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Nonlinear Thomson scattering of intense laser pnlses from beams and plasmas
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A comprehensive theory is developed to describe the nonlinear Thomson scattering of intense laser
fields from beams and plasmas. This theory is valid for linearly or circularly polarized incident laser
fields of arbitrary intensities and for electrons of arbitrary energies. Explicit expressions for the intensity
distributions of the scattered radiation are calculated and numerically evlauated. The space-charge elec-
trostatic potential, which is important in high-density plasmas and prevents the axial drift of electrons, is
included self-consistently. Various properties of the scattered radiation are examined, including the
linewidth, angular distribution, and the behavior of the radiation spectra at ultrahigh intensities.
Nonideal effects, such as electron-energy spread and beam emittance, are discussed. A laser synchrotron
source (LSS), based on nonlinear Thomson scattering, may provide a practical method for generating
tunable, near-monochromatic, well-collimated, short-pulse x rays in a compact, relatively inexpensive
source. Two examples of possible LSS configurations are presented: an electron-beam LSS generating
hard (30-keV, 0.4-A) x rays and a plasma LSS generating soft (0.3-keV, 40-A) x rays. These LSS
configurations are capable of generating ultrashort (-1-ps) x-ray pulses with high peak Aux (~10 '

photons/s) and brightness [~ 10' photons /(s mm mrad ), 0.1% bandwidth].

PACS number(s): 41.60.Ap, 41.75.Ht, 52.40.Nk

I. INTRODUCTION

The development of a compact source of tunable,
near-monochromatic, well-collimated, short-pulse x rays
would have profound and wide ranging applications in a
number of areas. These areas include x-ray spectroscopy,
microscopy and radiography, medical and biological im-

aging, x-ray analysis of ultrafast processes, and x-ray
holography. One method for producing such an x-ray
beam is by the nonlinear Thomas scattering of intense
laser pulses from electron beams and plasmas [1—9].
Current methods of x-ray production include third-
generation synchrotron sources, which are based on
high-energy electron storage rings and undulator magnet-
ic fields [10—17]. Alternatively, x rays can be produced
by a laser synchrotron source (LSS), based on nonlinear
Thomas scattering, in which the magnetic undulator is
replaced by ultrahigh-intensity laser pulses and the elec-
tron storage ring is replaced by a compact electron ac-
celerator of substantially lower energy or by a stationary
plasma [5—7]. The compactness of the LSS makes it an
attractive alternative, particularly at high x-ray energies
( ) 10 keV), where conventional synchrotrons require
very-high-energy ( ) 5 CseV) storage rings. To generate
high peak cruxes of x rays in an LSS, ultraintense laser
pulses are necessary. Recent advances in compact, solid-
state, short-pulse lasers based on the method of chirped-
pulse amplification [18—20] provide the technology for

generating the ultrahigh laser intensities required by an
LSS.

In the following, a comprehensive theory is developed
to describe the nonlinear Thomas scattering of intense
laser fields from beams and plasmas. This theory is valid
for linearly or circularly polarized incident laser fields of
arbitrary intensities and for electrons of arbitrary ener-
gies. Explicit expressions for the intensity distributions
of the scattered radiation are calculated and numerically
evaluated. The effects of the space-charge electrostatic
potential are included self-consistently and nonideal
effects, such as electron-energy spread and beam emit-
tance, are discussed. These results are then applied to
possible LSS configurations.

An LSS [5—7], using either an electron beam or a plas-
ma, potentially has a number of attractive features: (i)
tunable and near-monochromatic x rays can be obtained
over the entire x-ray spectrum (from ultraviolet to y
rays), (ii) the x rays can be produced in ultrashort pulses
(-1 ps), (iii) a much lower electron beam energy ( —300
times less) is needed to produce a given photon energy
than in conventional synchrotrons, (iv) the device can be
compact and inexpensive compared to conventional syn-
chrotrons, (v) much-higher-energy photons ( ~ 30 keV)
can be produced than in a conventional synchrotrons, (vi)
the bandwidth can be small (- l%%uo) and is not limited by
the length of the undulator as in conventional synchro-
trons, (vii) consequently, narrow-bandwidth x rays can be
obtained with long coherence lengths, (viii) the x-ray po-
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0.019Eq [MeV]
E~ [keV] =

(1+a o /2)AO[pm]
(2a)

(1+ao/2)
A.[A]=650K o[pm]

Eb [MeV]
(2b)

where E& is the electron beam energy and yo))1 has
been assumed. For a conventional synchrotron source
[9—16] using a undulator magnet, A. = A, „/2yo,
or E [keV]=0.95E&[GeV]/A„[cm] and . A, [A]

larization is easily adjusted by changing the incident laser
polarization, and (ix) high peak photon flux and bright-
ness can be obtained using current technology. The capa-
bility of the LSS in yielding high average Auxes and
brightnesses is currently limited by the repetition rates of
high-intensity laser systems.

An important parameter in the discussion of LSS radi-
ation and Thomson scattering is the dimensionless laser
strength parameter ao, which is analogous to the undula-
tor strength parameter K, frequently used in conventional
synchrotron-radiation literature. The laser strength pa-
rameter is the normalized amplitude of the vector poten-
tial of the incident laser field ao =ego/m, c and is relat-
ed to the intensity Io and power Po of the incident laser
by

ao =0.85 X 10 A.o[pm]Io [W/cm ]

and Po[GW)=21. 5(aoro/Ao), where ko is the incident
laser wavelength and ro is the spot size of the incident
laser transverse profile, assumed to be Gaussian. When
ao «1, Thomson scattering occurs in the linear regime
and radiation is generated at the fundamental frequency
co=co&. When ao ~ 1, Thomson scattering occurs in the
nonlinear regime and radiation is generated at harmonics
in addition to the fundamental, i.e., co=co„=neo&, where
n=1, 2, 3, . . . is the harmonic number. Compact laser
systems based on chirped-pulse amplification can deliver
modest energy ( ) 10 J), ultrashort ( 5 1 ps) laser pulses at
ultrahigh powers ( ) 10 TW), and intensities ( ) 10'
W/cm ). For A,o- 1 p,m, ao ) 1 requires Io ) 10' W/cm .
Hence laser systems which can be used to experimentally
explore Thomson scattering in the nonlinear regime
currently exist. Furthermore, these powers and intensi-
ties are sufhcient to produce ultrashort LSS x-ray pulses
with high peak cruxes and brightnesses.

In the LSS, two avenues exist for generating short-
wavelength radiation. The first is to exploit the relativis-
tic Doppler factor which arises from backscattering laser
radiation from a counterstreaming relativistic electron
beam. In this case, the wavelength of the fundamental
(n =1) backscattered radiation along the axis is given by
&=&opi/[(1+Po)yo], where yo=(l —Po) '~ is the ini-
tial relativistic factor of the electron beam (prior to the
laser interaction), Po=uo/c is the initial normalized elec-
tron velocity, and pi=(1+ao/2)'~ . Hence, for yo))1
and ao «1, A, =A,o/4yo and extremely-short-wavelength
radiation can be generated. In practical units, the photon
energy E =%co and wavelength A, of the fundamental
backscattered radiation are given by

= 13.0A, „[cm]/E& [GeV], where A, „ is the undulator
magnet wavelength and K « 1 and yo)) 1 have been as-
sumed. Since the laser wavelength in the LSS (A,o- 1 p, m)
is more than four orders of magnitude shorter than the
wavelength of a conventional undulator magnet (A,„)4
cm), a much-lower-energy electron beam (-300 times
less) can be used in the LSS to produce a given photon
energy. Hence, compared to a conventional storage-
ring-based synchrotron, the LSS can be a compact, inex-
pensive device, particularly at high photon energies
(E ) 10 keV). As an example, consider synchrotron

0
sources producing 30-keV photons (X=0.40 A), assum-
ing ao «1 and K «1. In a conventional synchrotron
using a A,„=4cm undulator period, electron beam ener-
gies of E& 12 GeV are needed. In the LSS using a A,o= 1

pm laser, E& =40 MeV, which is typical of the energies
available from compact accelerators, such as rf linear ac-
celerators (linacs) or betatrons.

The second avenue to short wavelengths is to exploit
the harmonic frequency upshift factor X=X, /n, where k,
is the wavelength of the fundamental. For a o ))1,
numerous harmonics are generated. The result is a near
continuum of scattered radiation with harmonics extend-
ing out to some critical harmonic number n, -ao, beyond
which the intensity of the scattered radiation rapidly de-
creases. Hence an ultraintense laser incident on a sta-
tionary plasma (yo= 1) can generate short-wavelength ra-
diation A, = A,o/n. The critical photon energy for a
plasma-based LSS is given by

E [eV]=1.24n, /Ao[pm],

where n, -ao. Assuming laser technology limits ao ~ 10
and A,O-1 pm implies that the scattered radiation is lim-
ited to A, ~ 10 A and E ~ 1 keV. Hence a plasma-based
LSS is limited by present laser technology to the soft- to
medium-x-ray regime.

Tunability of the LSS radiation can be achieved by ad-
justing either the electron energy or the laser intensity, as
indicated by Eqs. (2) and (3). Neglecting thermal effects,
it can be shown that the linewidth of the scattered radia-
tion for a particular n harmonic of frequency co„ is given
by hco/co„=1!nNO, where No is the number of laser
periods with which the electron interacts. In principle,
since Xo is typically large (No )300), narrow-linewidth x
rays can be generated. In practice, the linewidth will be
limited by thermal effects. For example, the normalized
energy spread associated with an electron beam AE/E~
limits the linewidth to Ace/co„=26E/Eb. An additional
advantage of generating LSS radiation using an electron
beam is that the scattered radiation is well collimated
about the backscattered direction (i.e., the direction of
the electron beam). For an electron beam with yo))1
and ao &1, the backscattered radiation with linewidth
Aced/co=1/No is confined to a radiation cone of half-
angle 8=1/(go+No). For a plasma with ao ) 1, the ra-
diation is scattered over a much larger angle. When
ao ))1, numerous harmonics are generated, and tunabili-
ty is achieved by filtering the scattered radiation. An ad-
ditional advantage in using a plasma is that very high
electron densities can be achieved in comparison to densi-
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ties obtainable in electron beams. The scattered power,
as well as photon Aux and brightness, scale linearly with
density; hence the use of high electron densities is
favored.

