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Gaussian field model of fluids with an application to polymeric fluids
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This paper extends the Gaussian model of Li and Kardar [Phys. Rev. Lett. 67& 3275 (1991)].
When applied self-consistently to density fluctuations of a hard-sphere fluid, it is shown that the
model gives the Percus-Yevick theory. With the addition of an attractive tail potential, the mean
spherical approximation is obtained. Unlike the random-phase approximation, this approach deter-
mines the normal modes of the model consistent with the presence of an excluding manifold. The
resulting fluid response in the presence of such an object is derived. For a D = 1 manifold, the
self-consistent approach is a theory of polymeric fluids. Here, with an averaging approximation,
the reference-interaction-site-model (RISM) equation in the thread limit is obtained. For polymer
blends, the analysis yields a seemingly exact formula for a demixing critical temperature. It scales
linearly with polymer mass, as in Flory's theory, but with an effective y parameter smaller than
that in Flory's theory. The analysis sheds light on an erroneous prediction of different scaling made
by others applying the RISM theory.

PACS number(s): 61.20.Gy, 61.25.Hq, 64.70.3a

I. INTRODUCTION

This paper is concerned with a simple model of flu-
ids, the Gaussian field model. It is often used in the
development of theories for fluctuations over large length
scales. Examples include its application to critical phe-
nomena [1], to complex Iluids [2], and to visualization
of bicontinuous phases [3]. In each of these cases, one is
concerned with spatial variations over distances far larger
than the molecular species that make up the fluid. It may
seem remarkable, therefore, that the Gaussian model can
also prove useful at microscopic length scales. Indeed,
the model is related to Percus-Yevick theory, the mean
spherical approximation, and Inany other long-standing
molecular theories of liquid matter. This relationship is
derived in this paper.

The development is motivated by Li and Kardar's re-
cent application of the Gaussian model [4]. They consid-
ered the efFects of excluding a Gaussian field from a rigid
manifold. They showed that the entropic eKects of this
exclusion lead to interactions such as the Casimir force.
To the extent that fluctuations are Gaussian, Li and Kar-
dar's method of analysis is very general. In Sec. II, it is
applied in a self-consistent way to density fluctuations,
and it is shown that the Percus-Yevick theory and re-
lated approximations result. This derivation places these
theories into the context of a well defined, though admit-
tedly simplistic, Hamiltonian. While it contrasts with
arbitrary truncations of perturbation series, one might
have anticipated this alternative derivation from older
work [5,6], especially Ref. [5].

It is interesting to understand that the Li-Kardar ap-
proach is equivalent to older and well tested theories.
The primary utility of the Li-Kardar perspective, how-
ever, is that one can foresee applications beyond those

of pair correlations in simple liquids. In Sec. III, the
Li-Kardar method is applied to D = 1 manifolds. Here,
the physical system under consideration could be an elec-
tron in a disordered system, or a polymer in a liquid. In
this case, it is shown that the Gaussian field theory in
its simplest form coincides with the reference interaction
site model (RISM) for these systems [7—9]. Schweizer and
co-workers [10,11] have argued that this theory applied
to polymer blends predicts a massive renormalization of
Flory's y parameter [12], and that this prediction is un-
doubtedly incorrect. Our analysis of the RISM theory
provides some understanding of the origins of this pre-
diction.

It is the nature of a Gaussian model that the Fourier
components of the dynamical fields, in this case the par-
ticle densities, are the normal modes of the homogeneous
fluid. These are the normal modes of the random-phase
approximation (RPA). Nevertheless, the Li-Kardar treat-
ment of the inhomogeneous fluid, i.e. , the fluid in the
presence of an excluding manifold, is diferent than the
RPA. The nonlinearities of excluded volume alter the nor-
mal modes. Physical manifestations of this alteration
include vanishing distributions in regions of excluded-
volume overlap and the screening or diminution of per-
turbation potential fluctuations by the packing or con-
finement of excluded volume forces. Neither of these ef-
fects is described by the RPA. Their significance has been
sorted out and well understood long ago in the context
of simple liquids [13,14]. The issues are pertinent to the
physics of polymeric liquids as discussed in Sec. III. This
paper is concluded with a brief discussion in Sec. IV.

