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Dielectric response function and stopping power of a two-dimensional electron gas

A. Bret and C. Deutsch

(Received 11 May 1993)

The dielectric response function of an electron gas confined in two dimensions is calculated in the
random-phase approximation at any degeneracy. We then focus our attention on the stopping power of
such an electron gas. The results exhibit important discrepancies with respect to the three-dimensional
case. The leading term of the asymptotic expansion in the high-velocity V range is independent of the
electron mass and decreases as 1/V.

PACS number(s): 52.25.Mq, 73.20.Dx, 73.50.8k, 73.50.Mx

I. INTRODUCTION

There is a steady interest in the two-dimensional (2D)
electron gas since it has been demonstrated how to realize
experimentally a 2D electron system confined to a plane
with a continuously varying density. The thermodynam-
ics of such a system has been studied by Fetter [1] and
many others. The dielectric response function has been
estimated in the random-phase approximation (RPA) by
Stern [2] for the degenerate case ( T =0) and by Platzman
and Tzoar [3] for the classical case at high temperature.
So, it remains to bridge a gap between these two extreme
limits. This explains our intent to workout the RPA
dielectric function at any finite temperature.

From this completed description of the 2D electron jel-
lium, it appears of interest to derive a formulation for
stopping an in-plane charged particle. This could allow
for an alternative diagnostics tool for many two-
dimensional electron systems of considerable interest in
many fields of application. Metal-oxide semiconductor
devices are a good example. This paper is thus divided
into two main parts. We first evaluate the RPA dielectric
response function at any degeneracy and make contact
with the previous calculations [2,3] at T =0 and ~, re-
spectively. We derive a plasmon-pole approximation for
the imaginary part of the inverse dielectric function
which will be extensively used in the stopping power cal-
culations. We then turn to stopping power calculations
themselves, using the dielectric formalism.

Sections II and III are thus devoted to a thorough pre-
sentation of the RPA dynamic dielectric function, valid
at any temperature. An efficient plasmon-pole approxi-
mation, used in the sequel, is also worked out.

These conceptual tools are then applied to the investi-
gation of in-plane stopping for a nonrelativistic point
charge, in Secs. IV and V. The high-velocity limit of the
stopping power is then interpreted through the above
weak-coupling limits, and a classical argumentation go-
ing back to Fermi. Low-velocity limits are also
thoroughly detailed.

II. THK TWO-DIMENSIONAL ELECTRON GAS

We first recall some well-known basic properties of the
2D electron jellium. Let 1V electrons be confined to a sur-

P~ =A(2vrN, )
' (2)

where N, =5/X, the surface density. With PF =fikF we
then get the Fermi wave vector

k = =(2~N )'PF
F g e

and the Fermi energy

Ak F
2me

(3)

(4)

At finite temperature, electrons obey the Fermi-Dirac
statistics, and we can derive a relation between the chem-
ical potential and the temperature by writing that the
number dX of electrons contained in a cell is

dN=2 d'ps 1

(2~Pi) F p1+ exp
B~

with c, =p /2m, and p is the chemical potential. As the
electron number must be X we get

kBT J~ dX =1,
1 + exp(x —a')

where a'= ~/kB T is the degeneracy degree.
Setting T, =kB T/EF yields

T, '= in[1+ exp(a')] .

face S by a transverse potential. Neglecting their interac-
tion we can solve the Schrodinger equation for each elec-
tron to show that its impulsion space is divided in cells of
surface (2m.h') /S. Writing that, according to the Pauli
principle, there can be only two electrons in each cell and
that in the ground state, the energy E =g; p; /2m, is the
smallest possible, we get

~PF2
1V =2

(2M) /S

which means that the number of electrons is twice the
number of cells within a disk of radius PF. The above
equation yields

1063-651X/93/48(4)/2994(9)/$06. 00 2994 1993 The American Physical Society



48 DIELECTRIC RESPONSE FUNCTION AND STOPPING POWER. . . 2995

10 kT=eN re=, Q= q, v= %CO k8 T
kF kf EF Ef ' EF

log, o[T (k]]