Thomson scattering theory is a classical description
which is valid provided the scattered photon energy is
small compared to the electron energy, i.e.,
Ace«porn, c . For a plasma, this implies photon ener-
gies less than 500 keV. For an electron beam with

po &) 1 Xo= 1 pm, and ao & 1, this implies yo & 10, i.e.,
electron beam energies less than 50 GeV. Nonlinear
Thomson scattering of intense radiation from a single
electron initially at rest was examined analytically in con-
siderable detail in the classic work of Sarachik and
Schappert [1]. (This work was recently reexamined by
Castillo-Herrera and Johnston [9].) However, the impor-
tant effects of the space-charge potential [2,21], which
arises in high-density plasmas, was neglected and scatter-
ing from electron beams was not discussed. Waltz and
Manley [2] also discussed Thomson scattering from plas-
mas and pointed out that the space-charge potential was
important in preventing the drift of electrons in the direc-
tion of the incident laser. However, explicit expressions
for the scattered intensity distribution for arbitrary ao
were not calculated and scattering from electron beams
was not considered. Many authors [10—17] have ana-
lyzed the production of synchrotron radiation in the in-
teraction of relativistic electron beams with static mag-
netic undulator and wiggler fields, a process which is
somewhat similar to Thomson scattering. These analyses
require that K/yp((1 (analogous to ap/yp((1), an as-
sumption which need not be made in the analysis of non-
linear Thomson scattering. In this paper, nonlinear
Thomson scattering of intense laser fields from electron
beams and from plasmas is examined analytically and nu-
merically. This analysis is valid for linearly and circular-
ly polarized incident laser fields of arbitrary intensities
and for electron beams of arbitrary energies (up to the
limits of classical theory). The effects of the space-charge
potential are included self-consistently and various
nonideal effects, such as electron energy spread, are dis-
cussed.

The remainder of this paper is organized as follows. In
Sec. II, the orbits of electrons in intense laser fields, both
linearly and circularly polarized, are calculated including
the effects of the self-consistent electrostatic potential.
Explicit expressions for the scattered intensity distribu-
tions are derived in Sec. III. These are general expres-
sions, valid for electron beams and plasmas and for arbi-
trary laser intensities. Properties of the scattered radia-
tion are examined in Sec. IV, including a calculation of
the total power radiated from an electron beam or a plas-
ma, an examination of the resonance function, and the
behavior of the radiation spectra in the ultraintense re-
gime, i.e., ao &) 1. Various nonideal effects are discussed
in Sec. V, including the effects of electron-energy spread,
electron-beam energy loss, ponderomotive density de-
pletion, and plasma dispersion. These results are applied
to possible LSS configurations in Sec. VI, and specific ex-
amples of an electron-beam LSS and a plasma LSS are
presented. Section VII is the conclusion.

II. ELECTRON MOTION
IN INTENSE LASER FIELDS

+(1—5 )' sinkpile~], (4)

where kp=2~/Ap is the wave number of the laser field,

q =z+ct, 6 = 1 for linear polarization, and 5z =0 for cir-
cular polarization. Using this representation, (a ),
=ao/2 for both linear and circular polarizations, where
the subscript s signifies the slow component (an averaging
over the laser wavelength). Hence the average laser
power Pp —(a ), is constant for a given value of
a~, independent of polarization, i.e., Pp[GW]
=21.5(aprp/Ap), assuming a Gaussian transverse profile
of the form ~a~-exp( r lrp). In t—he following, the
laser field is assumed to be moving to the left ( —z direc-
tion) and the electrons are initially (prior to the interac-
tion with the laser field) moving to the right (+z direc-
tion) with an initial axial velocity v, = vp (see Fig. 1).

The electron motion in the fields a and N is governed
by the relativistic Lorentz equation, which may be writ-
ten in the form

1 d 1u=V@+— a —PX(VXa),
c di c Bt

where p= v/c is the normalized electron velocity,
u=p/m, c=yp is the normalized electron momentum,
and y=(1+u )' =(1—p )

' is the relativistic factor.
Assuming that the laser field a~ and hence the quantities

p, u, and y, are functions only of the variable

g =z+ct, Eq. (5) implies the existence of two constants of
the motion [21,22]

(6a)

i& X Scattered Field G3z

Vo

Electron ciderlt Field Mo

FIG. 1. Schematic diagram showing the Thomson scattering
of an intense laser field from a free electron.

The laser field and space-charge field of the electrons
can be represented using the normalized vector and sca-
lar potentials a=e A/m, c and N=e@/m, c, respec-
tively, where m, is the electron mass and e is the magni-
tude of the electron charge. In the Coulomb gauge,
V a =0 implies a, =0 in one dimension (1D). Then, a ~

represents the laser field and @ represents the space-
charge field of the plasma. The normalized vector poten-
tial of a laser of arbitrary polarization is represented by

a=(ap/&2)[(1+5~)' coskpile„
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(y+u, —4)=0 .
dn

(6b)

Equation (6a) is conservation of canonical transverse
momentum in 1D, and Eq. (6b) can be interpreted as con-
servation of energy in the wave frame. Equations (6a)
and (6b) can be integrated to give [21,22]

uj =ai,
y+u, —4=yp(1+Pp),

(7a)

(7b)

where, prior to the laser interaction (a~=0), u~=@=0,
y=yp, and u, =yp/3p have been assumed. The two con-
stants of the motion, Eqs. (7a) and (7b), completely de-
scribe the nonlinear motion of electrons in the potentials
a and N. They allow the electron motion to be specified
solely in terms of the fields, i.e.,

hp —(1+a )

h +(1+a )
(Sa)

y = (h p+ 1+a ) /2hp,

/3l aJ /7

(Sb)

(Sc)

where hp=yp(1+/3p)+4&.
The self-consistent space-charge potential of the elec-

trons N can be determined using the continuity equation
and Poisson's equation,

1 a
n, +V.(n, P) =0,

c Bt

V~4=k (n, /np —1),

(9a)

(9b)

where n, is the electron density, k =co /c, co

=(4me n p/m, )'~ is the plasma frequency, and n p is the
ambient density. Equation (9b) assumes that the initial
equilibrium (prior to the laser pulse) space-charge poten-
tial @ ' is negligible. For a plasma, a neutralizing back-~ (p)ground of stationary ions is assumed, i.e., @' '=0. For a
long, uniform electron beam of radius r&,

I (kerry/4=v&, where v& =I~/I&p is the Budker pa-
rameter, I& is the beam current, and Igp[kA]=17P, .

(p)Since vb «1 for beams of interest, 4 can be neglected.
Assuming n, =n, (g), Eq. (9a) implies [21,22]

[n, (1+/3, )]=0;d
dn

(10)

hence n, =np(1+Pp)/(I+/3, ). Substituting this result
into Eq. (9b) and using Eq. (Sa) give [21,22]

k 2d p (1+a )
(11)

d~ 2 (I+% )

where 4 =4/yp(1+Pp) and k& =k&/yp ( I+/3p).
Equation (11) describes the self-consistent electrostatic

potential induced by the interaction of the laser field.
The solution for 4' is, in general, highly nonlinear. Sim-
ple solutions can be obtained in two limits in which the
characteristic temporal variation of the laser envelope ~L
(typically the laser rise time) is compared to an effective
plasma period (ck ) '. In the short-pulse limit

rL &((ck~ ) ', Eq. (11) implies
~
4

~
&& 1 provided

ap &2/c~L k, where ap is the amplitude of the laser
pulse, e.g., a =a pcoskpg. In the long-pulse limit
rL )&(ck~ ) ', the left-hand side of Eq. (11) can be
neglected and it can be shown that %=(1+a ),'~ —1,
where the subscript s signifies the slow part. Throughout
the following, the quantity (1+a ),'~ =(I+ap/2)'~ will
be approximated as nearly constant, i.e., d(a ), /dr/
&(kp(a )„which implies that Lp))kp, where Lp=crL
is the length of the laser envelope.

For applications which utilize intense lasers with pulse
lengths ~L —1 ps, the short-pulse limit is relevant to in-
teractions with electron beams as long as the beam densi-
ty is sufficiently low, np/gp«10' cm . On the other
hand, the long-pulse limit is relevant to interactions with
stationary ( yp

= 1) plasmas as long as the density is
sufFiciently high, np &&10' cm . Under these condi-
tions, the parameter hp =yp(1+/3p)(1+ 4) is given by

yp(1+/3p), e beam (short pulse)

(I+ap/2)'~, plasma (long pulse) .
(12)hp= '

Notice that in the limit of a low-density plasma with
np «10', ~4~ &(1 and hp= l. This corresponds to the
single-particle limit considered in Ref. [1].

The electron orbits r(r)) =xe +ye +ze, can be calcu-
lated as a function of g using Eqs. (Sa)—(Sc) and the rela-
tion

=P=(1+f3, )
1 dr dr
c dt ' dq

(13)

u~ =apcoskp'g

u =0,
(14a)

(14b)

u, = [hp —(1+apcos kpr/)]/2hp .

Hence

(14c)

x (r/) =x, + r, sinkpg,

z(g) =zp+/3, g+z, sin2kpq,

(15a)

(15b)

(15c)

where additional terms of order A,p/Lp have been neglect-
ed and

r, =ap/hpkp,

zi = ap /8A pkp

/3, =(1—I /Mp )/2,
with Mp=hp/(I+ap/2), i.e.,

yp(1+/3p) /(1+ap/2), e beam
M =

0
[1, plasma.

(16a)

(16b)

(16c)

(17)

Similarly, for a circular polarized laser (6~ =0), the
electron orbits are given by

which gives dr/dq=u/hp. For a linearly polarized laser
of the form given by Eq. (4) with 5z =1, the electron or-
bits are given by
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u, = (ao/&2)coskoil,

u~ = (ao /&2)sinkor/,

u, = [ho —(1+ao/2)]/2ho .