II. SPHERICAL MANIFOLD

Consider the solvation of a spherical object immersed
in a fluid. The object is the solute, and the fluid is the
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solvent. In the absence of the object, the Hamiltonian of
the pure quid is assumed to be

II~ = (kiiT/2) dr dr' bp(r)y (r, r')hp(r'), (2.1)

where bp(r) is the deviation of the Ruid density from its
mean, p, y (r, r') is the functional inverse of its vari-
ance,

&(r r ) = (~p(r)~p(r )) (2.2)

and k~T = P i is Boltzmann's constant times tempera-
ture.

In the presence of the object, two things happen. First,
the solute excludes Quid density from the volume it oc-
cupies; i.e.,

Z]y] = f Dg(r)'»(r)exp(Z]p(r), @(r)]), (2.5)

where we have introduced the usual auxiliary field P(r)
as an aid to subsequent computation. The symbol P
indicates functional integration.

The product of b' functions in Eq. (2.4) enforces the ex-
clusion, (2.3). This exclusion is a nonlinear efFect which
cannot be incorporated into a Gaussian model by sim-
ply adding an expelling potential field to the Hamilto-
nian. That simple approach would lead to the unphysical
p(l') M —00.

Following Li and Kardar [4], the Fourier representation
is exploited:

p(r) = 0, r inside. (2.3) with

Here, "r inside" means r at a point enveloped by the
spherical solute. Second, outside that region, the solute
iIiteracts with the Quid with a spherically symmetric po-
tential, k~T u(—r) = u)(r). The resulting partition func-
tion is

~[p(r) @(r)] = ~II + ' "r0(r)p(r)

+ "' p(')[u(") + &(r)] (2.6)

Z[P] = »(r) ~fe(r)l
)r inside

x exp — H~+ drp r u r + r

(2 4)

where the subscript "in" indicates that the integration
so labeled is over the interior of the excluded spherical
volume. The field g(r) is defined in this volume only.
Cast in this form, Z[P] is easily evaluated in terms of
Gaussian averages. The result is

Z[P] = c[det~; ]
~ exp

l p dr[u(r) + P(r)]

+-.' dr dr'~(lr —r'l)[u(r)+ &(r)][u(r')+ &(r')l

dF ~r'X,.„'(r, r') (p + ~r"Ie(r") + 4(r")IX(]lr —r"I))

x p+ dr u r + r y r —r (2.7)

The value of the constant c depends upon the metric con-
vention for the functional integration; it is proportional
to the partition function of the pure unperturbed solvent.
The matrix ~;„has elements g(lr —r'l) for r and r' both
within the excluded manifold; its eigenvectors span the
Hilbert space of functions defined within the manifold.

Equation (2.7) is a generalization of Li and Kardar's
formula, e.g. , Eq. (5) of Ref. [4(a)]. Through difFeren-
tiation with respect to P(r), one may compute average
densities and correlation functions in the presence of the
solute. Notice that lnZ[P] is quadratic in P(r) and thus
(p(r))y is linear in P(r). Even in the presence of the
excluding manifold, therefore, the statistics of the sol-
vent remains Gaussian. Its normal modes and response
function are altered by the manifold, but there are no
nonlinear responses to an external disturbance.

Performing the diff'erentiation and then setting P(r) to
zero, one finds

(p(r))o = P+ "r X(lr —r l)u(& )

dr" x;.'(r', r") px(lr' —rl)
in

+ dr"'~(lr' —rl) ~(lr" —r'"
I)u(r'") (2 8)

where the origin is the center of the spherical object. For
r inside that sphere, one may verify that the right-hand
side of (2.8) is indeed zero. This is done by noting that
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r' and r inside. (2.9)

The solute-solvent radial distribution function is

g(r) = (p(r))o/p. Accordingly, Eq. (2.8) is

p[g(r) —1] = dr'c(r')y(lr' —rl),
with

(2.10)

dr'x, .'(r, r') p+ «"x(lr' —r" l)u(r")

dr' y,„'(r, r') p+
ut

dr"y(lr' —r"l)u(r"), r inside, (2.11)

and

c(r) = u(r), r outside. (2.12)

water reorganization can be regarded as Gaussian, the
theory is exact.