0

We thus obtain

n (q)=n (Q)=
1+ exp

-5

10 12 14 16

IO91O[N (Gm )]

18 20

FICx. 1. Validity domain of the RPA for an electron gas
confined in two dimensions. The hatched region corresponds to
strongly coupled plasmas which cannot be treated within the
RPA.

and

kF f f d Q n (Q+k) —n (Q)
+F (2'�) (Q+ K ) —(Q) —v —i'

(12)

Separating the quadrature in two parts we have

2kF
X'(k ~)=, ~lf(p ) f(p+—)1—

(2') E~ 2IC
(13)

As we will be interested in a RPA treatment of the
electron gas we now investigate the validity of the weakly
coupled approximation. The various energies to be com-
pared are the Fermi energy EF and the electrostatic ener-

gy e X,' if the gas is degenerate, while the electrostatic
energy must be compared with the thermal energy kz T in
the classical case. We show in Fig. 1 the three following
limits in a log, o[N, (cm )]-log,o[T,(K)] diagram:

2~ 1 /2

E =k, T,
E 2g 1/2—e

with p+ =v/2K+E /2 and

f (x)= lim f Qn (Q)dQ fq'~0 0 o x —
Q cos8+i g' (14)

where q'=g/2K. The calculation explained in Appendix
A yields

f(x)2~x f Qn(Q)dQ f Qn(Q)dQ
X 0 X2— 2 x

It is worth noticing that p+ =u+z, while u and z are the
usual Lindhard variables of the 3D problem. We finally
get an expression for the polarizability close to the 3D
one,

RPA is valid for EF=e X,' if EF=k~T and also for
k&T)&e 1V,

' if EF ((k&T. In the usual experimental
range of density (10 &N, &10' cm ) the gas turns
classical even at a temperature —10 K.

III. DIELECTRIC FUNCTION

~kFa0
k 6)

z —,u—
2kF

'
kVF

where a0 is the Bohr radius.

B. Dispersion relation

2

E(z, u)=1 — [f(u —z) —f (u +z)],
42

(16)

as

A. General

We now introduce the longitudinal dielectric function
We now solve approximately the equation

Re[E(z„,u„)]=0 for z «1 and u »1. We first get an
asymptotic expansion of Re[f (u —z) —f (u +z)] with

E(k, co) = 1 —V(k)g (k, co),

where V(k) is the two-dimensional Fourier transform on
the Coulomb potential, V(k)=2me /k, while y (k, co) is
the polarizability of the system given in the RPA by [2,3]

yo(k, ~)= lim2f f d q n (q+k) —n (q) (9)(2' ) cq+ k e —Ac—o i g—

n (q) being the Fermi-Dirac statistics and
a&=A k /2m, . We now introduce the usual Lindhard
dimensionless quantities previously used by Gouedard
and Deutsch [4] in a similar calculation for the three-
dimensional case

Re[f (u —z) —f (u +z)]= g akF(k)(a' )T, zk
2', k 2k+1

k=0 u

Fk(a') being the kth Fermi function,

(17)

'dxF„(a')=
0 1+ exp x —cx

while the ak's come from (1—x) ' =gk oakx" so that
a0=1,a, =—,', a3 g

. . The dispersion relation then
reads as
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z, = ~+ 1+—T + 5
T, +

F (a') F (a')
2g 2 '

g 8 '
g

(19)

V(k) being the Fourier transform of the Coulomb poten-
tial, pk the Fourier transform of the density operator,
I~p ) the unperturbed ground state (here, the perturba-
tion is the Coulomb potential), and

cv (k)=

where we made use of Eq. (7), Fo(a') T, = 1. If we restrict
Eq. (19) to lowest order we get

2alV, e k, (20)

H=g +—g V(r, —r~. ) .
PI 1

2me 2,.&.

Whatever the dimension, one finds [6]

(27)

me

a result already obtained by many authors (see [1—3,5])
showing that the plasma frequency in the 2D case is k
dependent.

