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Multidimensional modulation of Alfven vraves
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A multidimensional version of the derivative nonlinear Schrodinger equation is derived for long-
wavelength periodic Alfven waves propagating in a plasma considered in the two-fluid approxima-
tion. It is shown that the coupling with magnetosonic waves takes the form of a mean drift which
drastically aKects the modulational stability of circularly polarized Alfven waves.

PACS number(s): 02.30.Mv, 52.35.Bj, 52.35.Mw, 94.30.Tz

I. INTRODUCTION

Alfven waves are thought to play an important role in
astro- and geophysical plasmas such as the interstellar
medium or planetary magnetospheres. When the plasma
is considered in the two-fluid approximation, these waves
are dispersive due to the Hall effect. When electron iner-
tia is neglected and electric quasineutrality assumed, the
dynamical equations read in a nondimensional form

Bgp+ V' (pu) = 0,

p(Bgu + u. V'u) = —p V'p~ + (V' x b) x b,

cigb + V' x (u x b) = —
R V x [-(V' x b) x b],

V b=O.

(1.1)

(1 2)

(1.3)

(1 4)

where k and w are related by the dispersion relation

Bott) ~(B2
B i, k2)

The question arises whether nonlinear modulational
instabilities of such waves can lead to strong hydrody-
namic effects like shock waves. The latter could dramat-
ically affect the energetic budget of media like interstellar
clouds. In contrast, finite amplitude Alfven plane or soli-
tary waves are only weakly dissipative. A considerable
amount of literature has been devoted to the effect of

Here the mean density po of the plasma and the ampli-
tude of the uniform ambient magnetic field Bo are taken
as unities. Velocities are measured in terms of the Alfven
velocity c~ = Bo//popo where po is the void permeabil-
ity. The quantity B, denotes the nondimensional gyro-
magnetic radius of the ions (in an arbitrary unit). The
parameter P = cs/cz is the square ratio of the veloci-
ties of sonic and Alfven waves. As usual, p denotes the
polytropic gas constant. Equations (1.1)—(1.4) admit ex-
act solutions in the form of finite amplitude circularly
polarized Alfven waves [1],

b~ = Bo)
(1.5)

i(km —(ut)
y ~ z—

longitudinal perturbations in the long wavelength limit.
When the direction of propagation makes a finite angle
with the ambient magnetic field, a standard reductive
perturbation expansion leads to the modified Korteweg-
De Vries equation, although in this equation the nonlin-
ear term is only relevant when the transverse magnetic
perturbation is as strong as the transverse component of
the ambient field [2,3]. In contrast, when the propagation
is quasiparallel, the phase velocities of the Alfven wave
and, depending on P, the fast or slow magnetosonic wave
tend to coincide in the linear nondispersive limit. The so-
called derivative nonlinear Schrodinger equation (DNLS)
is then obtained. This equation which is integrable by in-
verse scattering [4] was derived using the kinetic theory
[5] and subsequently from the two-fluid model [6]—[10].

Perturbations with a dependency in the transverse
variables were considered by Mjpilhus and Wyller [11,12]
and Malara and Elaoufir [13]. Mj@lhus and Hada [14]
performed a modulation analysis that displays a degen-
eracy for purely transverse perturbations. In the present
paper, we show that this degeneracy is suppressed when
the coupling between Alfven and magnetosonic waves is
taken into account. This effect, which drastically modi-
fies the response of the Alfven waves to a nonlinear mod-
ulation, was only partly included in Hoshino s analysis of
purely transverse perturbations [15]. In Sec. II, starting
from the plasma equations in the two-fluid approxima-
tion, we derive a multidimensional version of the DNLS
equation which reduces to the equation given by Mj@lhus
and Wyller [11,9] in the case of localized solitary waves
but includes coupling to magnetosonic waves when wave
trains are considered. The nonlinear modulational anal-
ysis is performed in Sec. III. The stability conditions are
discussed in Sec. IV.