III. D = 1 MANIFOLD
Equation (2.10) is recognized as the Ornstein-Zernike re-
lationship, where c(r) is the direct-correlation function
between solute and solvent [14). Equations (2.11) and
(2.12) are the closure relations, in this case the mean
spherical approximation (MSA) [13—15]. In particular,
outside the excluded volume, c(r) is the actual pair po-
tential between solute and solvent (in units of k~T), —
and inside the excluded region it is that function which
makes g(r) = 0 for r inside.

There are special cases worthy of note. First, when
the solvent is in fact composed of the same species as the
solute, self-consistency demands

y(lr —r'l) = p&(r —r') + p'[g(lr —r'l) —1]. (2.13)

Equations (2.10)—(2.13) are the self-consistent MSA
equations. Second, if u(r) = 0, then c(r) = 0 for r
outside. In that case, Eqs. (2.10)—(2.13) are the Percus-
Yevick (PY) equation for a hard-sphere fluid [6,14].

Alternatively, if y(lr —r l) is provided as input, the
theory is then a linear integral equation for g(r), the so-
lution of which is provided by Eqs. (2.10)—(2.12). In prac-
tice, implementation requires a choice of basis functions
to span the interior manifold. Inversion of ~;„can then
be carried out in the representation prescribed by that
basis.

The Pratt-Chandler theory of the hydrophobicity [16]
is precisely this type of theory. There, y(lr —r'l) is the
pair-correlation function between oxygen atoms in liquid
water (as measured by, say, x-ray scattering). The ex-
pelling spherical object is the hydrophobic solute. The
theory makes no explicit assumptions concerning the ori-
entational structure of water. In e8'ect, it computes the
entropic consequences of permitting only those fluctua-
tions for which no water exists in the excluded manifold.
To the extent that the statistics of these fluctuations and

&[&] = &n(t) &p(r) exp(~[p(r) &(t)]) (3 1)

where

S[p(r), q(t)] = PH& + i d—t q(t) p[r(t)]

+ «dr p(r)u[lr —r(t) ll

dr p(r) P(r). (3.2)

g(t) is the Fourier variable analogous to g(r) in Sec. II;
u(r) is the potential tail (in addition to the excluding
core) that couples a segment of the chain to the fluid. The
functional integrations and differentiations of Eq. (3.1)
are carried out as in Sec. II, this time yielding

Here, as a second example, the Li-Kardar approach
is applied to a fluid with polymeric species. Again, we
consider density as the pertinent Beld. In the process of
solvating a polymer, the Beld is excluded from a chain of
sites located on the path r(t), 0 & t & N. For sim-
plicity, assume that the polymer is a chain with self-
avoidance. In this case, the excluding manifold is the
path r(t). [Without self-avoidance, it is possible to have
redundancy in this characterization of the manifold, i.e. ,

r(t) = r(t'), t g t'. Such redundancy must (and al-
ways can) be removed when formulating the model in
order that ~;„be invertible. ] Finally, assume that % is
suKciently large that end eÃects are negligible. In that
case, all segments on the chain are statistically equiva-
lent. Further, K is large enough that the segment label
t can be regarded as a continuous variable.

In the presence of the chain, the partition function of
the fluid is now

(p(r))(.(~))
= p+
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x; (t, t') = x[lr(t) —r(t') I]. (3.4)

When averaged over paths of the chain, it is

(y;.(t, t')) = (2~) ' dk pS(k) ~(k, t —t'), (3.5)

where S(k) is the structure factor of the fluid [i.e. , the
Fourier transform of y(lr —r'I)/p], and

w(k, t —t') = (exp(ik . [r(t) —r(t')]f) (3.6)

The subscript [r(t)] indicates that the labeled average is
performed with the chain's path fixed, and it is under-
stood that the auxiliary field P(r), has been set to zero.
The function y,„(t,t') is the matrix inverse of

is the Fourier transform of the pair distribution function
of the chain, ur(r, t —t').

