
PHYSICAL REVIEW E VOLUME 48, NUMBER 4 OCTOBER 1993
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This study shows that the states with the minimum dissipation rate in general dissipative dynamic
systems are expressed by the eigenfunctions for the dissipative dynamic operators. These eigenfunc-
tions are shown to constitute the self-organized and self-similar decay phase as the attractor of
the dissipative structure. A typical example applied to incompressible viscous Quid is presented to
describe a physical picture of self-organization and bifurcation of the dissipative structure.
PACS number(s): 52.30.—q, 03.40.Gc, 47.10.+g

Dissipative structures realized in dissipating nonlin-
ear dynamical systems have attracted much attention in
many research fields. They include various self-organized
structures in thermodynamic systems [1,2], the force-free
fields of cosmic magnetism [3], the self-organized relaxed
state in the magnetized fusion plasmas [4—7], and the he-
lical fiow patterns which follow turbulent puffs [8]. We
can see some common mathematical structure among the
self-organized relaxed states of the dissipative structure
and also among the proposed theories themselves to ex-
plain those dissipative structures [9, 10]. The study of
the common universal mathematical structures embed-
ded in dissipative nonlinear dynamic systems and leading
to those dissipative structures is an area of deep interest.
In this paper, we investigate the mathematical structure
and propose a theory which leads to the attractor of the
dissipative structure. A typical application of the theory
is also shown.

Quantities with n elements in dynamic
systems of interest shall be expressed as q(t, x)
(qi (t, x), qz (t, x), . . . , q (t, x)). We first consider an ideal
nondissipative dynamic system which may be described
by

2 q; 'dV = 2 qL;[q]dV =0.
Bt (2)

In other words, Eq. (2) indicates that the definition of

where LP[q] are nondissipative, linear or nonlinear dy-
namic operators, such as q; = u and L, [q] = —V'p/p
—V'u /2 + u x us in ideal incompressible fiuid dynamics.
When the dynamic system is in an unstable state, the
dynamic operator L, [q] may lead to the rapid growth of
perturbations and/or to turbulent phases. In some cases,
a nonlinearity of L, [q] may lead to nonlinear satura-
tion of perturbations. When no external input is applied,
global autocorrelations W, ; = f q, q;dV = f q2 dV across
the space volume of the system, which usually represent
the system's total energy, are conserved because there is
no dissipation by the nondissipative operator I; [q]. We
accordingly obtain

the nondissipative dynamic operator L, [q] is such that
W,; is the time invariant of the dynamic system. We
can treat the steady state of Oq;/Ot = 0 to obtain the
equilibrium equations from Eq. (1) as follows:

We cannot usually find any spatial profiles peculiar or
unique to q, from the equilibrium equations, Eq. (3),
themselves.

We now proceed to a dissipative dynamic system which
may be described by

' = L, [q] + L, [q], (4)

where LP [q] are the nondissipative dynamic operators
shown above, and L, [q] are dissipative, linear or non-
linear dynamic operators, such as q, = u and L, [q] =
(v/p)V'2u in the Navier-Stokes equation for incompress-
ible viscous Huid dynamics with the coefEcient of vis-
cosity v. When the dynamic system has some unstable
regions, the nondissipative dynamic operator L, [q] may
become dominant and lead to the rapid growth of pertur-
bations there and further to turbulent phases. This may
yield spectrum transfers toward the larger-wave-number
region in q; distributions, as in the normal energy cas-
cade demonstrated by three-dimensional magnetohydro-
dynamic (MHD) simulations in [11—13] or in the turbu-
lent region in the turbulent puff shown in [8]. When the
larger wave number becomes a large fraction of the spec-
trum, the dissipative dynamic operator L; [q] may be-
come dominant to yield higher dissipations for the larger-
wave-number components of W,, In this rapid dissipa-
tion phase, which is far from equilibrium, the unstable
regions in the dynamic system are considered to vanish
to produce a stable configuration again. Certain non-
linear processes are assumed implicitly here as some of
the dominant processes during this transition from the
unstable to the stable state. When no external input is
applied, the steady state of Oq, /Ot = 0 and BW;,/Ot =
0 can no longer be realized because of dissipation. How-
ever, we can treat a quasisteady state where the equilib-
rium equations, Eq. (3), are applicable approximately. In
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this quasisteady state with Eq. (3), the dissipation rate
of W;; is written as follows, using Eqs. (2)—(4):

= 2 q, 'dV = 2 qL, [q]dV.