II. NONLINEAR DYNAMICS
OF LONG WAVELENGTH ALFVEN WAVES

We concentrate here on the nonlinear dynamics of
Alfven waves with a typical wavelength of order ~

large compared to the gyromagnetic radius B,. Our aim
is to show that in the case of periodic Alfven wave trains,
the coupling to magnetosonic waves is relevant to lead-
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ing order. We assume that the Alfven waves propagate
in a direction (taken as the 2: axis) making a small an-
gle e )' 0 with the ambient magnetic field assumed in the
(2:,z) plane. Proceeding as in [12], we rescale the time
and space variables by defining

By this change of variables and the condition ~ && 1,
we simultaneously use a reference frame moving with the
phase velocity of the Alfven wave, restrict ourselves to
long wavelengths, and permit an even weaker variation
in the transverse directions. Furthermore, we expand

p = 1+Ep1+6 p2+ ')2

u& = E(u»1 + Eu+2 + ' ' ')&

uy = e (uyl + euy2 + ')&
1/2

u, = e'~'(u, l + eu, 2 + .),
b = 1+&(b 1+eh 2+ . ),
by

——e ~ (b„l + eby2 + . ),
b, = e ~ (b, l + eb 2 + . ),

where 6 1 ——0+ 6 1 includes both the rescaled z compo-
nent 0 of the ambient magnetic field and the perturbation
6 1. The diferent scalings for the transverse and lon-
gitudinal components of the velocity and magnetic field
insures the selection of the Alfven waves by making mag-
netosonic waves subdominant. Indeed, to leading order,
the transverse components of the velocity and magnetic
field obey

BgDyi + t9g6yi = 0,
Og'llzi + Og6zi = 0

(2.2)

(2 3)

which corresponds to the Alfven wave

u 1 ———6,1.
(2.4)

(2 5)

The equations for the density and the longitudinal veloc-
ity and magnetic field components give

p1 + 0~ u~1 + O„uyi + Ot, uzi ——0,

cpu 1 —pOtpl ——Bt(b 1+b 1) = 0,

Og6&1 0&VLyi t9gtLzi = 0

(2.6)

(2.7)
(2.8)

Because of Eqs. (2.4) and (2.5), Eq. (2.8) reads

$6&1 + g6y1 + Bg6z1 (2.9)

which also results from the solenoidal character of the
magnetic field. Eliminating oj„vyl from (2.6) and (2.8),
we get

(=E(X'—t); 7/=6 QI (=e (Z —E gt); r=E'

(2.1)

where ~B1~ = b„l + b, l. Here Vl ——Vj (g, (, 7-) and
= Ill(g, (, &) arise as integration constants. When

dealing with localized solutions whose decay as ( ~ +oo
is fast enough to make b 1, pl, and ~Bj[ absolutely in-
tegrable, the functions V1 and II1 vanish identically and
are indeed neglected in [12] and [13]. In contrast, these
quantities cannot be ignored when dealing with periodic
wave trains, for example when the modulational stability
of a plane Alfven wave is considered.

At the next order in e, the equations for the veloc-
ity and magnetic field components along the y axis lead,
respectively, to equations of the form

~tuy2+ ~tby2 = f
OgvLy2 + t9g6y2 = g)

(2.12)

(2»)

0 b„l + Ljjt
~

Vj + —~b„l —O„P1 — Ljj(tb, l ——0,pl ) 1

2) y " 2B;

(2.14)

where we used Eq. (2.10) and denote by

+ @pl + b*l
2

(2.15)

the leading order of the total pressure Huctuation. The
density fluctuation pl is obtained from (2.10) and (2.11)
in the form

2
+ 6 1+ II1 —V1 (2.16)

Similarly, the equations for the z-component of the ve-
locity and magnetic field give

P1 1
8 b, l + Ljjt (Vj + —)b 1 —BqP1 + Ljjttbyl ——0 .