One may verify that (p(r))~, l~lj given by Eq. (3.3) is
indeed zero on the manifold. This is done by setting r
equal to some point on the path, say r(t). In that case,
on the right hand side, the first and third terms cancel,
and the second and fourth terms cancel.

A. Pair correlations with exclusion forces only

The pair distribution function between the chain and
the fluid is obtained by averaging Eq. (3.3) over config-
urations of the chain keeping one segment of the chain,
say r(0), fixed at the origin. For the situation in which
u(r) = 0 (i.e. , exclusion interactions only), this averaging
gives

p~(r) = (p(r))p

dr'~(lr —r'I) dt dt'(8[r' —r(t')]~,.„'(t', t)), ,

where the subscript zero indicates that r(0) is fixed at the
origin during the averaging. A simplification is obtained
by replacing ~;„with its path average in Eq. (3.7). This
yields

~(lr —r'I) = p~(r) + p'lg(lr —r'I) —1]

Equations (3.12) and (3.8) give

p 'y (k) = S(k) = ~ (k) / [1 —pep~ (k )],

(3.12)

(3.13)

with

~(r) —1 = cp dr'~(r')~(lr' —rl) jp, (3.8) which is the RISM equation with direct correlation func-
tion

c(r) = cpb(r). (3.14)

u(r) = dt ~(r, t) (3.9)

and

cp ———(2~) ' dk S(k)~(k) (3.10)

where

dt ~(k, t)

dr u(r)e (3.11)

To arrive at (3.8) from (3.7) with ~;„=(~;„),it is useful
to note that pi(r, t) = (8[r —r(t) + r(0)]) = (8[r —r(t)])p.

Equation (3.8) is the polymer reference interaction
site model (RISM) equation for an excluding chain in
the thread limit, d —+ 0+ [7—9]. (The parameter d is
the radius of the excluded sphere surrounding the cen-
ter of a polymer segment. For d finite, these centers
can be spaced at discrete intervals. In the thread limit,
they form a continuum. ) The analytical solution in the
thread limit, Eq. (3.10), was derived by Schweizer and
Curro [10(b)]. For the polymer melt, Eq. (3.10) is a
self-consistent relationship for cp. This is true since p(r)
refers to the density of polymer segments in the fluid. As
such,

Substitution of Eq. (3.13) into (3.10) yields Schweizer and
Curro's self-consistent equation for the athermal polymer
melt in the thread limit.

The solution of the Schweizer-Curro self-consistent
equation gives —co as a positive quantity which, ex-
cept for very low concentrations, is independent of chain
length N. As such, while the range of w(r) is B
one may show that Eq. (3.13) predicts the correlation
length of y(r) to be independent of N. This analy-
sis of the standard result for the correlation length of
net density fluctuations (it is independent of N) [2(b)]
bears a close resemblance to that of the RPA. Indeed,
Eq. (3.13) is the RPA for the effects of the repulsive po-
tential —kBTcpb(r). One distinction of the current the-
ory is that co is not simply a parameter; it is determined
self-consistently by the conditions of geometry. More im-
portant distinctions will be discussed shortly, after we
analyze the role of a potential tail, u(r), in the model.

Before turning attention in that direction, note that
this derivation of the RISM equation highlights the two
essential and not unrelated ingredients in that theory of
polymers: (1) a Gaussian or linear response model of
solvation, and (2) the replacement of the instantaneous
polymer configuration with its averaged pair distribu-
tions. These ingredients have been discussed before [7,9],
but not perhaps as explicitly as we see them here. Both
are justifi. ed provided fluctuations are not large. For in-



2902 DAVID CHANDLER 48

stance, the preaveraging approximation, ~;„= (~;„) in
Eq. (3.7), breaks down when the polymer chain Iluctuates
between two distinct structures. This lack of monostabil-
ity occurs, for example, in the vicinity of an intrachain
transition between collapsed and swollen states. Simi-
larly, the Gaussian approximation is not appropriate for
a system undergoing clustering or bulk phase transitions.
These effects will not be present in a melt with only ex-
cluded volume interactions. Rather, they will occur as
a result of competition between, say, excluded volume
interactions and a perturbation, u(r).