Hence

x (g) =xo+(r, /&2)sinkoi/,

y (rj ) =yo —
( r, /V2)coskog,

z(q) =zo+P, il,

(18a)

(18b)

(18c)

(19a)

(19b)

(19c)

The ponderomotive motion can be neglected when
5u /~a && 1, which is true in the cases discussed below.

III. SCATTERED RADIATION

The energy spectrum of the radiation emitted by a sin-
gle electron in an arbitrary orbit r(t ) and P(t) can be cal-
culated from the Lienard-Wiechert potentials [24],

f dt[nX(nXP)]
dec d A 4~~c —Ti2

where, again, additional terms of order A,p/Lp have been
neglected. In the above equations, (xo,yo, zo) are related
to the initial position of the electron.

The axial drift velocity of the electrons /3, can be writ-
ten in terms of the parameter /3&. Since i)=z+ct, Eq.
(19c) implies that z =(zo+/3, ct )/(1 —

/3, ). Hence

/3, =
f3i /(1 f3i ) = (—Mo —1)/(Mo+ 1) (20)

n, =n (o1 +f3)(0h o+I +a )/2ho . (21)

Of particular interest is the slow part (g averaged) of the
density n„For a .tenuous electron beam (short-pulse
limit), ho =yo(1+/3O) and n„=no, assuming h 0
))(I+ao/2). For a dense plasma (long-pulse limit),
ho=(1+ao/2)'~ and n„=no Howeve. r, this is not the
case for a plasma in the single-particle regime. For a
tenuous plasma in the short-pulse limit, h p

= 1 and
n„=no(1+ao/4). In this regime, the plasma density is
enhanced due the ponderomotive force associated with
the rise of the laser pulse and the resulting finite axial
drift motion of the electrons /3, .

The above results have assumed the 1D limit, which is
valid when rp ))A,p and when the quiver motion is much
greater than the ponderomotive motion. In three dimen-
sions (3D), the ponderomotive motion 5u=u —a is given
[23] by B5u/Bg=V(P —y). The quasistatic approxima-
tion implies that the quantity y+ u, —P —a, is a constant
of the motion, which is the 3D generalization of Eq. (7b).
For a plasma, it follows that ~5u

~
/~a

~
5 A~ao/ro, whereas

for a relativistic electron beam, ~5u ~/~a ~ ~Loao/yoro.

is the average normalized velocity of the electrons in the
axial direction. Notice that in the dense-plasma (long-
pulse) limit, Mo = 1, and /3, =0. For a low-density plasma
in the single-particle limit Mo = ( 1+a o /2) ' and
f3, = —(ao/2)/(2+ao/2). Hence, in the single-particle
limit, a single electron initially at rest receives a finite
average drift velocity due to the ponderomotive force as-
sociated with the rise of the incident laser pulse, as point-
ed out in Ref. [1]. For an electron in a dense plasma
(long-pulse limit), f3, =0 and there is no average axial
motion of the electrons [2,21,22]. Physically, /3, =0 is
achieved through a balance between the ponderomotive
force and the space-charge force set up during the rise of
the laser pulse.

The self-consistent electron density in the presence of
the laser field can be calculated using the constant of
motion n, (1+/3, )=no(1+/3o). This can be written in
terms of the parameter hp as

Xexp[ico(t —n r/c)] (22)

where d I/den dO, is the energy radiated per frequency ~
per solid angle 0 during the interaction time T and n is a
unit vector pointing in the direction of observation. In-
troducing the spherical coordinates (r, O, Q) and unit vec-
tors (e„,es, e&), where x = r sinO cosP, y = r sinO sing,
z=r cos0, and

e„=sinO cosine, + sinO singe +cosOe, ,

ez= cosO cosine, + cosO singe~ —sinOe, ,

e&= —singe +cosine~,

(23a)

(23b)

(23c)

and by identifying e„=n, give

n X (n XP) = —(/3„cosO cosP+ /3 cosO sing —P, sinO)ez

+ (/3, sing /3~ co—sP)e&,

n r =x sinO cosP+y sinO sing+ z cosO .

(24a)

(24b)

The scattered radiation will be polarized in the direction
of n X (n XP). Hence I = I&+I&, where Iii and I& are the
energies radiated with polarizations in the e& and e&
directions, respectively. In terms of the independent
variable q=z+ct,

d Io
dc' dA

e 67 ~o dx
d g cosO cosP+ cosH sing4' c /p dg dn

d I~
dco dA

sinO exp(ig), (25a)
dz

dn
2

e co ~o dx . dpdg sing — cosP exp(ii/)
'gp

(25b)

A. Linear polarization

The electron orbit for a linearly polarized incident
laser field of the form given by Eq. (4) with 5 = 1 is given

where

i/ =k[il —z(1+cosO) —x sinOcosg —y sinO sing], (26)

k =co /c pp =L p /2 Lp is the laser-pulse length, and
Lp ))kp = 2m /kp has been assumed. In deriving the
above expressions, the relation c/3dt=(dr/dq)dg was
used, where r=r(r/) is given by Eqs. (15) and (19).
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by Eq. (15). The phase g can be written as

P =Po+ [1—P, ( 1+cos8) ]k 2)
—(kr, sinO cosP )sinko2)

R(k, nko)=
2sink 'gp

kgp
(34)

—[kz, (1+cos8) ]sin2ko2),

PD= —k [zo(1+cos8)+xosin8 cosP+yosin8 sing] .

(27a) This function is sharply peaked about the resonant fre-
quency co„given by k =0,

(27b)
n COp

1 —P,(1+cos8)
(35)

Using the Bessel identity

exp(ib sincr ) = g J„(b)exp(in o ), (28)

exp[i( P+ ikon) ) ] =

where

m, n = —oo

J (a, )J„2 +i(a, )

X exp[i(go+ k2) )], (29)

where J„are Bessel functions, allows the phase factor
exp[i (g+ iko2) ) ] to be written as

The width of the spectrum Aco about co„ is given by
hco/co„=1/nÃp, where Np=Lp/A, p is the number of
periods of the laser field with which the electron in-
teracts.

Since the frequency spectra for two different harmonics
n and n' are sufficiently well separated, the summations
in Eqs. (32a) and (32b) may be simplified to yield

2

e k2 sinks)o

dcodQ „=i 4vr2c k

X[C,(1—sin 8cos P)

k =k [1—P, ( 1+cos8) ]—nko,

a, =kz, (1+cos8),
a„=kr, sin8 cosP .

(30a)

(30b) where

+C, sin 8—C„C,sin28 cosP],

(30c) C = g ( —1) kor, J (a, )

(36)

In order to evaluate Eqs. (25a) and (25b), it is necessary
to evaluate the integrals X[J„2,(a, )+J„2 +,(a„)], (37a)

d(x, y, z)I~„,~= d2)
' ' exp(iP) .

9O
(31) C, = g (

—1) 2J (a, )

Using the orbits, Eq. (15), along with the identities in
Eqs. (28) and (29),

X [p,J„2 (a )

+ 0 1[J —2 —2(a. )+J.—2 +2(a. )]]

m, n= —oo

sink 2)

k

X [J„2 ](a )+J„2 +/(a )],
(32a)

and

nao(1+cos8)
8h o [1—P, (1+cos8) ]

(37b)

(38a)

I, =2e
m, n = —oo

sinks)

k

X [P,J„2m (a, )

naosin8 cosP

ho[1 —P,(1+cos8) ]
(38b)

and I =0, where

+koz, [J„2 2(a„)

+J 2 +2(a )]] (32b)

d Ig
~
I„cos8cosP —I,si 8~ndc' dQ 4~2c3 (33a)

/I„sing [

Zco dQ 4& c
(33b)

The frequency width of the radiation spectrum for a
given harmonic is determined by the resonance function
R(k, nko), where

In deriving the above expressions, the approximation
co =co„was made in the arguments of the Bessel functions
a and a, .

Plots of the normalized amplitude of the scattered in-
tensity d I /d cod Q versus normalized frequency co/4ppcop
and normalized observation angle yp0 are shown in Figs.
2(a) and 2(b) for the case of a linearly polarized laser
(NO=7) interacting with a counterpropagating relativis-
tic electron (yo=5). The intensity is shown in the plane
of electron motion /=0, i.e., 8 is the "horizontal" obser-
vation angle (8=0 is along the z axis, the axis of propaga-
tion). Figure 2(a) shows the intensity in the first two har-
monics for ap=0. 5. Significant radiation occurs only at
the fundamental (n =1). The intensity of the fundamen-
tal peaks on axis with a frequency shifted slightly from
the low-intensity Thomas backscattered value of 4&gcop



48 NONLINEAR THOMSON SCATTERING OF INTENSE LASER. . . 3009

d2I

dNdQ
(a)

d I
dcodQ

0=m/2

d I

dNdQ
(b)

(b)

vt/2

d I
dox1Q d I (c)

' 4A

B=vt/2

FI The normalized intensinsity, as a function of normal-
ize requency co/4yocoo and angle yoO in the /=0 lane of t
radiation scattered b y a relativistic electron ( yo =5) from
counterpro a atin linp g ing, inearly polarized laser pulse (Xo =7). (a)

rom a

shows the first two harmonics for ao =0.5 and (b) shows the

i y a e armonic resonancesFIG. . The normalized intensit at th h
co coo=n, as a function of angle 8 in the / =0 plane, of the ra i-

ation scattered b ae y a dense plasma electron from a linearl olar-
ized laser pulse (N =7). a
a =0.5 b

(a) shows the first three harmonics f
, ( ) shows the first six harmonics fo =1.0,

a monies or
or ao = . , and (c)

shows the first twelve harmonics for ao =2.0.

and is confined to an angle 8(1/ F'
7 o. igure 2(b) shows

t e intensity in the first three harmonics for ap:1 0.
Significant radiation now occurs in th he armonics as well

alon t e ax'
as the fundamental. Only the odd ho armonics are finite
a ong t e axis (0=0) and the frequency shift due t fis i ue to nite

e apparent. The angular distribution of th

g harmonics is more extensive than the fundamen-
n o e

tal. The nth harmonic exhibits (n+1)/2 fn, or n even, intensity maxima as a function of 0. For
larger values o
trum.