2 2B;
(2.17)

In order to get the evolution of V1, we erst write the
equations at the next order in e, for the density

~~Pl —~t'P2 + ot'(Pluri + u~2)

+0„( P, byl + uy2) + Bq—( Plb, l + u, 2) —= 0 (2.18)

and that for the longitudinal magnetic field component

~7 baal ~t'ba2 ~y(uxlbyl + bylbxl uy2)

where the right hand sides f and g are expressed using
the leading order terms in the expansion of the density,
velocity, and magnetic field. The solvability condition of
Eqs. (2.12) and (2.13) reduces to the identification of f
and g, and reads

6+1 P1 + x1 V1

Furthermore Eq. (2.7) rewrites

ural Ppl + + Hj~
2

(2.10)

(2.11)

1
+~gualbzl + bzlb~l ug2 (~g~t'baal + ~g~gbyl)

2

(2.19)

The unknown quantities are eliminated by considering
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~~(b*i —p*i) —~q(u*ibyi + b*ib, i)

Bg(u~ib~i + b~ib, i) + 8„(pibyi) + Bg(pib~i) 0)

(2.2o)

(V) = (b* —p. ) + ( * )

We thus now write an equation for (u i)

~~(u&1) + ( uyl 9)q ural) + (uzlclguxl)

where (.".) denotes the average z& f &. d( taken on
the domain of the ( variable. At this step, we either
assume that the functions are periodic in (, as it is the
case when dealing with an Alfven wave train (see Sec.
III), or that they decay fast enough at infinity to make
the mean values (. ) finite. Since Vi is independent of
(, it identifies with its average

(b„g8qb p) (b,B(b j) (p, B(

In Eq. (2.21), we rewrite

=0

(2.21)

(uyiO„u i) = B„(uyiu i) + (u iB„byi)
(u lu 1) (u 1(~('b 1 + ~gb 1))

= ~~(u»u*i) —(u*i(» —u*i)) —(u*i~&b.i)
oq(uxluyl) ( xul~gP1) (uxl~gbzl)1 (2.22)

where we have used (2.9) and (2.10). From (2.11),we get (0„„+Ogg) (P, ) = 0 . (2.29)

pio)q
' = (pic)qu*i) .
2

(2.23)

Using again (2.9), we have

(byi~~b*i) = ~n(byi *i) —( *i~~ yi)
= 0„(by,b~i) + (b~iO(bzi) (2.24)

and we finally obtain

~~(ural) clq(uxlbyl) elf(ux141)

The equation for V~ then reads

o) Vi —B„(2Vi(b„i)+ (pib„i))

B„(b~ibyi)——Bq(b~ib, i) = 0 . (2.25)

Under the assumption that (Pi) remains bounded at in-
finity, we conclude that (Pi) is constant in space. It thus
identifies with its average on the full spatial domain. It
is easily seen that this average is constant in time. This
results from the conservative form of the equations for pi
and 6 q, together with the conservation of the full space

average of 2, as seen from eqs. (2.14)—(2.17). As aI&1 I'

consequence (Pi) stays equal to its initial value, and so
do (b„i) and (b, i) that we shall denote by (b„i(0)) and
(b"(o))

The average on the full domain of pq and b -i can be
taken to be zero initially (otherwise, these averages are
included in the unperturbed zeroth-order quantities). In
this case (Pi) identifies with the mean magnetic energy
perturbation E given by the full domain average of the

I3 O~ '
initial value ' ' . Consequently

—Og(2Vi(b i) + (pib, i)) = 0 . (2.26) ,
'

+P(")+(b..) =~,(
M (2.3o)

In order to compute b i from Eq. (2.9), we need (b i).
Furthermore, to close the system, an equation for II& is
also required. From Eq. (2.16), we have

or

+p1+P q
(2.31)

IIi —Vj ——(1 —P)pi —P(b i)— (2.27)
From Eqs. (2.27) and (2.31), Eq. (2.16) becomes

where pi ——(pi —b~i). The time evolution of pi is ob-
tained from Eqs. (2.20) and (2.10) +b g

9 P, + 9„(V,(b„,)) + 9&(V,(b„)) = o . (2.28)

In order to estimate (b„i) and (b, i), we go back to Eqs.
(2.14)—(2.17) and average on the ( variable. DifIerentiat-
ing the resulting equations with respect to q and (, and
using the divergenceless condition (2.9), we get

1+P g
+ p@M

We 6.nally rewrite the equations governing long-
wavelength Alfven waves in the form
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~a+1 + o$ (Vi +,' )&1 2 (og + iog)Pi + 2~, cl$$+i —0)
2