Eq. (3.7), we begin by averaging Eq. (3.3) to obtain an
integral equation for pg(r). The result looks much like

(3.7), but with additional terms on the right-hand side
involving the attractive tail. These terms are

(3.15a)

where

B. Exclusion forces plus perturbation tails

We consider now the case in which u(r) is not zero,
assuming it is integrable and short ranged. As with and

dt(u(lr —r(t) l))(), (3.15b)

dt (3.15c)

The erst can be expressed as

t, (r) = dt dr'u(lr —r'l) (8[r' —r(t)]) p

dr'u(r') pd(lr —r'l) . (3.16)

Similarly, the second term can be expressed as

N

t2(r) = —(2vr) dk u(k)y(k) dt
0

N
dt" (exp(ttr ]r(t] —r( )]}tg, (t, t') ]r(td') —r]) ) (3.17)

dr'~(lr(tp) —r'I) lti(r') + t2(r')] = 0 . (3.18)

Notice that if r lies on any point of the manifold, say
r(tp), then the right side of (3.7) is zero, and similarly

~ (k)c(k)y(k)
P

cu2 (k)c(k)
[1 —ppd (k) c(k)],

(3.20)

This cancellation is the excluded volume condition en-
forced by the I i-Kardar technique. It persists in the
right-hand side of (3.7) even when ~,-„ is replaced by

(~;„) . In contrast, with this replacement alone made
in Eq. (3.17), Eq. (3.18) no longer holds in general. If,
however, one additionally assumes that the Fourier den-
sities of the chain, p(k, t) = exp[ik r(t)], are Gaussian
variables, the intrachain average in Eq. (3.17) can be per-
formed in the thermodynamic limit yielding

where h(k) is the Fourier transform of g(r) —1,

c(k) = cp + u(k) + cp

(3.21)

and cp is the constant given by Eq. (3.10). Equations
(3.20) and (3.21) are the RISM equation with the MSA-
like closure,

t2 (r) = u(r) dk'~(k')u(—k') y(k') dk" ~(k")y(k") . c(r) = c 6(r) + u(r), (3.22)

(3.19)

This approximation satisfies Eq. (3.18).
By adding (3.15a) to the right hand side of (3.7) with

(3.16), ~;„=(~;„) i and (3.19), one therefore obtains

where c is the constant determined such that h(r) = —1
atr=0.

The steps leading to this result can be generalized to
a two-component system yielding the RISM-MSA equa-
tions for a polymer bend. That is,
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ph(k)p = p~(k)c(k)~(k), (3.23) From stoichiometric considerations, one may show that

' (k) = ' ~( ) + ' ( ) . (3.24) 1
fp — p—[x ln x + (1 —x) ln(1 —x)] + 4 fpN (3.27)

Here, p and w(k) are diagonal matrices with eigenvalues

p, and u;(k) giving the density and intrachain structure,
respectively, for species i (= A or B); g(k) has elements

p;w;(k)b;~ + p, pzh, ,~ (k);. and the constants c,~ = c~.; have
values such that h,~(r) + 1—:g(r) = 0 at r = 0. The
solutions correspond to multicomponent generalizations
of the algebraic relation (3.21).

C. Stability and demixing

f = fp + Px(1 —x)Pv, (3.25)

where

P =Pp d g"() ~a()

+pp dA drAg~~~~(r)v~~(r) . (3.26)

Here, x is the mole fraction of, say, A chains, and p is
the total monomer density. For the perfectly symmet-
ric reference system, f is fp, and the radial distribution
functions, g,~(r), are all the same, gl l(r). The changes
in the radial distribution functions due to v~~(r) are
Agi, l (r) = g;, [r; AvA~(r)] —

glpl (r) at A = 1.