C. Limit behaviors

We now investigate the T=0 limit of the dielectric
function. In the calculation on the function f (x) defined
in Eq. (15), we then set n (Q) = 1 for Q & 1 and n (Q) =0
for Q ) 1 so that

x —i&x' —»f Ixl»

Xk[[H p-l, l pk]=-
me

(28)

f 2me X,
( I/c, —1)co dco= in — k .

oo m e

(29)

Taking the imaginary part of both sides and introducing

2me X,
co~(k) = k,

me

Because the Fourier transform of the Coulomb potential
is performed in two dimensions, Eq. (26) yields

f (x) =2~ .
x — )/1 —x otherwise,

(21)
a useful sum rule satisfied by the imaginary part of the in-
verse dielectric function is found to be

which is the result already obtained by Stern [2].
When the parameter T, tends to infinity, Eq. (7) shows

that exp(a, ) = 1/T, and we get
f "~1m

0

—1 77 2dco= —co (k) .
E(k, cv) 2

(30)

f (x)=
2~ exp( —x /T, )

4(x/ T, ) i—
QT ' 2

(22)

In term of the variables z and u, this reads as

2 2

f "~1m
0 E(z, u) 4z

(31)

with 4(u)= foe' dt. We here define some additional di-

mensionless quantities (V,„ is the thermal velocity),

U= =, Z=
kz V,h

' T'~2 2
(23)

e(z, U) = 1+—1 —2Ue N( U)+i Ue
z

'
2

(24)

reminiscent of the 3D Fried-Conte expressions [4], where

U=, E= ~x'
2k'' kVh

' 2T, 8

2
aye

k, T

(25)

which is the result of Platzman and Tzoar [3].

D. Sum rule

For N electrons confined in surface S, one has [6]

f (I« I )cv dcv=i~ ('P'l[[H p —k] p1, ]lq")

(26)

with —,'m, V,„=kzT and A, =A'/m, V,„, the classical elec-
tron de Broglie length. In the classical limit (T, ~O or
A'~0), U remains fixed while Z~0 so one has

E. Analytical properties

We now investigate some analytical properties of the
imaginary part of the inverse dielectric function in order
to prepare our stopping power study.

Behavior at T = 0. The calculations of Stern [2] show
that, as for the three-dimensional case [7], the function
Im[1/E(z, u)] takes significant values essentially on two
regions in the plane (z, u): (i) on the resonance curve
z, =my /2u„which corresponds to plasmon excitation;
(ii) in the region lz —ul & 1 which pertains to electron-
hole excitation. It can be seen that there cannot be any
electron-hole excitation outside the zone lz —ul &1 be-
cause the Fermi-Dirac statistics falls to 0 outside the Fer-
mi disk if the system is in its ground state.

Behavior at T Pnite When the. temperature departs
from 0 the resonance curve is slightly changed [see Eq.
(19)], but some electrons escape from the Fermi disk.
The function Im[1/E(z, u)] then departs from 0 outside
the region lz —u

I
& 1. But since the classical distribution

function falls exponentially to zero for velocities greater
than thermal velocity there will be very few electron-hole
excitations outside the domain lz —u

I
& V,h /VF. This

can be seen mathematically on the imaginary part of the
function f defined in Eq. (15). In the classical approxi-
mation we may write [see Eq. (22)]
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3/2 2

Im[f (x)]=—,~, exp
e

(32)
IV. STOPPING POWER

A. General

which strongly decreases as soon as x & T,' and it is
easily checked out that T,'~ = V,b/VF in the classical
case. Therefore, we introduce as in the 3D case [4] the
quantity

V,
A o(T, )=

VF
(33)

where V, will be the average electron velocity at any tern-
perature; V, = VF at T =0 while V, = V,z in the classical
case.

We display in Fig. 2 the domain of the function
Im[1/E] for any temperature with the two regions:
~z

—
u~ ( A o/(T, ) for electron-hole excitations and the

resonance curve for plasmons excitations. It can be
shown [5] that the resonance curve does not penetrate the
continuum of electron-hole excitations.