+ Ppi+ 4i,
l~. l' ~ ~ l~. l'

r
pi —, q b*i + , ,+p l , pi + PE

Bg b i + B„b„i+ Orb, i ——0,

(b )
i

~

(&i( +P-
~

8~pi + 0„(Vj (belli(0))) + Bq(Vj (b~i(0))) —0

~.V. —», (V (b..(o))) —»~(V. (b" (o))) = &.("b")+ ~«"b")

(2.33)

(2.34}

(2.36)

(2.37)

{2.38)
(2.39)

with Bi ——b„y + ibzi ~

2
In the absence of transverse variation, (~ 2~ ) = E

while (b i) = (pi) = Vi ——0. We thus recover the
usual {one-dimensional) DNI S equation since the con-
stant E can be removed by a phase shift. Note that in
the dissipative analogous of DNI S, known as the Cohen-
Kulsrud equation [16]—[18], the energy E decays in
time and thus cannot be eliminated. In the multidi-
mensional case, Eqs. (2.33)—(2.39) simplify for local-
ized solutions with a fast enough decay at infinity since

2
111 this case ( 2 )=E =Vj=(b&i) =(pi) =0& and pi

2

p b $ + 2 We then recover the equations given

in [12]. In contrast, Eqs. (2.33)—(2.39) should be the
starting point when dealing with periodic wave trains.

III. MODULATION OF % EAKLY NONLINEAR
ALFVEN WAVE TRAINS

In this section we consider the modulation of plane
Alfven wave trains. As in Sec. II, we are interested in
the lung-wavelength limit so that Eqs. (2.33)—(2.39) are a
possible starting point. These equations admit exact so-
lutions in the form of circularly polarized monochromatic
plane waves that could be modulated [14]. However,
transverse perturbations generate on a short time scale
a longitudinal correction to the magnetic Geld, which
produces a coupling of all harmonics. Therefore, the
modulation analysis cannot be restricted to the case of
monochromatic waves but has to be performed for arbi-
trary solutions that will be approximated by a truncated
Galerkin series. Whitham's method can be implemented
to this problem. The algebra is nevertheless cumbersome
because the usual equations describing the conservation
of the phase and of the action are coupled to an equation
for the mean transverse magnetic Geld. For simplicity, we
thus choose to restrict ourselves to low amplitude solu-
tions and to perform the usual weakly nonlinear analysis
which leads to nonlinear Schrodinger-like equations. .

The multidimensional DNLS equations derived in Sec.
II contain quantities such as V which are averages over
the ( variable and thus only retain the mean effect of the
magnetosonic waves. These equations can thus be viewed
as a quasistatic approximation. In a context of modula-
tion the approximation consisting in keeping V indepen-
dent of the longitudinal coordinate is certainly valid as

In the same way, we get instead of Eq. (2.26)

B~Vi —20x Vi —28„(Vib„i) —28' (Vi b, i)

= coax (1 —P)pi —Pb*i—

+~pi. bye + gpibzi . (3.2)

Equations (2.33) and (2.36) for the magnetic field are not
modified. The density fluctuation pq is again given by Eq.
(2.16) where IIi —Vi is given by Eq. (2.27). Note that
Eq. (2.31) is no longer valid because quantities averaged
on the ( variable are still dependent on X.

For convenience, we rename the variables by replacing
~b yt, (b yx, A bye+, qbyyand(byz, dropthe
subscript 1, replace b by a and deGne 0 = 0„+iO . %e
get

B~b+ 8 (V+ )b — OP—+ 0 b =—0,
2 2 2B;

(3.3)

2

Ibl'p= +u+(1 —P)p —P~—
1 —P 2 2

0 a+ 2(B*b+ Bb*) = 0,

B~p+ —0 V+ —[0'(Vb) + 0(Vb*)] = 0,

(3.4)

(3.5)

(3 6)

(3.7)

long as the modulation occurs at comparable scales in
all the directions. It is not the case when the longitudi-
nal scale is significantly larger than the transverse one.
In order to develop a formalism which embodies such a
situation, we explicitly introduce a dependency in the
large-scale longitudinal variable X = e( which will allow
us to resolve the local dynamics of magnetosonic waves.
The resulting equations, although unclosed, will be the
proper starting point for a modulational analysis.