Schweizer and Curro [10(b)] have studied solutions
of these equations analytically. Their analysis shows
that the model has a low-temperature limit of stability,
T, (p~, pgy). Elements of ~(0) diverge as T —+ T, from
above, and below that temperature, ~(k) ceases to be
positive definite. For all T & T„~(k) remains finite and
positive deflnite. For large N, Schweizer and Curro show
that T, N ~

~ We will show shortly that such tempera-
tures are well below the temperatures at which the homo-
geneous blend is thermodynamically stable. As such, the
Gaussian model remains robust throughout the physi-
cally accessible homogeneous fluid states. However, if one
were to apply the often used assumption, as Schweizer
and Curro did, that the breakdown in stability is asso-
ciated with a demixing transition, then one would pre-
dict a critical temperature for the transition, T, which
would scale as T N ~ . This prediction is at odds
with Flory's T N [12]. Recent experiments [17] and
simulations [18] indicate that Flory's scaling prediction
is correct. (The precise value of T, in Flory s estimate is,
however, somewhat high [18] for reasons that will soon
be discussed. )

On the basis of perturbation theory [14], one may ar-
gue that indeed, T N. For simplicity, we confine the
argument here to the idealized. case of a perfectly sym-
metrical athermal blend of A and B chains made asym-
metric through a perturbation u~~(r) = —Pv~~(r). The
Helmholtz free energy per unit volume (in units of k~7)
is [19]

k~T, = 2Np drg (r)v~gy(r) . (3.28)

This formula ignores contributions to T of the order of
N . It seems to be the exact result for this system rest-
ing only on the assumption that Ag&&(r) vanishes as
P ~ oo, and near the critical point, it is therefore pro-
portional to a nonzero negative power of ¹ The RISM-
MSA theory obeys this reasonable assumption. Hence its
implied free energy is in accord with Eq. (3.28).

A fully consistent theory of the polymer-blend struc-
ture would yield a concentration pair-correlation function
with a divergent correlation length at the critical point
given by (3.28). This consistency is not satisfied by the
Gaussian Geld model whose pair correlations we estimate
with the RISM-MSA equations. It predicts finite ~(0)
under all homogeneous fluid conditions. The same is true
for any form of mean-Geld theory.

The RPA [2(b)] is frequently employed to interpret ex-
periments [20]. It corresponds to Eqs. (2.3) and (3.24)
with c,~ = co, and it might not seem to sufI'er from the
above mentioned inconsistency. That theory, however, is
far less tenable. Through the compressibility theorem,
the RPA yields a spinodal, and a mean-fi. eld prediction
of phase coexistence in agreement with Flory. In this
sense, the RPA predicts an infinite correlation length at
a critical point. But it contains no aspects of repulsive-
force screening. As such, its estimate of the y param-
eter and T, is too large, as if gl l(r) were replaced by
unity in Eq. (3.28). [Due to the correlation hole [2,10],
glPl(r) ( 1, approaching 1 only at large r.] Worse, how-
ever, is that with an integrable v~~(r) where v~gy (0) & 0,
one may show that the RPA predicts b,g&&(r) j—oo{&)

as r ~ 0+. The thermodynamic consequences of this
violation of the excluded volume conditions are severe.
They were detailed long ago in the context of a related
model [21]. The free energy obtained from (3.25) and
(3.26) with RPA formula for Ag&&(r) possesses catas-{A)

trophic pathologies along the entire supposed spinodal
which cannot be bridged by a Maxwell construction.

The RPA evidently predicts overly large fluctuation ef-

where Efp is a function of N and p, but for the per-
fectly symmetric athermal reference, it is independent of
p and x. Similarly, gl l(r) is a function of p and inde-
pendent of P and x. In that case, PN is a generalization
of Flory's y parameter that accounts for short-ranged
pair correlations. The first term in (3.26) is the mean-
field estimate of P6, with the mean computed with the
reference-system metric. The second integral accounts
for fluctuations about that mean.

