V, ,

and the Hamiltonian,

(9b)

(10)

AV= V„—V, .

The four constants of integration are the energy in
each mode,

[Note that Eq. (12d) has exactly one solution on the posi-
tive real axis. ] This solution may be regarded as
representing a unique stationary vector soliton with arbi-
trary polarization [the polarization angle is equal to
tan '(M, /M„)]. We will demonstrate below that these
vector solitons are stable within the framework of the ap-
proximation employed.

In the general case, the widths of the two components
of the vector soliton are given by Eqs. (12) in an implicit
form. They may be expressed explicitly either when the
energy is entirely in one polarization mode (which is trivi-
al), or when the energy is split evenly between the modes.
Here, we will analyze only the case when the polarization
angle is near 45. The case of a general polarization is
essentially the same except it is much more technically
complex. We expand Eqs. (12) about this polarization an-
gle, and Eqs. (12b) and (12c) can then be brought into the
following form:

( ,'M„b„) +—
2

M„
&2m-

2

+ ( —,'M, b, )
Q U

&2~ (P—1) 5M
(1+P)M 1+4P M

(13a)

M„+
2

2

+—(p[ V„—V„])
W, p

&2n. (P—1) 5M
(1+P)M 1+4P M (13b)

2P M„M„—gy 2

W„+ W„

where p is the reduced mass,

1 1 1+
p M„M,

To within a constant, the frequency variables V are the

where M„—:M+5M and M, =M —5M, 5M /M (& 1. We
now expand and linearize Eqs. (8) about the fixed point
represented by Eq. (13). One obtains three second-order
ODE's for the variations of hy, W„, and W, about the
fixed point. The equation for 5' (we use 5 to indicate a
variation) separates from those for 5W„and 5W, and
contains only one mode of oscillation. The equations for
5W„and 5W„couple only these degrees of freedom and
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contain two modes of oscillations. In general, the modes
are a complex mixture of symmetric oscillations, in
which the polarization modes' widths dilate and contract
together, and antisymmetric oscillations, in which one

polarization mode expands while the other narrows. Two
corresponding eigenmodes and their frequencies are given
by the eigenvectors and the eigenvalues of the matrix,
which are obtained by linearization of Eqs. (Sc)—(8f):

PM„W„
w„' &~ ( w„'+ w,')'"

M„W„W,
( W2+ W2)5/2

1

W4

M„M„W,

( w'+ w')'"

—P
( w„'+ w,')'"

(14)

where the basis is the vector

co+= —(1+P) M +O(5M ),1
(1Sa)

1 (1+2P)( 13P—8 ) 5M
3P(1+4P) M

1 (1+2@)(13P—8) 5M
2 3P(1+4P) M

(15b)

co =—(1+P) (1+4P)M +O(5M ),1
(16a)

The expression (14) is valid for any value of M„/M„.
Close to M„=M„ the frequencies and their eigenvectors
may be found explicitly:

is the coupling between modes, P, the stronger is the dis-
tortion of the eigenvector produced by a small energy
asymmetry 5M.

The calculation of the second ("—") vibrational mode,
Eqs. (16), which rounds out the vibrational analysis, has
not to our knowledge been previously published. The
other oscillation modes have been calculated previously,
but only at M„=M„not including the first-order pertur-
bations nor the more general nonsymmetric case. Final-
ly, note that, mutatis mutandis, each of the symmetric
parts of our results agree up to a constant with the results
of Ueda and Kath [5], who calculated two of the vibra-
tional frequencies for symmetric hyperbolic-secant
pulses. (Ueda and Kath's co& is m//15 times ours and
their co+ is identical to ours. )

As a closing remark to this section, we point out that
the stability found here will only be valid as long as the
radiation modes remain frozen out. Considering the par-
ticular case with the zero-polarization angle, Eqs. (8c)
and (Sd) reduce to

1 (1+2P)(13P—8) 5M
2 3P(1+4P) M

d2 8„=—
dx

4
8'„

1 (1+2P)(13P—8) 5M
2 3P( 1+4P) M

(16b)
which has the fixed point

M„w„=&2m . (18)
The third oscillation mode is that of the relative position
of the two components of the vector soliton hy, which
has the frequency

P~~~(1+P)3~~M~+ O(5M2)1

All three vibrational frequencies are real to first order
in 5M/M, i.e., the vector soliton is stable at least at this
order. It is also noteworthy that, to first order in 5M/M,
the two dilation-contraction modes couple together, but
neither couples to the relative position oscillation. Pro-
vided that the interaction between the polarizations is
nonzero (P) 0), the first ("+")mode, Eqs. (15), will be
purely symmetric at M„=M, but will acquire an an-
tisymmetric part for M„WM, ; the second ("—") mode,
Eqs. (16), will be purely antisymmetric at M„=M, but
will acquire a symmetric part for M„AM„. The smaller