It is easily seen that the only modification due to
the introduction of this additional variable in the DNI S
equation concerns equations for the longitudinal Geld
components. On the left-hand side (lhs) of Eq. (2.18),
the extra terms are —O~pq + O~uq and on the lhs of
Eq. (2.21), we add Oxb i—Denot. ing by an overbar the
average on the fast variable (, Eq. (2.28) is replaced by

~ pi + ~x Vi + ~g(Vibpi) + Bg(Vib, i) = 0 . (3.1)
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B~V —-B V —B' (Vb) —B(Vb*)
2 1

[ 2+(1 —pp)2 —po2] . (3.14)

= —B (1 —P)p —Pa — + — B*(pb) + B(pb*)
fb/2

2 2

(3.s)

Otb» + 0 b» ——0.
2R; " (3.9)

Furthermore, we have a» ——p» ——P» ——p»
——V» ——0. As

a solution of (3.9), we choose a circularly polarized wave

of the form bi ——Bi(X,Y, Z, r)e'l '~ with ~ =
By this choice, we restrict ourselves to waves propagating
parallel to the ambient magnetic field.

At order p, the equation for the transverse magnetic
field gives

where the star stands for the complex. conjugate. In the
limit e m 0, we recover (2.33)—(2.39).

In order to perform a modulation analysis on Eqs.
(3.3)—(3.8), we define p as the small parameter measur-
ing the magnitude of b, and introduce the slow variables
X = px, Y = p,y, Z= pz, ~ = pt. Wethenlookfor
solutions of Eqs. (3.3)—(3.8) such that b, a, p, and P de-
pend on x, t, X, Y, Z, and w, while p and V only depend
on X, Y, Z, and 7. In this multiple-scale procedure, e

is considered as given. We substitute 0 ~ 0 + pBx,
0 ~ pV'~, Bt —+ Ot + pO, and expand b, a, p, p, V, and
P in powers of p, in the form b = pb» + p, b2 +

At order p, (linear theory), we get

B a2+ -'(B*bi+ Bb*,) = 0 (3.i5)

which yields

i(ka —(ut), —~ —i(kx —~t)a2 ——a2e + a2e +a2 (3.16)

with a2 ———2.k V'~B». We thus have

1
P2 = pp2 + a2 = —

k
V'~Bi .

2 1 — ik
(3.17)

We now need equations for V2, p2, and a2. The solvabil-
ity condition at order O(p ) corresponding to the elimi-
nation of nonoscillating secular terms for the transverse
magnetic field gives

—o~b2+ 2V't P2 ——0 (3.is)
2

with P2 =
2 +pp2+ (1+p)a2, whereas the solenoidal

character of the magnetic field implies

Bxa2 + 2 (7~b2 + V Lb2) = 0 . (3.i9)

The equations for p2 and V2 are obtained at order O(p )
in the form

Here, the tilde refers to the coefBcient of e'(" ~ in a
Fourier-mode expansion, while the overbar denotes the
nonoscillating mode.

At order O(p, ), the divergenceless condition for the
magnetic field gives

Btb2 + B b2 ———
~

B Bi — BxBi—~e'l
2R; ** l R;

and the associated solvability condition reads

(3.1o)

0 p2+ —OxV2 ——0, (3.2o)

B.V2 —-BXV2 = —BX (1 —p)p2 —pn2—
2

(3.2i)
0 B»+v BxB» ——0. (3.11)

( P2Ba+2 —Bx&2 + ik
I

V2 + +
R,. 2 2)

This equation means that for times w of order unity,
the (complex) amplitude Bi is simply advected with the
group velocity v~ = —

& of the linear Alfven wave. It
t

follows that b2 ——B2e'( ~ where B2 is not determined
at this order. To describe the dynamics of the magnetic
field on a longer time scale T = p t, we must consider the
equation for the magnetic perturbation at order O(p )
where the elimination of resonant oscillating modes yields

Note that the system (3.11), (3.12), and (3.18)—(3.21) is
closed on the time scale w but not on the time scale T
of the transverse magnetic field. In order to describe the
dynamics of the magnetosonic waves on this longer time
scale, we write equations similar to (3.18)—(3.21) at order
O(p4). Summing these equations with (3.18)—(3.21) and
denoting p = p2 + pp3, V = V2 + pV3, B = B» + pB2,
a = a2 + pa3, and b = b2 + pb3, we get