o ap, the harmonics dominate tho
' '

e e spec-

Plots of ththe normalized amplitude of the scatt d
'

tensit d I
e sca ere in-

inFi s. 3a-y /dcodQ versus observation angle 8 hge ares own

(N =7 inter
igs. (a) —3(c) for the case of a linearly pol

'
d 1y po arize aser

intensity is shown in the plane of electron motion ~=0
i.e., 6 is the he horizontal observation angle. Figure 3(a
shows the intensity in the first th hrs ree armonics for
ao= . , ig. 3(b) shows the intensity in first six h
ics for a =1.0

rs six armon-
or ao= . , and Fig. 3(c) shows the intensity in first

twelve harmonics for a =2.0 F dor a ense plasma, there
is no average axial drift of the electrons; hence harmonic
ra iation is scattered over large an les and the fr
is not shifted, i.e. co =neos i e, i.e., n~„=nano. (For convenience, the inten-
sity is plotted onl ay t the resonant frequencies co=~ .'
Onl the oddd harmonics are finite along the axis (8=0)

CO
—QP~. I

d I„
d dQ

=e koN Mo „(a )G„(~), (39)

where

F (an o)=nan[J(n —t~&z(a„)—J~„+ (a )]

is the harmonic
+ao/2),

amplitude function a = /4( 1~
—nQp

(40)

R(k, nko)
G„(co)=

Eco A co

sin(a~ nMocoo) T—
(co nMocoo) T—(41)

is the fre uencq y spectrum function, and T=I.p/2cM .
The function G (ni) is a r '

y„co is a resonance function sharply
peaked about the resonant frequency = Mcy co„=n p~p, with a

and the inten
'

with n &1. The
tensity is maximum off axis for 11 hor a armonics

n . The nth harmonic exhibits (n+1)/2, for n

odd, or n /2, for n even in, 'ntensity maxima as a function of
within the region 0 ~ 8 ~ vr/2.
Backscattered radiation. Of t'particu ar interest is the

ra iation backscattered along the axis. In the backscat-

i.e., e even armonics vanish. Setting 0=0 in the above
expressions gives, for the nth odd harmonic 7
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J

I I I I f I I I I
f

I I I I
)

I I I I
[

I I I I
(

I I I I f I I I 11. exP I i [/+ i(ko71 —P)] I

1.2

+ (&0) 0.8

exp[i(go+ k71+ng)]J„+&(a), (44)

where a=(kr&/+2)sinO and where k is given by Eq.
(30a). This allows the calculation of the integrals in Eqs.
(42a) and (42b). In particular,

Io= J d71 exp(ig/r)
0

0.4 exp[i(go+ nP)]
sink go 2J„(a),

k
(45a)

I& = J d7) cos(k071 —p)exp(ig)
Io

0.1 0.2 0.3

( '/4)/(1 + '/2)
0.4

exp [i($0+n P) ]
sink g0 J„(a),

k (x
(45b)

FIG. 4. The harmonic amplitude function F„(ao), as a func-
tion of (ao/4)/(1+ao/2), for the first ten odd harmonics,
n =1,3, 5, . . . , 19.

exp [ i( go+ n P ) ]
sink g0 2iJ„'(a) .

k

I2 = d g sin kog — exp i
0

(45c)

width given by hco/co„=1/nXo, where the frequency
multiplication factor Mo is given by Eq. (17). Further-
more, G„~6(~—co„) as No~ oo.

The energy radiated in the nth backscattered harmonic
depends on the function F„(a ),0Eq. (40). For high har-
monics n ))1, F„becomes significant when ao ))1. For
modest power lasers for which ao «1, only the funda-
mental n =1 is significant. A plot of the function F„
versus the parameter (ao/4)/(1+ao/2) is shown in Fig.
4

d I
dc' dA 2

7T C

2
sink/o

As indicated by Eq. (34), the above expressions imply a
frequency spectrum centered about co=co„, where co„ is
given by Eq. (35), of width b,co/co„= 1/nNo Sinc.e the
frequency spectra of two different harmonics n and n ' are
well separated, the summations in Eqs. (42a) and (42b)
can be simplified. Using Eqs. (42) and (45), the radiation
spectrum can be written as

B. Circular polarization

To calculate the scattered radiation from a circularly
polarized incident laser field (5~ =0), the orbits given by
Eqs. (18) and (19) are used in Eqs. (25a) and (25b). The
intensity distribution can be written as

[cosO —P, (1+cosO) ]
X J„(a)

sin 0

kor )
2 2

+ J„' (a)
2

d IH

dc' dQ
e co "10 kore

d 7i — cosO cos( ko71 —
P )

47r c &o 2

—P, sinO exp(ili7), (42a)

where k0r& =ao/ho and the approximation co=co„has
been made in the arguments of the Bessel functions, i.e.,

n (ao/&2)sinO
0!=

ho[1 —P, (1+cosO)] (47)

d I~ e2~~ no kore2

d 71 — sin(k071 —p)
dc&) dQ 47r c Ro 2

In the above expression, the terms proportional to J„(a)
are the contributions from IH, and the terms proportional
to J„'(a) are the contributions from I&.

Using the identities [1]

The phase f is given by

X exp(i/) (42b)
p 2( z(4+z )

16( 1 ~2)7/2

(48)

ll7=1i7 + [1—p, (1+cosO)]k71
—(kr, /&2)sinO sin(ko7) p), —(43)

where $0 is given by Eq. (27b). Using the Bessel identity,
Eq. (28), gives

the summation in Eq. (46) can be carried out and an ex-
pression for dI/d 0 can be found. After integrating over
frequency, one finds
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( e /c )Nocooa 0 /h o

32(1 —z )
i [1—P, (1+cos8)]

[cos6—P,(1+cos8) ]
X (4+z )

[1—P,(1+cos0) ]

d I

doxie

+(4+3z )(1—z ) ', (49)
=vt/2

Qco 8A g=p

e kpNpMpa p
2 2 2

G, (co),
4(1+ao/2)

(50)

where G, (co) is given by Eq. (41) with n = 1.

where z =e/n.
Plots of the normalized amplitude of the scattered in-

tensity d I/deed A versus normalized frequency co/4ypmp
and normalized observation angle ypO are shown in Figs.
5 and 6 for the case of a circularly polarized laser (ao = 1,
NO=7). Because of the symmetry of the electron orbit,
the intensity distribution is independent of P. Figure 5
shows the scattered intensity from a counterpropagating
relativistic electron (@0=5) for the first three harmonics.
Only the fundamental (n =1) is nonzero on axis, where
its intensity is maximum, and its frequency is shifted
from the low-intensity Thomson backscattered value of
4&@cop. The intensity of the higher harmonics peak off
axis and is confined to angles 8 ~ 2/Mo~, as discussed in
Sec. IV C below. Figure 6 shows the scattered intensity
from an electron in a dense plasma for the first six har-
monics. For a dense plasma, there is no average axial
drift of the electrons and the frequency is not shifted, i.e.,
cu„=neap. Only the fundamental is nonzero on axis,
where its intensity is maximum. For higher harmonics,
the intensity is maximum in the transverse direction
0=~/2. As the intensity of the laser pulse increases,
more radiation is scattered into the higher harmonics.

Backscattered radiation. In the backscattered direc-
tion, only the fundamental n =1 is nonzero. In the limit
0~0, J', (a) —+1/2 and J,(a)~a/2. Hence

FIG. 6. The normalized intensity at the harmonic resonances
colcop=n, as a function of angle 0, of the radiation scattered by
a dense plasma electron from a circularly polarized laser pulse
(Np =7, ap = 1.0) for the first six harmonics.

IV. RADIATION PROPERTIES

A. Radiated power

The power radiated by a single electron P, undergoing
relativistic quiver motion in an intense laser field can be
calculated from the relativistic Larmor formula [24]

'2 '2

P, = 2e 2 du
dt

GP
dt

(51)

Assuming the electron orbit is a function of only the vari-
able g =z+ct,

P, =
—,'e c(y+u, )

GU

cl 'g

2 2

(52)

Using the orbits described in Sec. II, the power radiated
by an electron in the presence of a circularly or linearly
polarized radiation field is given by

circular
P, =—', e ch pk pap X ' . 2k (53)

sin kpg, linear,

where ho is given by Eq. (12). Averaging the above ex-
pression over a laser period, the ratio of the radiated
power to the incident laser power P, /Pp can be written
as

P /P =16r h /3r (54)

d I
dCNiQ

FIG. 5. The normalized intensity, as a function of normal-
ized frequency co/4&pc()p and angle yp0, of the radiation scat-
tered by a relativistic electron (yp= 5) from a counterpropagat-
ing, circularly polarized laser pulse (Np=7 Op=1.0) for the
first three harmonics.

mrp 1, e beam
X 'c 2 f„, plasma, (55)

where r, =e /m, c is the classical electron radius.
The total power radiated by a laser pulse passing

through a uniform distribution of electrons with a con-
stant density n p is given by PT =N, P„where
N =n pLr p0 I is the total number of electrons interacting
with the laser pulse at a given time, L, p =c~L is the laser
pulse length, and o.