For large N, it is straightforward to use Eqs. (3.25)—
(3.27) to analyze the phase equilibria at fixed p. There
is a demixing critical point at x = 2. In the evaluation
of its temperature, one fi.nds that the mean-Geld or high-
temperature approximation to p6 dominates, giving
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fects from potentials that perturb packing forces. The er-
rors of this theory could be examined experimentally with
measurements of polymer blend structures performed at
high pressures so as to control densities and thereby sep-
arate the different roles of packing and temperature. At
fixed densities, the RPA predicts large temperature de-
pendence due to its prediction that u(r) strongly influ-
ences Quid. structure. In contrast, the Gaussian 6.eld
model with excluded volume predicts small effects due
to perturbation potentials. The prediction is physically
reasonable since small forces cannot generally compete
with packing at high fluid densities [22]. In the con-
text of the model, packing effects are the only source of
nonlinearities. Structural features found in nature that
must be attributable to potential tails fall outside the
realm of the Gaussian field. model. For example, even
at high temperatures well above T„one expects cluster-
ing of chains consistent with the effective y parameter,
Pe. Schweizer and Yethiraj [11(b)] have noted that even
in this case of weak clustering, the RISM-MSA theory
underestimates its consequences on ~(0) by a factor of
N ~ . It may be possible to treat these structural effects
perturbatively with the Gaussian field model serving as a
reference. This strategy has proved fruitful in the study
of simple liquids [13]. Schweizer and Yethiraj's closures
[11] of the RISM equation could be viewed as forms of
such perturbation theories.

IV. DISCUSSION

The two classes of systems treated in Secs. II and III
provide physically relevant examples where predictions
of the Gaussian Beld model can be worked through ana-
lytically. More generally, asymptotic regimes for compli-
cated systems can be so analyzed perturbatively [4]. Oth-
erwise, some degree of numerical work is required in the
form of basis-function expansions to evaluate integrals
involving ~,„.Even so, one may write down a compact
expression for the response function of the model fluid as
influenced by an arbitrary excluding manifold. It can be
computed by twice differentiating Eq. (2.7). In the gen-
eral case, the interior region, "in," need not be spherical
nor a thread. The result is

It would also be of interest to extend our development
to D = 2 manifolds —models of lamellar phases [24].
Here, and in the D = 1 case too, the self-consistent analy-
sis of the manifold structure should be carried out. This,
for example, would include the computation of the in-
trachain distribution function, ur(lr —r'l; t —t'), with the
same model that provides a theory for the interchain pair-
correlation function, g(r). The starting point for such a
computation is clear enough. In particular, the partition
function as a functional of r(t) provides the solvation
contribution to the potential of mean force governing the
intrachain statistics. In the Gaussian model with u = 0,
this partition function, or influence functional [25], is pro-
portional to

(4.2)

(This expression generalizes slightly Li and Kardar's [4].)
It might be profitable to examine the relationship be-
tween this influence functional and that introduced by
Chandler and co-workers [7] in the RISM theory of poly-
mers.

In addition to noting its difFiculty in treating divergent
correlation lengths self-consistently, one should bear in
mind the limitations of the Gaussian model at small
length scales. It does not describe well the particulate
nature of matter. This deficiency is manifested, for ex-
ample, in the unphysical divergence of (4.2) in the low-
density limit. Pressed to small enough length scales, the
Gaussian model will also permit negative densities, and
it will not sustain interfaces. It is thus not too surprising
that under extreme conditions, the PY and MSA g(r)'s
can be negative. Evidently, this field-theoretic model
must be used with care, not unlike that required when
applying the analogous Langevin equation to dynamics
of the liquid state. Specifically, these linear models seem
best used to mimic the effects of a bath while the ob-
jects of primary consideration are considered explicitly.
It is remarkable that generally sensible results are ob-
tained even at very small length scales when the bath so
modeled is treated self-consistently.
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