We finally set up a plasmon-pole approximation for
Im[1/E] in the same fashion as in the 3D case [8]. We
concentrate all the intensity of the function on the reso-
nance curve and on the line z = u and make sure that the
sum rule (31) is satisfied. We thus get

k o(k)5(to kV—)

k s(k, co)
(36)

We now turn to the stopping power. If an ion of
charge Z penetrates the confined electron gas with a ve-
locity V included in the confinement plane it will be
confined as well and can be described by a surface charge
density Ze5(r —Vt). More generally, if the ion is no
longer considered as pointlike or we introduce a diclus-
ter, the charge distribution penetrating the electron gas
should be written as cr(r Vt).—

To calculate the stopping power, we use the dielectric
formalism, neglecting any Barkas eft'ect by assuming that
the projectile is a small perturbation in the medium. We
also assume a straight-line trajectory for the charge dis-
tribution, which means that its kinetic energy must be
greater than the average kinetic energy in the electron
gas. The stopping power for the distribution penetrating
the 2D electron gas is then calculated as in the 3D case
[9]. First, the Fourier component of the field induced in
the medium by the charge perturbation is given in the
dielectric formalism by

Im
—1 "X'

Y(Z, —z)5 z- ~x'
s(z, u) 4uz 2u

+ Y(z —Z, )5(z —u) (34)

a (k) being the Fourier transform of the charge distribu-
tion o(r) at rest, setting o(r)=Ze5(r) for a pointlike
charge yields o(k)=Ze. The energy loss per unit path
length is then (see [9])

6 being the Dirac distribution, Y the Heaviside function,
and (37)

2A (oT, )
(35)

so that Z& is the highest value of z pertaining to the reso-
nance curve (see Fig. 2).

We now assume a spherically symmetry charge distribu-
tion with o.(r)=o(r) and 0(k)=o(k). The above equa-
tion then simplifies into

2~V o o Qk~ V~ —~z
r —1

E(k, co)
(38)

VNF

We restrict for now the calculations to a pointlike ion,
so we set ~o(k)~ =(Ze) in Eq. (38). We then express the
quadrature in term of the dimensionless variables z and u

and formulate the stopping power as it is usually done in
the 3D calculation [10] as

with

dE 4 Ze
dx 3 ~m, V

(39)

FIG. 2. Domain of importance of the imaginary part of the
inverse dielectric function. The shaded area pertains to
electron-hole excitations while the solid curve indicates the res-
onance. We also figure the integration domain used in the stop-
ping power calculations with 0 & z & ~ and 0 & u & V/FF.

udu
2

ZQZ
~X Ql —u VF/V

—1
Im

s(z, u)

(40)

We can investigate some qualitative difterences be-
tween the 2D and the 3D case. It is well known that in



2998 A. BRET AND C. DEUTSCH 48

the 3D case, the stopping power arises equally from
plasmons and electron-hole excitations in the medium [7).
In both the 2D and the 3D case, the ion loses an energy
quantum Aco=i5cop through a plasmon excitation. Such
excitations occurring at low k (or low z) in both cases, the
energy loss is lower in the 2D case because the plasma
frequency behaves as &k [see Eq. (20)]. As far as the
electron-hole excitations are concerned, Eq. (40) shows
that they are emphasized through the factor
Ql —u VF/V in the denominator. Finally, though the
stopping power mechanism appears analogous to the 3D
one, the ion penetrating the gas is no longer equally
stopped by plasmons and electron-hole excitations but
mostly by electron-hole excitations. We now turn to the
calculation of the stopping power.