L is the effective cross-section. As-
suming a Gaussian laser pulse, a =(aoro/rL )exp( —r /
rj), where rI is the laser-pulse spot size and ro is the
minimum spot size, the effective cross section o.L can be
found by letting ao ~& in Eq. (54) and integrating P, over
r. One finds
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B. Resonance function

Several properties of the radiation spectra can be ascer-
tained by examining the resonance function R(k, nko)
given by Eq. (34). The function R(k, nko) is sharply
peaked about the resonant harmonic frequencies co„
defined by k =0, which can be written as

nMo coo

[1+MoP,(1—cos8) ]
(57)

where n is the harmonic number and Mo is the relativis-
tic Doppler upshift factor. For a plasma, 13&=0 and
Mo=1, which gives co„=neo, independent of 0. For a
relativistic electron beam with Mo »1, the radiation is
primarily backscattered into small angles 0 «1. Hence
co„=nMocool(I+MO8 /4), which indicates a maximum
frequency in the backscattered direction along the axis
0=0. The change in frequency hen with respect to a
change in angle 50 is given by

~M (8b 8+b 8 /2)
~

(2+MO8 /2)

assuming Mo»1. Alternatively, Eq. (58) can be solved
to give the angular spread 50 about 0 over which a given
bandwidth he@ about cu„may occupy. For a relativistic
electron beam with M, »1, two angles are of particular
interest. It is shown below that for a linearly polarized
laser field, the radiation intensity for the higher harmon-
ics n )& 1 is centered about 0=0, whereas for circular po-
larization, the intensity is centered about 8O=2/Mo/ .
For these two angles, Eq. (58) implies

(hei)/co„)'/ for 8=0
60= x

yo (bee/co„) for 8=8O, (59)

where Mo =4yo/y~ has been used.
The intrinsic (i.e., associated with the radiation from a

single electron) frequency width hco„of the radiation
about a resonant frequency co„can be found by letting
co=co„+5co and integrating the function R(k, nko) over
5co, which gives

bee„= I d(5co)R(k, ko)=co„/nNO . (60)

Hence Aco„/co„=1/nlVo, where Eo=Lo/ko is the num-

where f =(1+ao/4)/(1+ao/2). In Eq. (55), the top
expression holds in the short-pulse (electron beam) limit,
i.e., ho=yo(1+Po), and the bottom expression holds in
the long-pulse (plasma) limit, i.e. , ho = (1+a o /2) '/ .
Hence the total scattered power by a uniform electron
density no is given by

PT/Po =(8~/3)r, 'Lonof~ho . (56)

As example, a no=10 cm plasma interacting with a
1-ps laser pulse with ao=5 gives PT/Po=1. 4X10
The ratio of the total scattered energy to the laser pulse
energy is approximately PTL /PoLo where L is the total
length over which the laser pulse interacts with the elec-
trons.

ber of wavelengths in the laser pulse. Furthermore,
R(k, nko)~bco„5(co —co„) as No~ co. The angular
width 50„within which can be found radiation with fre-
quencies in Ace„about m„, for a single harmonic n, is
given by inserting Eq. (60) in Eq. (59),

(1/nNO)'/ for 8=0
40„= X.

yo (1/nNO) for 8=8O . (61)

Alternatively, similar expressions can be obtained by let-
ting 8=8'+58 and integrating R [k„(8'),ko] over 58. It
should be pointed out that Eqs. (59) and (61) apply to rel-
ativistic electron beams with M„))1. For plasmas, the
angular width occupied by a given Ace about cu„must be
determined by considering the full functional form of the
radiation spectrum, Eqs. (36) and (46), not just the reso-
nance function R(k, nko).

C. Ultraintense behavior

J„'(nz ) =—x~ 1/2
(1 z)'/ K, (nx )—,

mz

(62)

where ~z
~

( 1 and is a function of ao and 8,

x =in[1+(1—z )' ]
—lnz —(1—z )'

and Ki/3 K2/3 are modified Bessel functions. In particu-
lar, for nx »1,

Kl/3 K2/3 (7r/2nx )exp( nx ), —(64)

and hence only harmonic radiation with nx 1 will con-
tribute significantly to the spectrum. The critical har-
monic number is defined as n, x;„=1,i.e., n, =1/x
where x;„ is the minimum value of Eq. (63). Further-

For values of ao «1, the scattered radiation will be
narrowly peaked about the fundamental resonant fre-
quency co, =coo/[ I —I3,(1+cos8)]. As a D approaches uni-

ty, scattered radiation will appear at harmonics of the
resonant frequency as well, co„=ncoi ~ When ao ))1,
high-harmonic (n »1) radiation is generated and the re-
sulting synchrotron radiation spectrum consists of many
closely spaced harmonics. Finite electron-energy-spread
effects can broaden the linewidth causing the radiation
from the various harmonics to overlap. For example, a
finite thermal axial velocity spread will lead to overlap
when (bco/co„), z& 1 ln, where (bco/co„),z is given below

by Eq. (77). Hence, in the ultraintense limit, i.e., ao »1,
the gross spectrum appears broadband and a continuum
of radiation is generated which extends out to a critical
frequency cu, beyond which the radiation intensity dimin-
ishes. The critical frequency can be written as co, =n, cubi,

where n, is the critical harmonic number. It is possible
to calculate n, by examining the radiation spectrum, Eqs.
(36) and (46), in the ultraintense limit ao » 1.

Asymptotic properties of the radiation spectrum for
large harmonic numbers n ))1 can be analyzed using the
relationships [25]

~ 1/2

J„(nz ) = (1 z) ' "—K, /3(nx ),
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more, dx /dz &0 and the minimum of x occurs at z
Typically, for ao ))1, 1 —z,„«1 and Eq. (63) can be
expanded to yield, to leading order, x;„=—,'(1 —z,„) /2.

The critical harmonic number is given by the inverse of
this expression.

j. Circular polarization

cosgo=(Mo —I)/(Mo+1) . (66)

Inserting this value of z,„ into Eq. (63) gives, for a 0 ))1,
x;„=23/2/3a o and hence

For a circularly polarized incident laser field, z =a /n,
where ct is given by Eq. (47), i.e.,

(ao/3/2)sing
z =

ho[1 —
/3, (1+cosg)] (65)

For a fixed value of a& ))1, the maximum value of z is
given by z,„=(ao/3/2)/(I+ac/2)'/ and occurs at an
angle Op given by

plasmas. In Eq. (70a), n, =3a o /23/2 and the factor
(Mo+ I)/2 is the relativistic Doppler upshift for radia-
tion scattered at the optimum angle Op, as indicated by
Eq. (68). The expression for y follows from Eq. (8b) as-
suming ao))1. In deriving Eq. (69), Eq. (62) was used
and the summation was approximated by an integral, i.e.,
Q„R (k, nko ) = I INo and hence nx ~g.

Notice in the limit 58=0, d I/dao dQ-g Kz/3(g),
where /=co/co, . A plot of the function Y(g) =/~K&/3(g)
is shown in Fig. 7. The function Y(g) is maximum at

and decreases rapidly for g ) 1. Half the total
power is radiated at frequencies co & co, /2 and half at
co) co, /2. This can be shown by integrating d I/de dA
over frequency and angle [10],i.e., integrating the expres-
sion given below by Eq. (71b) over frequency.

Equation (69) is No times the standard result [24] for
the synchrotron radiation spectrum emitted from an elec-
tron moving in an instantaneously circular orbit in the
ultra-relativistic limit with a radius of curvature
p=3y clio, . Several well-known properties [24] follow
from Eq. (69), for example,

n, =3a o /23/2 . (67)

co(g= go) = neo(Mo+ 1)/2 . (68)

Furthermore, radiation at the harmonic n, will be scat-
tered in the direction 8= go, where go is given by Eq. (66).
The frequency of the radiation scattered in the direction
0= Op is given by

dI 7e 2 +p~& y 5 y2gg22 f

48c (1+Y2582)5/2 7 (1+y2582)

OY f
C

(71a)

(71b)

For a plasma, Mp = 1 and Op =+m /2, i.e., the high har-
monic radiation will be scattered perpendicular to the in-
cident laser field. For a relativistic electron beam with
Mo »1, go=2/Mo/ and the high harmonic radiation is
nearly backscattered. Physically, Op is related to the
pitch angle of the electron orbit,

~ u~ ~
/ u, ~

=23/2/Mo/ =ac /yo, assuming ao )) 1 and Mo » l.
The asymptotic properties (n &) 1) of the radiation

spectra can be readily obtained from Eqs. (46) and (62).
In the ultrarelativistic limit a p )& 1, the radiation is
confined to small angles 50 about the optimum angle L9p,

i.e., 0=Op+ 50, where 60 « 1 . Assuming n » 1,
ao )& 1, and 58 « 1, Eqs. (46) and (62) give

The peak intensity is of the order Np e y /c and the total
radiated energy is of the order Noe yco, lc. The peak in-

tensity occurs at the optimum angle Op, i.e., 50=0, at ap-
proximately the critical frequency co =co„ i.e., n =n,
= 3a0/2V'2. For harmonics below n, (co «co, ), the radi-
ation intensity increases as (co /coo ), and above n,
(co »co, ), the radiation intensity decreases exponentially,
1.e.,

100

dI 3e yg
den dQ ' w2c (1+y2582)

X K]/3(g)+%2/3(g)y 2$g2 2

(I+y 58 )

where

(69)

1O-'

~(() 1o-'

(1+y2582)3/2
CO

(70a)

10

m, =n,
(Mo+ 1)

2

ao(MO+ 1)

COp (70b)

(70c)
1O-4

1O-' 1O'

( = cu/u),

I I I I

10

Equation (69) holds for arbitrary values of Mo, i.e., elec-
tron beams of arbitrary energies as well as stationary FIG. 7. The function Y{g) =g KQ/3{/) vs /=cole@, .
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d I 3 2 2/3

[I (
z ))&

d 5068=p ''c ' ' 2,
co « co, (72a)

d I
dco 5Q gg —p

e 2 CO
2

y
2&C

exp CO &)CO

(72b)

Furthermore, for co«co„ the scattered radiation at a
fixed frequency is confined to an angular spread
b5g=(co, /co)'~ /y about go, whereas for co) co„
bM=(co, /3')'~ /y. The average angular spread for the
frequency integrated spectrum is (5g )'~ —1/y.

As an example, the peak intensity in the transverse
direction (g=m/2) of each harmonic co=ncaa is shown in

Fig. 8 for the case of a high-intensity circularly polarized
laser pulse encountering an electron in a dense plasma.
Plots for two di6'erent intensities are shown, ap =4 and 6.
The arrows indicate the approximate critical harmonic
number n, =ap for each case. Asymptotically, ap))1,
this curve approaches the form I'(g) =g Kz&3(g), shown
in Fig. 7.