B b —
—,'&&

l
+Pj+ (1+P)a

+p
~

2Bx(p2bi) + Bxxb
~

= 0) (3.22)
l 2R; )

with

and

+ ppa+ &2
2

(3.13)

'ViP2+ Bxx—B-i = 0 (3.12)2 2R;

2

Bxn+ —,'(V~b+ V'&b*) = 0,
1

~p+ —xV = 0

2 1
B V ——BxV = —Bx (1 —P)p —Pa-

@

+-', [~;("b.)+ ~ ("b;)]

(3.23)

(3.24)

(3.25)
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Similarly, summing Eqs. (3.11) and (3.12) we obtain

p nl
(B~ + vg Ox )B + pi k

I
V + —+ —

I
B

2 2)

1 1
4k 1— DgB+ OxxB = 0. (3.26)2B;

In Eqs. (3.22) and (3.25),

1 -* 1
p2bi —— a2Bi —— . (V'gBi)Bi i (3.27)

e. Averaging Eq. (3.25) over the variable X, we get

OT V = (B'AgB —BAgB*) . (3.29)
4k 1—

Noting that all the quantities now depend on ( = X —vga
and T, we can rewrite Eq. (3.22) in the form

b+ —,'v~
I

+Pp+(1+ P)a
I

= o(~) . (3.3o)

ALIBI'

)2

Deriving Eq. (3.23) with respect to X and using Eq.
(3.30), we get

so that the order p, coefficient in Eq. (3.25) reads
2k ( IBI2
B;B~~—n+a~l pp+ +(1+p)n

I

=o.
2

(3.31)

p ( 1

2 q 2ik 1 — )(&iBi)Bi
I

Averaging Eq. (3.31) with respect to $ and assuming that
the total volume averages of p and a vanish, we recover
Eq. (2.31). It follows that

or

, ( 1+&i
I

—
k

(~~Bi)Bi
I2ik 1 — ) 1 —P 2

Rp I— (3.32)
P

4k 1— (&~Bi)Bi —(&~Bi)Bi

This closes the system (3.22)—(3.25) for the dynamics on
the time scale T. Nevertheless, it is not always possible
to choose a reference frame in which the 7 variable can
be eliminated. Indeed, even if Bz only depends on X—
vg7 this is not the case for B2 which is coupled to the
magnetosonic waves p and V.

The system (3.22) —(3.25) simplifies when e ~ 0, this
limit being nonuniform with respect to the ratio of the
transverse and longitudinal scales. When the modulation
scales are comparable in all directions, it is possible to
average over the magnetosonic waves and consider only
the long time-scale dynamics of B. Indeed Eq. (3.24)
leads to V = V(Y; Z, T), while Eq. (3.25) gives

( j nl 1~TB+i kl v+-+ —IB- LgB
2 2) 4k(1 —P)

1+ ~ xxB2B,.

Combining Eqs. (3.29) and (3.33), we find

~~v = ~~(IBI')

(3.33)

(3.34)

ol

v = (IBI')+ vp(Y z) (3.35)

Furthermore, in the frame of reference moving with the
group velocity vg, Eq. (3.26) reduces to

p = Pa+ + E(Y ZT)
1 —P 2

(3.28)
In the case where V vanishes initially, Vp (Y, Z)
—(IB(0)l ). Let us denote

In this equation the function E is determined by the con-
dition (p) = Rp(Y, Z), where ( ) denotes average over X
and Bo is the initial value of p. The latter condition de-
rives from Eq. (3.24), which shows that at this order of
approximation (j) remains constant in time, the terms
involving (b„) and (b ) entering only at the next order in

U(Y, Z) = Vp(Y, Z) + Rp(Y;Z) . (3.36)

This leads to the following system for the "outer" so-
lution valid outside the cone in Fourier space de6ned by
IKxI/IK~ I

( ala, where Kx. and K~ = Ki.+i Kz denote
the longitudinal and (complex) transverse wavenumbers

+2R " 4k(1-p) + 2(1-p)l 2
+ I+2(1-p2)

+U(Y;Z)—,EM B = 0,
2 1 — 2 (3.37)