Actually, Eq. (18) represents the well-known amplitude-
width relation for the soliton governed by one nonlinear
Schrodinger equation. If the amplitude and width of the
soliton do not satisfy Eq. (18), the evolution governed by
the full partial differential equation [Eq. (la) with P=O]
would show the shape (amplitude-width) oscillations of
the soliton [4], which, however, would gradually fade be-
cause of emission of radiation. The soliton will thus
slowly readjust its shape, radiating off excess energy, and
will asymptotically reach a stationary shape satisfying
Eq. (18). Quite similarly, the shape oscillations of the
vector soliton governed by the coupled equations (1) are
subject to radiative damping. However, one cou1d not
expect to see this effect in the framework of the approxi-
mation employed above, simply because the radiative
modes had been completely frozen out from Eq. (6).
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V. DYNAMICS OF ESCAPING SOLITONS

PM„M,

2+~(W'„+ W, )

1 1

M„ M„
2~ ~escape

M„
2

'2

(19a)

where W„and W, are taken from Eqs. (12). Near
M„=M, this gives

b, V2„, , = P(1+—,'P)M +O(5M ) .
1

2m
(19b)

If there is another contribution to the Hamiltonian of the
vector solitons, such as chirp, nonequilibrium width, or
pulse separation, the velocity needed to reach the separa-
tion threshold will be lower. Thus the escape velocity is

Also important to know is the separatrix between
bound solitons and splitting ones. The interaction term in
the governing equations creates an effective attraction be-
tween the pulses in the two polarization modes. Thus
there is a minimum kinetic energy required for the pulse
to split apart.

The minimum possible value of the Hamiltonian, Eq.
(11),for widely separated pulses is zero. Therefore zero is
the minimum value of the Hamiltonian necessary for
complete pulse separation. (This, however, does not
guarantee splitting of the vector soliton in all cases, since
the pulses may contain internal energy, chirps and/or
nonequi1ibrium widths, which may subtract enough of
the kinetic energy to reduce it to below the escape thresh-
old. ) The minimum relative velocity required at the point
of zero separation to reach the escape threshold, i.e., the
escape velocity, can be found by equating the Hamiltoni-
an to zero at the point of zero pulse separation where a11
the terms except the kinetic energy are minimized (which
implies, in particular, b„=b„=0):

T

neither the minimum velocity which ensure escape nor
the maximum below which the vector soliton remains in
one piece, but may rather be viewed as a guidepost which
marks a grey area between the two regions.

A vector soliton that has held together over one or
more oscillations may still split apart in the future if and
when the system wanders into a region of phase space
where Ay is large and most of the Hamiltonian comes
from its kinetic part rather than its internal part. This is
cause for caution in the interpretation of numerical simu-
lations of pulse splitting, since there is no apparent way
to tell a priori how many oscillations the system is going
to perform before the vector soliton splits.

Ueda and Kath [5) computed the escape velocity simi-
larly, but for hyperbolic-secant pulses at a 45' polariza-
tion. Their escape velocity, after making all appropriate
adjustments, is equal to that in Eq. (19b) times +sr/3 A.
similar analysis of the splitting problem was done by Kiv-
shar [9], who used the sech ansatz for the vector soliton.
For Manakov's system, some analysis based on the in-
verse scattering transform has been recently done in Ref.
[10].

VI. CONCLUSION

By assuming that pulses in each polarization mode
have a Gaussian shape, we were able to make advances in
the qualitative analysis of the internal dynamics of a vec-
tor soliton in nonintegrable models of the birefringent op-
tical fibers. Our analytical approach allows a description
of the dynamics in the nonsymmetric case. Our results
imply that there must exist a stable vector soliton with a
stationary shape for any polarization, not only for the ob-
vious cases of the 0, 45', and 90' polarizations. Within
the framework of our approximation, we have found the
eigenfrequencies of all the three internal modes of the
vector soliton, of which, thus far, only two had been
known (and only for the 45 polarization). The additional
mode is the one that is responsible for the antisymmetric
shape oscillations of the symmetric vector soliton. The
threshold value of the relative velocity of the two polar-
izations that leads to the splitting of the vector soliton
into unipolarized pulses has also been found for the gen-
eral nonsymmetric case.
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