2. Linear polarization

For a linearly polarized incident laser field in the limit
ao « 1, upshifted radiation at the fundamental frequency
is generated in a narrow cone about the backscattered
direction 0=27rg„where g, —1/ho. However, in the
limit ap))1, a near continuum of high-harmonic radia-
tion is generated and the emission cone about backscat-
tered direction widens [10]. In particular, in the vertical
direction P=m. /2 (the direction normal to the x-z plane
which contains the electron orbit), emission is confined to
the vertical angle 0, —1/hp. In the horizontal direction
/=0 (in the plane of the electron orbit), the emission an-

gle widens and is confined to the horizontal angle

Oh -ap/hp, which is determined by the deflection angle

of the electron in the x-z plane [10I. The asymptotic
properties of the radiation spectrum can be analyzed us-
ing Eqs. (36) and (62). Letting g represent the observa-
tion angle in the vertical direction, i.e. , P=vr/2, then in
the limits ap &)1 and n »1, 0 «1 and the coefficients
C and C, occurring in Eq. (36) are given by C, =Jt (lz)
and C, =(ao/ho) J/ (Iz), where additional terms of or-
der 1/ap have been neglected and n =21+1))1. Here,
for linear polarization,

2 1+ 0 g2
ap 4

(73)

The asymptotic spectrum near the axis can be found by
using the asymptotic properties of the Bessel functions,
Eq. (62). Notice that for g=0, x,„=8/3ao. Hence
l, =1/x „,and the critical harmonic number n, =2l, is
given by

n, =3ao/4 . (74)

where

( 1 +~~2gg )3/P (76a)

CO,
=n, MOCOO,

y =ho/2 .

(76b)

(76c)

In deriving Eq. (75), Q„R(k,nko)~1/Xo and Ix —+g.
Several subsequent properties of the asymptotic spectrum

Using Eqs. (36) and (62), the asymptotic spectrum is
given by

dI 12e yg=&p
dc@ d 0 ~~e (1+y~g~ }

~2g2
X K y~(3g) +If gz(3g) (75)

(I+y g )

dctxiQ g'2
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dNOQ
g 0
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FIG. 8. The peak intensity of each harmonic in the trans-
verse direction (0=m. /2) versus normalized frequency co/cop for
a circularly polarized laser pulse scattering from a dense plasma
electron. The cases ap=4 and 6 are shown. The arrows indi-
cate the approximate critical harmonic number n, =ap.

FIG. 9. The peak intensity of the odd harmonics on axis
(0=0) versus normalized frequency co/4&pcop for a linearly po-
larized laser pulse scattering from a counterstreaming relativis-
tic electron (yp =5). The cases ap =4 and 6 are shown. The ar-
rows indicate the approximate critical harmonic number
n, =3ap/4.
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follow from Eq. (75). As was the case for circular polar-
ization, Eqs. (71) and (72) apply, with N0~4NO, 6O —+O,

y~y, and where co, is given by Eq. (76b). In particular,
radiation with ~=co, is confined to a vertical angle
O„= I /y. In the horizontal direction, emission is
confined to the angle 0& -ao/y, i.e., Oh -ao/yo for an
electron beam and Oh

—~/2 for a plasma.
As an example, the peak intensity on axis (O=O) of the

odd harmonics co=nMocoo is shown in Fig. 9 for the case
of a high-intensity linearly polarized laser pulse en-
countering a counterstr earning relativistic electron
(yo=5). Plots for two different intensities are shown,
ao =4 and 6. The arrows indicate the approximate criti-
cal harmonic number n, =3ao/4 for each case. Note
that the harmonic intensity is plotted versus the normal-
ized frequency co /4y oooo ——1.5a o. Asymptotically,
ao)) 1, this curve approaches the form Y(g) =g Kz&3(g),
shown in Fig. 7.

V. NONIDEAL EFFECTS

A. Electron-energy spread

The above analysis has assumed ideal electron distribu-
tions, i.e., thermal and energy spread effects have been
neglected. These effects are important in determining the
frequency line width of the scattered radiation [10]. For
example, the resonance function R (k, nko) indicates that
if a thermal axial velocity spread Av, h is introduced, i.e.,
p, =po+ b,p„h, where bp, h

=b v,„/c, then the scattered
radiation along the axis will be shifted in frequency away
from co„by Ace,h, where

(be/co„), i, =2Yob@h . (77)

where (bco/co„)0= 1/nNo is the finite-interaction-length
spectral-width contribution, ( b co/co„), =e„ /r& is the
emittance-broadened spectral width, and (be/co„);

For a plasma, b,p, h is related to the initial plasma thermal
energy E,h by bP,h=(2E,h/m, c )' . For an electron
beam, bP, h is related to the initial normalized energy
spread b,pl&0 by bPih:b, l /7 oPO. As an example, a
plasma with a temperature of 100 eV would produced a
thermal bandwidth of (bc@/co„),h -—4%.

In actual electron beams, the electrons may have an
average angular spread as well as an average energy
spread, represented by emittance and intrinsic energy
spread, respectively. The normalized beam emittance is
given by e„=yorb0&, where rb is the average electron
beam radius and Ob is the average electron angular
spread. The fractional longitudinal beam energy spread
due to emittance is (bE/Eb ),=e„/2rb, where Eb is the
initial beam energy. Electron beams may also have an in-
trinsic energy spread (bE/Eb); due to various reasons,
such as voltage variation, finite pulse length effects, etc.
The total spectral width of the radiation about the har-
monic ~„ is

(b co/co„) T
——[(b co/co„)o+ ( b co/co„), + (b co/co„), ]

'i

(78)

=2( b,E /Ei, ), is the intrinsic energy spread broadening
contribution. The radiation with total spectral width
(b,co/co„)T is confined to the angle OT-—(bco/co„)T /yo.
This consequently reduces the spectral intensity
d I/dcodQ of the scattered radiation from an electron
beam for a particular harmonic by approximately Oo/OT.

If a particular application requires a bandwidth
(be/co„)s 1, this radiation can be found within the an-
gle Oz, where

O~=Os+OT=[(b, co/co„)s+(bee/co„)T)]/yo . (79)

B. Electron-beam-energy loss

As the electron beam radiates via nonlinear Thomas
scattering, the electron beam will lose energy. The rate
of loss of electron-beam energy is equal to the scattered
power m, c dy/dt = P„where P, is g—iven by Eq. (54).
Assuming h 0

——4y, the electron-beam energy will
evolve [5] according to y =yo/( 1+t /wz ), where t
is the electron-beam —laser interaction time and
rz =3/(4cr, k oa o yo), where a linearly polarized laser
field has been assumed. In practical units, this can be
written as

w~ [ps] = l.6 X 10 Eb '[MeV]IO ' [W/cm ] . (80)

If a bandwidth (bee/ai„)s »(be/co„)T is required, all
the radiation within a cone of half-angle Oz ——Oz
=(b,co/co„)s /yo can be used. To obtain a bandwidth
(b.co/co„)s «(be/co„)T, the radiation within the cone
Oz —OT = ( bco/co& ) T /7 0 must be filtered using a mono-
chromator. As an illustration, for an rf linac electron
beam with e„=5 mmmrad, rb =50 pm, and yo=100,
(bE/Eb ),=0.5% and (bc@/co„),=1%. Since the intrin-
sic energy spread is typically —1% and No & 300, the to-
tal spectral width of the unfiltered LSS radiation is typi-
cally (b,co/co„)T -—1% and is confined to the angle OT —-1
mrad.

An additional source of bandwidth arises due to varia-
tions in the laser-pulse intensity when scattering from an
electron beam [26]. Since the frequency of the fundamen-
tal backscattered radiation is given by co=co/( I+ao/2),
where c0 —4&ocoo radiation scattered at lower intensities
will be of higher frequency. Equation (50) indicates that
for a circularly polarized laser, the backscattered intensi-
ty at co is proportional to W, =ao/(1+ao/2) for fixed
ao ~ The effect of the axial laser pulse profile can be es-
timated as follows by letting a 0 ~a o(rl ), where
ao(g)=ao(0)exp( rl /o—z) and o„-LO is .a measure of
the laser-pulse length. Using W, as a weight function,
then the mean and variance of the frequency are
given by (co) and cr =((co ) —(co) )'~, where
( Q ) =—

fdic

QW, /

fdic

W~ for a quantity Q. In the lim-

it ao & 1, (co)/co= 1 —&2ao(0)/4 and o /co=0. 14ao(0).
The resulting bandwidth can be estimated by
(bee/co), =cr /co. Laser-intensity variations are not ex-
pected to produce additional bandwidth when scattering
from a plasma, since the resonant frequency is indepen-
dent of ao.
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One consequence of the loss of electron-beam energy is
the introduction of an additional source of enhanced
bandwidth (Epilci) )g =2(pp p)/pp where yp

—y
=yt/~z. For typical values of laser pulse lengths and
intensities of interest, t/~z &&1, and this effect is small.
As an example, a 2-ps (t =1 ps) laser pulse with intensity
Ip

=2.6 X 10' W/cm ( a p
=0.43) interacting with a

Eb =40 MeV (yp=79) electron beam gives
( b,cp/p~„) z ——0. 13%.