(2k 1 ) 1 I'IBI
R ~a+(R, 1 — 1 —

q 2

(,-) '
I

(I&Il*)

"(") (3.38)

(3.39)
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When the typical longitudinal scale of the solution is
much larger than the transverse scale, Eqs. (3.37) and
(3.39) are not valid. In this case Eqs. (3.22) and (3.23)
simplify to

+ pp+ (1+p) a
~

= O,
2

(3.4o)

while Eqs. (3.24) and (3.25) become

B~p+ 0gV = 0, (3.41)

z V —28@V = BX (1 —P)p —Pa—
2

+ (B*AgB —BAg B*), (3.42)
4k 1—

with X = ep2C. Equation (3.26) rewrites

1 p al 1
Oz B+—k.

~

V+ —+ —~B- A~B = 0.
z 2 2) 4k(1 —P)

(3.43)

1 & v, l f' p al—
i Bz B+ B~B

i
+—ki V+ —+ —iB

1 1

4k 1— A~B+ BxxB = 0, (3.44)
2B,

1
B~p+ 0~V = 0, (3.45)

Note here that Eq. (3.43) is written in the same reference
frame as Eqs. (3.3)—(3.8). Equations (3.40)—(3.43) are
our "inner" expansion.

A system of equations simpler than (3.22)—(3.26) but
nevertheless uniformly valid in the full range of scales
is obtained by matching Eqs. (3.37)—(3.39) and (3.40)—
(3.43). There indeed exists a matching region where both
the outer and inner expansions reduce to Eqs. (3.37)—
(3.39) without the (-derivative terms. This leads to the
"uniform" expansion

laboratory frame of reference. In this special case, the
longitudinal magnetic field vanishes and p reduces to the
density perturbation. In addition, in the limit where
ep ~ 0, these one-dimensional equations reduce to the
usual nonlinear Schrodinger equation. According to the
polarization of the circularly polarized carrying wave, the
wave packet will be focusing or defocusing [8].

When the modulation is not purely longitudinal, two
mean drift terms come into play in the form of a Doppler
shift in the equation for the envelope of the transverse
magnetic field (3.44). One due to the longitudinal mag-
netic field a has the same character than the mean How in
the Davey-Stewartson equations for surface gravity waves
[21,22]. The other one due to magnetosonic velocity per-
turbation V is analogous to the mean Bow obtained at
the onset of Rayleigh-Benard convection [23].

The li.mit equations (3.37)—(3.39) could have been de-
rived directly from Eqs. (2.33)—(2.39) by standard mod-
ulation techniques. They are analogous to the weakly
nonlinear modulation analysis performed by Mj@lhus and
Hada [14], except that our equations include the aver-
age effect of the magnetosonic waves. The inhuence of
this effect on the modulational instability is discussed
in Sec. IV. Equations (3.37)—(3.39) do not include the
small parameters e nor p because magnetosonic waves
have been averaged out. This simplification is due to
the smallness of the parameter e. In situations where
the group velocities of the two waves are different but
comparable (e 1) the small parameter p can also be
eliminated. A system of coupled equations, still includ-
ing averages, is then obtained for the two waves in their
own characteristic coordinates. An example is provided
by counterpropagating waves discussed in [24,25].

Finally, the specific case of purely transverse modula-
tion addressed by Hoshino [15] is recovered by removing
the X dependence in Eqs. (3.44) —(3.47). Hoshino's anal-
ysis is performed in the low frequency MHD limit where
dispersion is ignored. As a consequence, circularly polar-
ized waves cannot be selected in contrast with the case
we consider here. Furthermore the cubic NLS equation
he obtains for one of the components of the magnetic
field (that in the direction of the perturbation) omits the
effect of the mean Bow V.