We then investigate whether the quasisteady state with
the minimum dissipation rate of

~
OW, ;/Ot [

after the tur-
bulent and nonlinear relaxation phase has some unique
spatial profiles of q;, similarly to [3, 9]. This is a typical
problem of variational calculus with respect to the spa-
tial variable x to find the spatial profiles of q, that satisfy
the following:

OW, ;min " for a given value of W,,&t

We use the notation q*(W;, , x) or simply q,
* for the pro-

files of q, that satisfy Eq. (6). Since OW;, /Bt usually has a
negative value, the mathematical expressions for Eq. (6)
are written as follows, defining a functional E with use
of a Lagrangian multiplier o, :

Bq,.' a
0t 2

——q, *, (i4)

We find from Eq. (13) that the profiles of q,
* are given by

the eigenfunctions for the dissipative dynamic operators
L, [q'], and therefore have a feature uniquely determined
by the operators L,. [q*] themselves. As a boundary value
problem, we may assume that Eq. (13) can be solved for
given boundary values of q;. The value of the Lagrangian
multiplier o. is determined by using the given value of
W;, for the global constraint, as is common practice in
the variational calculus. Since we cannot a priori predict
the value of W, , at the state with the minimum dissipa-
tion rate for every dissipative dynamic system, we have
to measure the value of W, ; at such a state in order to de-
termine the value of o.. However, we can predict the type
of the profile q,

* for every dissipative dynamic system by
using Eq. (13), if the operator I, [q*] is given. Substitut-
ing the eigenfunctions of Eq. (13) and the approximate
equilibrium equation of Eq. (3) for the quasisteady state
into Eq. (4), we obtain the following:

OW;,
Ot (7)

BE=0,
b'E &0,

R'.* = q,
* dV = e q;~* d V, 16

where bE and b E are the first and the second variations
of + with respect to the variation 8q(x) only for the
spatial variable x. Substituting Eq. (5) into Eqs. (7) and
(8), we obtain

bE = —2 bq; L; g+a.q,. +q;bI, q dV = 0.
(1O)

We now impose the following self-adjoint property upon
the dissipative dynamic operators L; [q]:

dq; I, [q] d V + f P d S,

where $ P ~ dS denotes the surface integral term which
comes out as from the Gaussian theorem. The self-
adjoint property of Eq. (11) is satisfied by dissipative dy-
namic operators such as (v/p)V' u in the Navier-Stokes
equation and the Ohm loss term of —V' x (qj) in the mag-
netic field equation of the resistive MHD plasma. The
surface integral term of $ P . dS sometimes vanishes be-
cause of the boundary condition, as in the case of the
ideally conducting wall. Using the self-adjoint property
of Eq. (11), we obtain the following from Eq. (10):

bE = —2 bq; 2I; q +o.q; dV —2 P-dS = 0.
(12)

We then obtain the Euler-Lagrange equations from the
volume integral term in Eq. (12) for arbitrary variations
of bq; as follows:

(13)

OW, ;* —o. W,;*,
Bt

where q;~*(x) denotes the eigensolution for Eq. (13)
which is supposed to be realized at the state with the
minimum dissipation rate during the time evolution of
the dynamical system of interest. We find from Eq. (15)
that the eigenfunctions q,*- for the dissipative dynamic
operators L, [q*] constitute the self-organized and self-
similar decay phase during the time evolution of the
present dynamic system. We see from Eq. (17) that the
factor n of Eq. (13), the Lagrangian multiplier, is equal to
the decay constant of W;, at the self-organized and self-
similar decay phase. Since the present dynamic system
evolves basically by Eq. (4), the dissipation by L, [q*]
of Eq. (13) during the self-similar decay couples with