C. Ponderomotive density depletion

In a high-density plasma, the transverse ponderomo-
tive force from the radial gradients in the laser-pulse can
displace the plasma electrons leading to a density depres-
sion on axis. In the long-pulse limit, the density depres-
sion can be calculated by equating the electrostatic force
with the ponderomotive force Vip=Viyi, which is the
adiabatic response of the plasma electrons to the trans-
verse ponderomotive force [23,27]. This gives an equilib-
rium density profile of

2
COy 67=1+ 1—
co 4~

(83)

counterstreaming boundary region at the trailing edge of
the pump laser pulse. As the backscattered radiation
transits this boundary region, counterstreaming at the
group velocity of the pump laser pulse v~, the frequency
and wave number of the scattered radiation will be shift-
ed [29]. Hence the detected frequency co& of the back-
scattered radiation will be shifted from the frequency at
which it is scattered co within the laser pulse. The detect-
ed frequency ~& is related to the scattered frequency co by
requiring the phase of the scattered radiation to be con-
tinuous across the boundary at the trailing edge of the
laser pulse [29], co+ v k =co& +vsk&, where
vz=c(l —co /yipi )' and a square laser-pulse profile
has been assumed for simplicity. Using the dispersion re-
lation to solve for k and kz in terms of co and co&, respec-
tively, and assuming cop /co ((1, implies

n /np ——1+k P (1+a /2) (81)

where n, /no ~0 has been assumed. Assuming a Cxauss-

ian transverse profile of the form ~a
~
-exp( r lrp), Eq. —

(81) indicates that the density along the axis is given by
—1/2

n, (r =0) a@~ ap=1— 1+
&0 2K To

(82)

where A, =2m /k . As an example, a high-density plasma
with ro=15 pm, A, =5 pm, and a0=7 gives a density
depression along the axis of b, n, /np=5%. This density
depression reduces the total number of electrons scatter-
ing radiation; hence the total scattered power P„-n, will
be reduced. Furthermore, in a high-density plasma, the
effects of relativistic self-focusing, which occurs for pump
laser powers above a critical power P, [GW]
=17(A, /A, p), along with the eifects of a density de-
pletion on axis, can provide optical guiding and
significantly extend the laser-plasma interaction distance
[5,22,23,27,28]. For a relativistic electron beam in the
short-pulse limit ~z &&yo/ct)& the magnitude of the elec-
tron density perturbation An, due to the ponderomotive
force is given by ~hn, /np~ -(Lpap/yprp) ((I, con-
sistent with the discussion at the end of Sec. II.

D. Plasma dispersion

The frequency of the scattered radiation can be
affected by the dispersion properties of electromagnetic
radiation in a plasma. In the long-pulse limit, the non-
linear dispersion relation for radiation of frequency co and
wave number k is given [5] by co =c k +co& /yi. Notice
that the dispersion relation is different for radiation
within the region of the pump laser pulse yz
=(1+ap/2)'~ and for radiation propagating in the plas-
ma outside of the pump laser pulse y&=1. In particular,
for backscattered radiation, the radiation will transit a

Hence, for backscattered radiation, the detected frequen-
cy will be upshifted from the scattered frequency. Fur-
thermore, depletion of the electron plasma density within
the region of the laser pulse by the transverse pondero-
motive force will produce an additional upshift for simi-
lar reasons. This effect can be approximated by replacing
1/yi with n, /yin p in Eq. (83), where n, /n p is given by
Eq. (82). The maximum frequency upshift for the back-
scattered radiation can be estimated by Am& /co = co /4~,
which is typically small. Radiation scattered in the trans-
verse or forward directions will not experience a frequen-
cy shift by these mechanisms.

VI. LASER SYNCHROTRON SOURCES

Nonlinear Thomson scattering can be used as a mecha-
nism for generating x-ray radiation [1—9]. In such a laser
synchrotron source, intense laser pulses are backscattered
from a counterstreaming relativistic electron beam or
from a dense plasma [5—7]. The LSS has the potential
for providing a compact source of tunable, short-pulse ra-
diation, in the soft- to hard-x-ray regime. Two examples
of LSS configurations will be discussed, one using a rela-
tivistic electron beam to generate hard x-rays (30 keV, 0.4
A) and the other using a dense plasma to generate soft x
rays (300 eV, 40 A). In the electron-beam LSS, short
wavelengths are generated by exploiting relativistic
Doppler factor, i.e., A, =ko/4yo, assuming yo»1 and
ao «1. In the plasma LSS, short wavelengths are gen-
erated by exploiting the nonlinear harmonic factor, i.e.,
A, =A.o/n„where n, —a o » 1 is assumed. Both
configurations will utilize the recently developed solid-
state laser technology based on chirped-pulse
amplification (CPA) [18—20]. Lasers based on CPA are
relatively compact systems capable of delivering ul-
trahigh powers ( ~ 10 TW) and intensities ( ~ 10's
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W/cm ) in ultrashort pulses ( (1 ps). Currently, the re-
petition rates of TW CPA systems are limited to ( 10 Hz
[19,20]. A summary of the current state of the art in
CPA laser technology can be found in Ref. [20].

d I(0)
dt's dA AoNoaoG, (co),

8~c

No sin[~(co —co )No leo]
G, (co) =

co rr(co —co)No lco
(84)

A. Electron-beam LSS

An electron-beam LSS configuration consists of back-
scattering a linearly polarized laser pulse from a counter-
streaming relativistic electron beam. Two important
quantities characterizing the resulting synchrotron radia-
tion are the photon Aux F, defined as the number of pho-
tons per second within a specified bandwidth, and the
photon brightness B, defined as the phase-space density
of the photon fIux. The intensity distribution for back-
scattered 0=0 radiation at the fundamental n =1 in the
limit a o &( 1 and yo)) 1 (i.e., co = co =4yocoo) is given by

as indicated by Eq. (39). The angular density of the fiux
dF/d B, i.e., the peak number of photons in a specified
frequency range co, (co(co2 emitted per second per unit
solid angle by the micropulse in the forward direction,
can be determined from Eq. (84) by integrating over the
frequency range A~&=co& —~2, multiplying by the elec-
tron Aux interacting with the laser XI, and by dividing by
the energy per photon AB. The electron Aux interacting
with the laser field is given by N& =fIb le, where Ib is the
peak micropulse current and f is the filling factor, i.e.,f =cro/cri, for o.

o & crb and f =1 for o.o) cri„where
o-p, o-b are the cross-section areas of the laser and electron
beam, respectively. The angular density of the Aux is
given by

No(bcolco)s for (bco/co)s ((1/No
X '

d Q f 1 for (hco/co)s ))1/No, (85)

Fo =2rraf NoNb a o ( hco /co)s, (86)

where af =
I37 and Fp denotes the spectral Aux for an

ideal electron beam, i.e., zero emittance and energy
spread. For an ideal electron beam, the spectral fiux with
spectral width (bco/co)s is given by Fo =2rrOrr (dFo ld0),
where 0~ =Oo+ 6's, i.e.,

photons
smm mrad

= 8. 1 X 10 f(L /Zz )(Ib [A]/r, [mm])

(Aco/co)s /(1+6)
X E„[MeV]Po[GW]

(b,co/co)s+(hco/co) T

(87b)

F =8.4X10' f(L/Zg )Ib[A]

XPo [GW](b co/co)&, (87a)

which is valid for all values of (b.co/co)s ( 1. For a realis-
tic electron beam with finite emittance and energy spread,
the photon Aux F is identical to the ideal case, i.e.,
F=Fp. The angular density of the Aux dF/d 0, however,
is reduced, since the photons are now spread out over a
larger radiation angle Oz, where Oz is given by Eq. (79),
j.e., dF/d 0—Fp/2~0'.

The spectral brightness is the phase space density of F.
Hence B=FI(2') (ROz), where (ROz) is the phase
space area of the photon beam. The quantity R is the to-
tal effective size of the radiation source and is given by
R =r, +(OzL/4~), where Ox. =Oil+0, , 0, =(ecol
co),' lyo, and r, is the smaller of rb and rol2. Here L is
the laser-electron interaction distance. The spectral Aux
and brightness for a nonideal electron beam, in terms of
practical units, are given by

where 5=(Ox L /4~r, ) is typically &&1. The interaction
length is the smaller of twice the Rayleigh length
(Z~ =7rro/Ao) or one-half the laser pulse length, i.e. ,
L =min[2Zir, Lo/2], unless it is further limited by the
specific geometry of the experiment.

As an example, consider an electron beam LSS which
generates 0.4-A (30-keV) x rays. For a A.o= 1 pm incident
laser, A, =Ao/4y2o=0. 4 A implies that go=79 (Eb =40
MeV), assuming ao «1. A CPA laser will be assumed
with 7"p:2 ps Pp:10 TW and I"p:50 pm, which im-
plies that Ip =2.6X 10' W/cm, ap=0. 43, and Zz =7.9
mm. An electron beam from an rf linac will be assumed
with peak current Ib =200 A, micropulse duration
I.b /c = 1 ps, beam radius rI, = 50 pm, energy spread
(&E /Eb ) =0. 5%, and normalized emittance e„=5
mmmrad. The interaction length is one-half the laser-
pulse length L =300 pm and the x-ray pulse duration is
the micropulse duration w =1 ps. The effective band-
width is ( b, co /co )r = 1.4% (assuming a fiat-top laser
profile) and this radiation is confined to a cone angle of
OT=1. 5 mrad. The total fiux with (b,co!co)s—1 within
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the cone 0, —1/yo-12 mrad is F=6.4X10 ' photons/s.
The peak brightness with (b,co/co)+=0. 1% is B =2.9
X10' photons/smm mrad ). The parameters for this
electron beam LSS are summarized in Table I.

For simplicity, a counter streaming laser —electron-
beam geometry has been assumed in which the x-ray
pulse length is approximately the electron micropulse
length. Shorter x-ray-pulse lengths can be obtained by ei-
ther reducing the laser Rayleigh length or changing the
laser —electron-beam intersection angle [6,8]. (Kim,
Chattopadhyay, and Shank [8] have suggested scattering
at 90' to obtain ultrashort x-ray pulses. ) In principle,
both these methods may lead to the production of ul-
trashort x-ray pulses, with pulse durations on the order of
the laser pulse duration.