B. High-velocity range

We here look for the leading term of the asymptotic
expansion of L given by Eq. (40) when V/VF ))1. We
perform the calculation at T =0 expecting that, as in the
3D case [10], the leading term does not depend on the
temperature. We then make use of the plasmon-pole ap-
proximation (34) to compute L. We split L into its
plasmons and electron-hole excitations parts and write

1.2—

0.8—
H(x)

0.6—

0.4—

0.2 -~

0
1 2 3 4 5

tion which increases continuously with the velocity [see
Eq. (41)]. We then obtain for the asymptotic expansion
ofL,

3 2

L = +O(1) .
4 VF

(44)

FIG. 3. Plot of the function H(x) defined by Eq. (43) enter-
ing the calculation of the plasmons stopping power at high ve-
locity. H(x) reaches a maximum for x =1.8 and tends to 1 as x
tends to ~. H(x &1)=0.

(subscripts p and e-h stand for plasmons and electron-
hole) with

L 3n dz
2 J z [1 z( ) V2/V2]1/2

Let us recall the 3D result (see [7]),

2m, V= ln
Acg)

+O(1) .

Inserting the result (44) into Eq. (39) we derive

(45)

and

VZVF dz
Z 1 2V2 V2 1/2

(41)

where (see with Fig. 2)

2z '
2(V/VF)

' ' 2

L can be rewritten under the form

322
L = H(V/VF),

where

H(x)= Y'(x —1) I1/x r v 1 —t
(43)

where F is the Heaviside function preventing the
plasmon stopping power from departing from 0 when
V/VF &1 since there are no plasmon excitations in the
low-velocity range. We plot in Fig. 3 the function H(x).
This function tends to 1 when x tends to infinity and
reaches a maximum near x = 1.8. As previously noticed,
the stopping po~er through plasmon excitations is negli-
gible compared to the electron-hole excitations contribu-

Ze&,
=2m — +0

dx $V V2
(46)

which does not contain the gas electron mass m,
anymore; m, appears only in the higher terms of the ex-
pansion. The other main discrepancy between the 2D
and the 3D result is that the stopping power falls as 1/V
instead as ln( V)/V2 in the 3D case. We compare in Fig.
4 the numerical evaluation of the quadrature (40) where
we use Stern's dielectric function at T =0 [see Eq. (21) or
[2] ] with the expression (44) in term of the parameter
V/VF. In order to check the m, independence of our re-
sult we performed three numerical evaluations of (40).

We first injected the true electron mass in the computa-
tion, then we performed the computation with SOm, and
100m„respectively. One can notice in Fig. 4 that nu-
merical results depart only slightly from analytical ones
even for lOOm, . Anyway, it. appears that the leading
term of the asymptotic expansion of L actually does not
depend on m, since an increased electron mass does not
aFect the slope of the curve. Some more detailed calcula-
tions show that the next term of the asymptotic expan-
sion is roughly proportional to the electron mass so that
decreasing it just makes the analytic formula (44) more
accurate.

Equation (46) exhibits an intrinsically quantum
behavior through its fi ' dependence, already displayed
by other 2D equilibrium quantities [11,12]. However, it
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160

140—
locity in the jellium. Since we considered a straight-line
trajectory for the projectile, the following condition must
be fulfilled:

1/2
100—

80-
—MV» —m V V»1 2 1 2 me

2 e e M V, , (47)

40—

20—

0
8 V 12

VF

16 20

M, Vbeing the ion mass and velocity. As we are interest-
ed in ion energy loss, the smallness of the quantity
Qm, /M shows us that we are allowed to investigate
some low-velocity effects as long as the above condition is
fulfilled.

To proceed with the calculation we express the dielec-
tric function as

FIG. 4. Comparison between the analytic formula given by
Eq. (44) and numerical evaluation of quadrature (40) using
Stern's [2] dielectric function at T=0 and increasing electron
masses. +: analytic formula (44). Solid line: numerical evalu-
ation computed with the physical electron mass m, . Short-
dashed line: numerical evaluation computed with an electron
mass equal to 50m, . Long-dashed line: numerical evaluation
computed with an electron mass equal to 100m, . All curves are
plotted in terms of V/VF.

should be appreciated that despite their very different
high-V behavior, Eqs. (45) and (46) may be retrieved
through similar classical arguments. The initial 3D line
of reasoning due to Fermi [13] may be straightforwardly
extended to the present case, as follows. For this pur-
pose, let us then focus attention on the linear ion trajecto-
ry in 2D jellium. By simply symmetry considerations, the
most efIicient ion stopping will arise from the electrons
located transversely to the instantaneous projectile posi-
tion, say at a distance b.