[q] and the boundary wall conditions to cause gradual
deviation from self-similar decay. This gradual deviation
may yield some new unstable region in the dynamic sys-
tem. When some external input is applied in order to
recover the dissipation of W;;, the present dynamic sys-
tem is considered to return repeatedly close to the self-
organized and self-similar decay phase. Observation of
the time evolution of the system of interest for long peri-
ods reveals a physical picture in which the system appears
to be repeatedly attracted towards and trapped in the
self-organized and self-similar decay phase of Eq. (15).
The system stays in this phase for the longest time dur-
ing each cycle of the time evolution because this is where
it has the minimum dissipation rate. In this sense, the
eigenfunctions q, of Eq. (13) for the dissipative dynamic
operators LP[q'] are "the attractors of the dissipative
structure" introduced by Prigogine [1, 2]. It has been
reported in [9] that Eq. (13) leads to V' x W' x u*
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r u* in the case of incompressible viscous fluids and to
V x (qj*) = nB*/2 in the case of resistive MHD plas-
mas. Both have been shown to constitute the self-similar
decay phase.

Using Eq. (9), we next discuss the mode transition
point or bifurcation point of the self-organized dissipative
structure. Substituting Eq. (5) into Eqs. (7) and (9), we
obtain

bE= —2 sq; (bL~ I@I + —bq;) dv ) 0. (18)

with boundary conditions given for bq, , for example, bq,.

= 0 at the boundary wall. Here nI, is the eigenvalue
and ( bL; [q] )i, and 8q;y denote the eigensolution. Sub-
stituting the eigensolution bq;A, into Eq. (18) and using
Eq. (19), we obtain the following:

We consider here the following associated eigenvalue
problem for critical perturbations bq; that make b E in
Eq. (18) vanish:

(hL; [q])g + "Sqp = 0,

rium equation of (3) is now given as Vp + (p/2)Vu
= p(u x w). Substituting these two operators of L; [q]
and L; [q] into Eqs. (4)—(12), and using hw = V x bu, w
= Vxu, V (axb)=b Vxa —a Vxb, andthe
Gaussian theorem, we obtain the following:

(2v6' = 2 f bu.
~

—V x V x u —au
~

dV

2v+— [bu x (V x u) + (V x bu) x u] . dS
P

(24)

Here we notice that the present dissipative operator
L; [q] satisfies the self-adjoint property of Eq. (11) as
follows:

lv'
u

i

—VxVxbuidV
&p v'

bu ~ —Vx Vxu dV
&p

bux Vxu + Vxbu xu . dS,

hI" = (ni, —n) bq I, dV ) 0. (20) (25)

Since Eq. (20) is required for all eigenvalues, we obtain
the following condition for the state with the minimum
dissipation rate:

0 ( o. (21)

where o.q is the smallest positive eigenvalue and n is as-
sumed to be positive. When the value of o. goes beyond
the condition of Eq. (21), as when ni ( n, then the
mixed mode, which consists of the basic mode by the
solution of Eq. (13) where n = ni and the lowest eigen-
mode of Eq. (19), becomes the self-organized dissipative
structure with the minimum dissipation rate. This result
for the bifurcation point of the self-organized dissipative
structure has the same mathematical structure as that
for the self-organized relaxed state of the resistive MHD
plasmas [6, 7, 9, 10].

We now show a typical application of this theory to
the incompressible viscous fluid described by the Navier-
Stokes equation:

where the vector formula of V (a x b) = b V x a
—a. V x b is used twice. We obtain the Euler-Lagrange
equation from the volume integral term in Eq. (24) for
the arbitrary variation bu, corresponding to Eq. (13), as
follows:

VxVxu* = u*.
2v

(26)

Bu 0,'—u
Ot 2

(27)

x

( )
—(cx/2)t (28)

The eigenfunction of this Eq. (26) can be obtained for a
given boundary value of u, as a boundary value problem.