2 0~ /B/2
Oz V ——0~V = (1 —P)p —Pa-

CP EP 2

IV. MODULATIONAL INSTABILITY
AND SELFFOCUSING

+ (B*AgB —BAgB'),
4k 1—

(3.46)

2k (—Ox~a+a~
~
Pp+(1+P)a+

~

=O.
R; l2 (3.47)

Several remarks are in order. First the coeKcients
and p disappear when the above system is rewritten

using the primitive variables for coordinates and fields.
Furthermore in the absence of transverse modulation, we
recover the Zakharov-type equations [19] given by Oven-
den, Shah, and Schwartz [20] when coming back to the

The modulational stability of Alfven waves is studied
by performing a linear analysis of Eqs. (3.37)—(3.39).
These equations are valid when the characteristic longi-
tudinal and transverse scales are of the same order of
magnitude, i.e., outside the cone in Fourier space, de-
fined in Sec. III. It is nevertheless easily seen that these
equations are still valid when the fields are independent
of (; in this case the mean value () identifies with the
function itself and Eqs. (3.40)—(3.43) with - = 0 are
recovered.

Equations (3.37)—(3.39) have a solution of the form
ao ——0 and B = bo for any complex value bo. In order
to study its stability we write the perturbed field B =
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bo(1 + b)e'&. For non-purely-transverse perturbations,
the linearized equations for the real quantities a, 6, and

read

1 1
OTQ+ 0((b — A~b

2R, 4k 1—

+2, (lb, I'b+- u) = 0, (4.1)

1 1
&—Tb+ ~ ~gf, 4 —

k
&~4' = 0

2B, 4k 1— (4.2)

2k 1 1—Bt.ta+ b, ~a = — [bo[ Axb,
1 — 1— (4.3)

where we used the property (b) = (a) = 0. For harmonic
perturbations b p and a oc e'(+ ~+ v + ) ' we
obtain the dispersion relation

i4k(1 —P)
~Kxl2A;

2B, 2(1 —P) 2(1 —P) 2k
k/be[2

(1 —P)(~",Kx+ i'plK~I'))
(4.4)

Writing [Kg[ = K sing and Kx. = Kcosg, we see that
in the limit where K tends to zero, 0 takes the sign of

k(1 —P)(tan P — "
(R, ) ). This agrees with the re-

sults of Mj@lhus and Hada [14] in the case of non-purely-
transverse perturbations (P g 2). However the analysis
of these authors becomes singular in the limit P —+

and they suggested going back to the full fluid model. In
fact, as we show here, it is enough to stay in the long-
wavelength limit described by the DNLS equations, pro-
vided the effect of magnetosonic waves is included. For
purely transverse perturbation, the latter reduces to a
mean flow whose effect survives in the linear approxima-
tion. In this case, the dispersion relation reads

When considering the fully nonlinear regime, the situ-
ation is more complex. Inspection of (3.37)—(3.39) shows
a competition between focusing and defocusing effects.
If focusing in the transverse directions takes place, the
magnetosonic waves should play a dynamic role not only
through an average effect, but pointwise. It is then nec-
essary to turn to Eqs. (3.44) —(3.47). This problem de-
serves a comprehensive study which will be addressed in
a forthcoming paper. The situation, however, simplifies
in the case of a purely transverse modulation. In contrast
with the approach of Mj@ihus and Hada [14], where, due
to the omission of the mean Aows all the nonlinear terms
cancel out, our equations reduce to

3+ 4p 2 [bp[ K
1 —P2 8 16k2 (1 —P) 2 (4.5) 1 1—0z B- LgB

4k(1 —P)

whereas in the limit P = 2, Eq. (4.4) only gives the
second term in the rhs of Eq. (4.5). It misses the mean
drift effect, which is in fact predominant in the long-
wavelength limit. Due to this term, the carrying wave
is stable with respect to purely transverse perturbations
for P ( 1 and unstable for P ) 1, regardless of its polar-
ization.

In the limit ep ~ 0 where the "cone" reduces to the
plane K~ ——0, the frequency 0 undergoes a discontinu-
ity at P = 2. The introduction of magnetosonic waves
in Eqs. (3.44)—(3.47) allows a smooth although sharp
transition.

+k
~

+ U(Y; Z) [
B = 0, (4.6)

& 4P+3 [a['
(21+ 2 )

where the term proportional to the magnetic energy E
has been eliminated by a phase shift, while U defined in
(3.36) can be viewed as a time independent external po-
tential. It is well known that in the case P ) 1, this two-
dimensional nonlinear Schrodinger equation can develop
a singularity in a finite time [19,26,27]. The nature of this
singularity is discussed in [28] and references therein.
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