The energy exchanged in one collision is then obvious-
ly

f ( y~
—~ kn (k)dk

't/( u —z) —k

J
~+~ kn (k)dk

't/(u +z) —k

kn (k)dk
~ —' +k —(u —z)

kn (k)dk—2m
u+z Qk —(u +z)

where

iz+u/
+ z+9

Thus we get

—1
Im

E(z, u)

4zYf 2(z, u)—
I4z y f, (z, u)] —Iy—f2(z, u)]

E(z, u) =1— [f,(z, u)+if2(z, u)],
4Z

with

(48)

(49)

(51)

(Ap) ze b 1

2m, g V 2m,

Taking the average over every available target electron
provides the mean energy loss

(~E)= '" ),X,2J -'"',
,

2m V bmin

which through b,„&)b;„=A'/2m, V yields the first
term in the right-hand side of Eq. (46) within prefactor

Fermi's derivations in three dimensions reproduces
exactly the Bethe result (45), because it is then possible to
make use of the Gauss theorem relating projectile electric
field and charge. This is not the case for electrons
confined within a plane. Nevertheless, apart from this ~
constant, all the basic physics is retrieved.

C. Low-velocity range

We now turn to the calculation of the stopping power
when the ion velocity is less than the average electron ve-

8
z dz

3 V ~ Bu „—pL=-
[z y f, (z,O)/4z]—

We find that L is proportional to V so that, according
to Eq. (39), the stopping power becomes proportional to
the velocity as in three dimensions. It is worth noticing
that the quantity z —y fi(z, O)/4z in Eq. (53) displays
the static screening. We derive in Appendix B the follow-
ing relation:

(53)

z — f, (z 0)= +k ~x' z~O .
4z 2kF 1+ exp( —a') (54)

In a classical gas ( T, ))1); making use of Eq. (7) we find

When V/V, (&1, we follow the 3D treatment [7,10].
We approximate the function Im(1/e) in the integrand of
Eq. (40) taking f, (zu) =f, (z0) and f2(zu)
=u(Bfz/Bu)„p. To simplify the matter further we
make use of fz(z, O)=0 in the denominator of Eq. (52).
So, we have
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kD

1+ exp( —a') 2kF

where

k~T
kD '=

2+%,e

(55)

(56)

1.6 —,

1.4

0.8

e(A)

is the 2D analog of the 3D Debye static screening length
[1]while in the degenerate case ( T, « 1) one has 0.6

~x'
1+ exp( —a')

—1ao

kF
(57)

0.4

0.2

3/2L=
2T.

V

VF

3 2 xx e dx

x f, (x+T„O)
4xT,

(58)

We now substitute [10]

y f, (x+T„O)
4x+T„O

which produces

y f, (x+T„O)
+-+ lim—

4x+T„O
kD

2kF

(59)

where ao is the Bohr radius and the static screening
length in the degenerate 2D electron gas [5].

We can derive some equivalents of Eq. (53) in the clas-
sical and degenerate cases: when T, )& 1, Eq. (53)
simplifies into

I

0 ~ )

I

0.4
I

0.6
I

0.8

FIG. 5. Functions 4(A) given by Eq. (61) and G(y ) given
by Eq. (65), both dealing with the stopping power in the low-
velocity range and plotted for A and y varying from 0 to 1.
One has N(0) =&m/2 and G(0) =a/2.