Substituting the eigenfunction of Eq. (26) and the ap-
proximate equilibrium equation of Vp + (p/2) Vu2
p(u x w) for the quasisteady state into Eq. (23), we ob-
tain the following:

du 2
p = —Vp+ vV'u,

dt (22) u* dV = e ' u ' dV, (29)

where p, u, and p are the fluid mass density, the Quid
velocity, and the pressure, respectively, and V.u = 0. For
simplicity, we assume v to be spatially uniform. Using
V . u = 0 and the two vector formulas of Vu = 2u x
(V x u) + 2(u. V)u and V' u = V(V. u) —V x V x u,
Eq. (22) is rewritten as

V'p V—Vu + ux~ ——VxVxu,
p 2 P

(23)

where w = V x u is the vorticity. We find from Eq. (23)
that LP[q] = —Vp/p —Vu2/2 + u x v and LP[q]

(v/p)V x V x u, where q; = u. The equilib-

where u~*(x) denotes the eigensolution for Eq. (26) for
the given boundary value of u, which is supposed to be
realized at the state with the minimum dissipation rate
during the time evolution of the dynamical system of in-
terest. We find from Eq. (28) that the eigenfunction u*
for the present dissipative dynamic operator L, [q'] con-
stitutes the self-organized and self-similar decay phase
during the time evolution of the present dynamic sys-
tem. We see &om Eq. (30) that the factor n of Eq. (26),
which is the Lagrangian multiplier, is equal to the de-
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cay constant of Bow energy TV;; at the self-organized and
self-similar decay phase. The eigensolution for Eq. (26)
contains the helical flow solution of V x u = ru
where

~

r
~

= gnp/2v and the Lagrangian multiplier
o. is assumed to be positive. This helical flow solution of
V x u = vu is considered to represent approximately
the helical flow pattern after the turbulent pufFs shown
in Fig. 4 of [8].

Substituting the present dissipative dynamic operator,
L; [q] = —(v/p)V x V x u, into Eqs. (18)—(21), we next
discuss the mode transition point or bifurcation point of
the self-organized dissipative structure. We obtain the
associated eigenvalue problem from Eq. (1S) for critical
perturbations bu that make b E vanish, and the condi-
tion for the state with the minimum dissipation rate &om
Eq. (21), as follows:

Vx Vxbuk — buk ——0,O.'k P
2v

0 ( 0! ( 0!1 (32)

Here o.k is the eigenvalue, buk denotes the eigensolution,
o.1 is the smallest positive eigenvalue, the boundary con-
ditions are bu dS = 0 and [ 8u x (V' x bu ) ] dS =
0, and the subscript to denotes the value at the boundary
wall.

Since the present dissipative dynamic operator L; [q]
satisfies the self-adjoint property of Eq. (25) and the
boundary conditions are 8u dS = 0 and [ b'u x (V' x
bu ) ] dS = 0 for Eq. (31), the eigenfunctions aq for the
associated eigenvalue problem of Eq. (31) form a com-
plete orthogonal set and the appropriate normalization
is written as

ax. (VxVxa)dV = f (aVxVxaz)dV

0!kP
a~ ak dV

2v

O.'k P
2P

(33)

where V x V x al. —(n), p/2v) aq = 0 is used. When
the flow-dynamics system has some unstable regions,
the nondissipative dynamic operator LP [q] = —Vp/p
—(1/2) Vu + u x u may become dominant, leading to
the rapid growth of perturbations and finally to turbu-
lent phases. This process may yield spectrum transfers
toward the larger-mode-number region in the flow u dis-
tribution. The amplitudes of perturbations are consid-
ered to grow to nonlinear saturation and not infinitely.
We next investigate the change of flow u distribution for
a short time around or after the saturation of perturba-
tion growth. In this phase, operator L,. [q] has become
less dominant and LD[q] becomes more so. The flow u
distribution can be written by using the eigensolution u*
for the boundary value problem of Eq. (26) for the given
boundary value and also by using orthogonal eigenfunc-
tions al. for the eigenvalue problem of Eq. (31) with the
boundary conditions of ag d S = 0 and [ aI, x (V x ay) ] d S
= 0 at the boundary, as follows:

ll = ll + ) ck aA,

k=1

Substituting Eq. (34) into Eq. (23) and using Eqs. (26)
and (31), we obtain the following:

Bu + 0(cyak) )v 6 + Q)d

Bt Bt ' 2 2
q ——u* —) cl.al. ,

k=1 k=1

where L; [q] acts now as a less dominant operator, the
eigenvalues o,k are positive, and n1 is the smallest posi-
tive eigenvalue. We find from Eq. (35) that the flow com-
ponents of u* and ckak decay approximately by the decay
constants of o./2 and o.l. /2, respectively, in the present
short time interval, in the same way as in Eqs. (27) and
(28). Since the components with the larger eigenvalue
o.k decay faster, we see that this decay process yields
the higher dissipation rate for the state with the higher-
mode-number components. This decay process corre-
sponds to the selective dissipation process demonstrated
by three-dimensional MHD simulations in [11—13]. We
understand from Eq. (35) that if n & o.l, the basic com-
ponent u* remains last and the flow distribution of u at
the minimum dissipation rate phase is represented ap-
proximately by u*. If the value of o. becomes greater
than o.1, then the basic component u* decays faster than
the eigenmode a1. This faster decay of the basic compo-
nent u* continues to yield further decrease of TV... result-
ing in the decrease of o. itself, until o. becomes equal to
o.1, i.e., the same decay rate state with the lowest eigen-
mode a1. Consequently, the mixed mode which consists
of both u*, having o. = o.1, and the lowest eigenmode a1,
remains last and the flow distribution of u at the mini-
mum dissipation rate phase is represented approximately
by this mixed mode. The flow energy of this mixed mode
decays as W,*; = e ' f (u~* + eral) dV . This ar-
gument gives us a detailed physical picture of the self-
organization of the dissipative nonlinear dynamic system
approaching the basic mode u* and also of the bifurca-
tion of the self-organized dissipative structure from the
basic mode u* to the mixed mode with u* and a1 which
takes place at o. = o.1.

In conclusion, as one of universal mathematical struc-
tures embedded in the dissipative dynamic system of
Eq. (4), we have shown that the states with the min-
imum dissipation rate are expressed by the eigenfunc-
tions q; of Eq. (13) for the dissipative dynamic operators
L; [q*]. The eigenfunctions q,*. have been shown to con-
stitute the self-organized and self-similar decay phase of
Eq. (15). The factor n of Eq. (13), which is the La-
grangian multiplier, is equal to the decay constant of TV,,
in the self-organized and self-similar decay phase. The
eigenfunctions q,

*- for the dissipative dynamic operators
LD[q*] are considered to be "the attractor of the dissi-
pative structure. " We have presented one typical applica-
tion of the present theory to the incompressible viscous
fluid described by the Navier-Stokes equation of Eq. (22).
Using the eigensolution u* for the boundary value prob-
lem of Eq. (26) for the given boundary value and the
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complete orthogonal set by the eigenfunctions aA, for the
associated eigenvalue problem of Eq. (31), we have pre-
sented a detailed physical picture of the self-organization
of the dissipative nonlinear dynamic system approaching
the basic mode u* and also of the bifurcation of the dissi-
pative structure at o. = nq from the basic mode u* to the
mixed mode with u* and aq. The helical flow solution of
V x u = Ku, included in the eigensolutions for Eq. (26),
is considered to represent approximately the helical flow
pattern after the turbulent puffs shown in Fig. 4 of [8].
The present theory is applicable to both resistive MHD
plasmas and incompressible viscous MHD fluids [9]. The

remarkable point is that the present theory leads to rea-
sonable results [9, 10] even for cases of resistive MHD
plasmas with relatively high resistivity where magnetic
helicity is no longer time invariant, as shown in Fig. 3 of
[12], and for spatially nonuniform resistivity profiles, as
shown in Fig. 7 of [14].
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