B. Plasma LSS

To produce x rays with a A,o-1 pm laser beam and a
stationary plasma, it is necessary to use ultrahigh intensi-
ties Qo))1 ~ Nonlinear Thomson scattering will then
occur in the asymptotic limit, in which a near continuum
is produced with harmonics extending out to the critical
harmonic number n, -ao, as discussed in Sec. IV. Con-
sider a linearly polarized laser field with a o )) 1 interact-
ing with a dense plasma. In the near backscattered direc-
tion, the radiation spectrum scattered by a single electron
is given by

d I(0) 3e z=No ao Y(g),dc' dQ

as indicated by Eq. (75), where Y =g K &&3 (g),
/=co/co„co, =n, coo, and n, =3ao/4. For a collection of

electrons in a plasma, the total energy radiated is given
by ET=N, I(0), where N, =n, ooL is the total number
of electrons with which the laser interacts, n, is the plas-
ma electron density, o.o=~ro/2 is the laser cross section,
and L is the laser-plasma interaction distance. Typical-
ly, L~ =2Zz =2~r o /Ao, assuming vacuum diffraction.
The eA'ects of relativistic optical guiding, however, could
substantially increase the interaction distance
[5,22,23,27,28]. Geometric arguments indicated that the
x-ray pulse length in the backscattered direction is given
by L„=2L (1+Lo/4L )'~ =2L, where Lo is the laser
pulse length and Lo/4Lp && 1 has been assumed. The to-
tal power in the backscattered direction is PT=cET/L
and the photon Aux is F=PT/Ace. Hence the Aux inten-
sity, defined to be dF/d Q, for photons in the frequency
range Ace, about co in the near backscattered direction, is
given by

dF/dQ=(3ccfc/8')Non, roao(hen/co)s Y(co/co, ) . (89)

Recall that the solid angle over which the photons with
frequencies near co, are scattered is relatively large, i.e.,
8„—2&2/ao in the vertical direction and 0h —~/2 in the
horizontal direction. The total photon Aux F can be es-
timated by multiplying Eq. (89) by the appropriate solid
angle over which the photons are to be collected. The
brightness B of the backscattered photons can be estimat-
ed by B =(dF/dA)/~ro In pract. ical units, the photon
Aux intensity and brightness are given by

dF photons —3= 3.65 X 10 ro[ps]ko[pm]n, [cm ]
s mI ad

XPO[TW](hn/co)s Y(co/~, ), (90a)

Wavelength A,p

Pulse length Lp/c
Peak power Pp
Intensity Ip

Strength parameter ap
Spot size rp

Rayleigh length Z&

TABLE I. Parameters for an electron-beam LSS.

Incident laser parameters
1 pm
2 ps
10 TW
2.6X10" W/cm
0.43
50 pm
7.9 mm

Beam energy Eb
Beam current Ib
Beam pulse length Lb/c
Beam radius rb

Beam energy spread ( AE /Eb );
beam emittance e„

Electron pulse parameters
41 MeV
200 A
1 ps
50 pm
0.5%
5 mmmrad

Photon energy E~
Photon pulse length Lb/c
Peak photon flux' F
Photons/pulse' FLb /c
Peak brightness (0.1% bandwidth) B
Angular spread 0, —1/y

X-ray pulse parameters
30 keV
1 ps
6.4X 10" photons/s
6.4 X 10 photons/pulse
2.9 X 10' photons/(s mm mrad )

12 mr ad

'Includes all photons within the —1/y angle, implying —100% bandwidth.
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photons
smm mrad

= 1.80 X 10 ' go[ps]Ao[pm]n, [cm ]Io[W/cm ]

X(hen/co)s F(co/co, ) . (90b)

VII. CONCLUSION

A comprehensive theory describing the nonlinear
Thomson scattering of intense laser fields from beams
and plasmas has been presented. This theory is valid for
linearly or circularly polarized incident laser fields of ar-

As an example, consider a plasma LSS which generates
40-A x rays. For a A,&=1 pm, ~o=1 ps incident laser
pulse, A, =A,o/n, =40 A implies n, =250 and ao=6. 9,
which corresponds to a laser intensity of Io=6.6X10'
W/cm . Assuming a laser spot size of ro =15 pm gives a
laser power of Po =230 TW and a laser-plasma interac-
tion of length of L, =2Z+ =1.4 mm. The x-ray pulse
duration is ~„=2L /c=9. 4 ps. A plasma density of
n, = 10 cm implies a Aux intensity of
dF/d Sl =2. 1 X 10' (b,co/co)s photons/(s mrad ) and a
brightness of B =2.9X10 (he@/co)s photons/
(smm mrad ). The parameters for this plasma LSS are
summarized in Table II.

For simplicity, the generation of backscattered (0=0)
x rays from the interaction of a linearly polarized laser
and a plasma has been considered. For this case, the x-
ray pulse length is of the order of a few Rayleigh lengths.
However, Eqs. (36) and (46) indicate that somewhat
larger f uxes of x rays are emitted in the transverse direc-
tion (O=rr/2) for both circularly and linearly polarized
lasers incident on a plasma. Hence, by collimating the
transverse emission from a plasma, ultrashort x-ray
pulses can be obtained with durations, in principle, on the
order of the laser-pulse duration.

bitrary intensities and for electrons of arbitrary energies.
Explicit expressions for the intensity distributions of the
scattered radiation were calculated analytically and eval-
uated numerically. The space-charge electrostatic poten-
tial, which is important in high-density plasmas and
prevents the axial drift of electrons, was included self-
consistently. Various properties of the scattered radia-
tion were examined, including the linewidth, angular dis-
tribution, and the behavior of the radiation spectra at ul-
trahigh intensities (ao))1). Nonideal effects, such as
electron-energy spread and beam emittance, which can
broaden the linewidth and angular distribution of the
scattered radiation, were discussed. These results were
then applied to possible LSS configurations.

The general formula for the frequency of the Thomson
backscattered (9=0) radiation is given by co„=nMocoo,
where n is the harmonic number and Mo is the Doppler
multiplication factor, given by Eq. (17). For a linearly
polarized laser, only odd harmonics exist in the backscat-
tered direction, whereas for circular polarization, only
the fundamental is nonzero in the backscattered direc-
tion. Both odd and even harmonics can exist at off-axis
angles. General expressions for the scattered intensity
distributions are given by Eqs. (36) and (46). Generation
of x rays at short wavelengths require Mo))1 and/or
n ))1. The intrinsic linewidth (i.e., for a cold-electron
distribution) of a particular harmonic is given by
Ace/co„=1/nÃo, where No is the number of laser periods
with which the electrons interact. Since Xo ~300, small
linewidths can be achieved. Nonideal effects, such as en-
ergy spread and beam emittance, can broaden the
linewidth, as indicated by Eq. (78). When ao ((1, radia-
tion is scattered only at the fundamental. When ao ))1,
a multitude of harmonics are produced, which results in a
near continuum of scattered radiation extending out to a
critical harmonic number n, -ao, beyond which the in-
tensity of the radiation rapidly diminishes. Expressions

Wavelength A,o

Pulse duration ~o

Peak power Po
Peak intensity Io
Strength parameter ao
Spot size ro
Rayleigh length ZR

TABLE II. Parameters for a plasma LSS.

Incident laser parameters
1 pm
1 ps
230 TW
6.6 X 10' W/cm
6.9
15 pm
710 pm

Electron density n,
Interaction length 2ZR

Plasma parameters
10 cm
1.4 mm

X-ray pulse parameters
Wavelength A,

Photon energy E~
Photon pulse length ~
Flux intensity (0.1% bandwidth) dF/dA
Brightness (0.1% bandwidth) B
Photon flux' (100% bandwidth) F

40 A
310 eV
9.4 ps
2. 1 X 10'6 photons/(s mrad )

2.9X 10 photons/(smm mrad )

6.5X10 ' photons/s

'Includes photons with (Acu/co)& —1 within a solid angle d 0-mO with 0= 10 mrad.
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for the scattered-intensity distributions in the ultraintense
limit are given by Eqs. (69) and (75). The polarization of
the scattered radiation can be adjusted by changing the
polarization of the incident laser. Scattering from an
electron beam has the additional advantage of well-
collimated radiation. For yo))1 and ao «1, the up-
shifted radiation is confined to a cone about the backscat-
tered direction of half-angle 8=(bco/co)'~ /yo. Scatter-
ing from a plasma has the advantage in the attainability
of high electron densities, the photon Aux and brightness
scaling linearly with density.

An LSS, based on the nonlinear Thomson scattering of
intense lasers from electron beams or plasrnas, may pro-
vide a practical method for producing x-ray radiation.
The LSS has a number of potentially unique and attrac-
tive features which may serve a variety of x-ray spectro-
scopic and imaging applications. These features include
compactness, relatively low cost, tunability, narrow band-
width, short-pulse structure, high-photon-energy opera-
tion, well-collimated photon beams, polarization control,
and high levels of photon Aux and brightness. Specific
examples of an electron-beam LSS and a plasma LSS
were given, as summarized in Tables I and II. An
electron-beam LSS, designed to generate 30-keV (0.4-A)
photons with a A,0=1 pm laser beam with ao ( 1, requires
a 40-MeV electron beam (approximately 300 times
lower-energy electrons than required by a conventional,
storage-ring synchrotron). This electron-beam LSS gen-
erates 1-ps x-ray pulses with a high peak Aux ( ~ 10 '

photons/s) and brightness [ + 10' photons/
(s mm mrad ), 0.1% bandwidth]. A plasma LSS,
designed to generated 40-A (0.3-keV) photons with a
A,o= 1 pm laser, requires ao=6. 9 (Io =6.6X10' W/cm ).

This plasma LSS generates &10-ps x-ray pulses with a
high peak flux ( ~ 10 ' photons/s, 10 mrad ) and bright-
ness [ ~ 10' photons/(s mm mrad ), 0.1% bandwidth].
These peak values of ftux and brightness compare favor-
ably to those obtained in conventional synchrotrons.
High levels of average flux and brightness are presently
limited by laser technology. The recent advances in com-
pact, solid-state lasers, based on chirped-pulse
amplification, are capable of generating the ultrahigh in-
tensities (ao ~ 1) needed to experimentally explore Thom-
son scattering and LSS x-ray generation in the nonlinear
regime.

This paper has been restricted to the discussion and
analysis of x-ray generation by the Thomson (incoherent)
scattering of intense laser pulses from beams and plas-
mas. However, for sufficiently cold-electron distribu-
tions, it is also possible to generate short-wavelength ra-
diation by the stimulated (coherent) backscattering of in-
tense lasers from beams and plasmas [5,21,30,31]. Stimu-
lated backscattered harmonic generation may provide a
method for producing coherent x rays via a laser-pumped
free-electron laser (LPFEL). Advances in CPA lasers and
in high-brightness electron beams may soon provide the
necessary technology to realize compact sources of both
incoherent (LSS) and coherent (LPFEL) x rays.
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