D. A few numerical applications

from 0 to 1 since our study deals with an RPA gas where
g «1. One can then set G(y )=G(0)=m/2 to obtain

3
3m V

LT=o=
8 VF

(66)

3/2 VL = 4(A)2T VF

with

2 — 2

e(~)=f""'
(u+A)

and A as

(60)

We provide now the evaluation of some formulas in-
volved in the present paper. The stopping power at high
velocity given in Eq. (46) reads as

z2~ I'/'
=3.47X10, eV/cm .

dx E 1/2 (67)

with N, in cm, M (ion mass) in g, and the ion energy E
in eV. The leading term of the stopping distance D can
be evaluated as

kDA=
2k, T,'/2

' 1/2 ~1/2 2
277 e

T, k~T
(62)

(63)

When T=Owe get

In the present study we can restrict to A «1, as evi-
denced by Fig. 5 for N in term of A varying from 0 to 1.
Finally L can be roughly evaluated by setting
4( 2)=N(0) = I/vr/2 in Eq. (60) with

3
3m. V'4T, V.

E,. /10D=
dE
dX

(68)

1.88 X 10 3/2

Z 2~ ~l/2
e

(69)

where F., is the initial energy of the ion and dE/dx is
given by Eq. (46) if we assume that the ion velocity is still
greater than V, when it has lost 90%%uo of its initial energy.
We thus have

=3~
LT=o 4

3

G(y ),
F

(64)
Considering a proton penetrating a two-dimensional

electron gas with a density N, =10 cm with an initial
energy E; = 10 keV we find

where

G(X')= f'
o &1—z [z y f, (z, O)/4z]— (65)

dE =0.32 keV/cm
dx E=E

l
L

We plot in Fig. 5 the function G(y ) for y varying D=15 cm .
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We finally give numerical expressions for the average
kinetic energy in the gas. In the classical case, this kinet-
ic energy is given by kz T while in the degenerate case it
corresponds to the Fermi energy

if lxl & Iql
&,[g(x)]= x &x2—q'

0 otherwise,

E =2.4X10 ' N, eV, (70) and

with N, in cm so that N, =10' cm yields EI; =24
eV.

V. CONCLUSION

We have obtained the dielectric response function of a
two-dimensional electron gas in the random-phase ap-
proximation at any degeneracy, bridging a gap between
the previous calculations of Stern [2] on one hand and
Platzman and Tzoar [3] on the other. We have then cal-
culated the stopping power of such a system using the
dielectric formalism. The high-velocity range asymptotic
expansion is found to decrease as 1/V [instead of
ln(V)/V in the 3D case] and to be independent of the
electron mass. The calculations of the last section show
that the average kinetic energy of the gap is very low in
experimental situations of present concern (k~ T= 10
eV for T = 1 K and N, = 10 cm ) so that a 10-keV pro-
ton (or even a 100-eV one) easily fulfills the condition
~» ~th-
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APPENDIX A

if /x/&/qf
Im[g (x)]= 1/q —x

0 otherwise,

which yields Eq. (15) of the main text

x f x Qn (Q)dQ . f ~ Qn (Q)dQ
o v'x2 —Q' . v'Q2 — '

APPENDIX B

We here derive the result (54). Since f2(x, u =0)=0,
we may write from Eq. (48)

x'
E(z, u =0)=1— f, (z, u =0)

42

so that the left-hand side of Eq. (54) reads as

z — f, (z, 0)=z (sz, u =0) .
x'
4z

Next, we evaluate the static response function s(z, u =0),
getting

E(z, u =0)=1+ f dQ .
2 0 (

2 Q2)1/2

One then can write

We proceed here to the calculation of the function f
defined in Eq. (14)

f (x)= lim f "Q21 (Q)dQ f
We first evaluate

where 0(0, (1 so that

~X 0E(z, u =0)=1+ n (z8, )zZ'

277- d gg(x)= —lim fx g'~0 0
1

Q 8+.2J

and

~X 0E(z=O, u =0)=1+ n (0)
Z2

One just has to take care about the sign of the quantity
21'/x when using the Plemlej formula

since n (z8, )~n (0) when z~O (because 0&8, &1).
The result comes through Eq. (11)which indicates that

1 1
lim =—+ i~5(x) .
E~o X+l E X

We then have

n (0)=
1+ exp

e

1

1+ exp( —a')
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