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Numerical Monte Carlo temperature-quenching experiments have been performed on two three-
dimensional classical lattice models with continuous ordering symmetry: the Lebwohl-Lasher model
[Phys. Rev. A 6, 426 (1972)] and the ferromagnetic isotropic Heisenberg model. Both models describe a
transition from a disordered phase to an orientationally ordered phase of continuous symmetry. The
Lebwohl-Lasher model accounts for the orientational ordering properties of the nematic-isotropic tran-
sition in liquid crystals and the Heisenberg model for the ferromagnetic-paramagnetic transition in mag-
netic crystals. For both models, which have a nonconserved order parameter, it is found that the linear
scale, R(t), of the evolving order, following quenches to below the transition temperature, grows at late
times in an effectively algebraic fashion, R (t) —t", with exponent values which are strongly temperature
dependent and furthermore vary for different measures of the time-dependent length scale. The results
are discussed in relation to modern theories of ordering dynamics in systems with continuous order-
parameter symmetry.

PACS number(s): 61.30.—v, 64.60.Cn, 64.60.My, 75.10.Hk

I. INTRODUCTION

Our current understanding of the manner in which or-
der develops dynamically in systems which are brought
into far-from-equilibrium states by thermal quenching is
based on the concept of universality [1—4]. Universality
states that late-stage ordering dynamics can be grouped
into a small number of universality classes characterized
by the growth law which the ordering process obeys.
Most often the growth law is algebraic,

R(t)-t",
in time, t, where R (t) is a measure of the time-dependent
length scale which characterizes the coherence length of
the evolving order. For some systems with built-in ran-
domness, a logarithmic rather than an algebraic growth
law is expected [5]. For ordering processes which have
algebraic growth laws, two main universality classes have
been suggested: one for nonconserved order parameter
with n =—,

' and one for conserved order parameter with
n =

—,'. Within this picture, only the nature of the conser-
vation law for the order parameter is important for deter-
mining the value of n, and all other system properties are
irrelevant, such as the spatial dimensionality, details of
the interaction potential, the temperature, as well as the
number, p, of thermodynamically degenerate ordered
domains. Specific examples of ordering processes with

conserved order parameter include spinodal decomposi-
tion in binary [6,7] and ternary [8,9] systems and phase
separation in systems with phases of different density
[10,11]. Examples of processes with a nonconserved or-
der parameter include various continuous ordering and
order-disorder processes in systems where the degeneracy
index p order is controlled by the occurrence of sublattice
ordering, e.g., in adsorbed layers on surfaces [4,12]. Al-
though the concept of universality is not firmly estab-
lished, and there is controversy as to the number of
universality classes, there is an increasing amount of
theoretical and experimental evidence which supports the
basic picture outlined here [3].

In the brief description outlined above of our current
understanding of the universality in ordering dynamics it
was tacitly assumed that the ordering symmetry is
discrete and determined by a number, p, of equivalent
states, e.g., p =2 in the ferromagnetic Ising model which
describes phase separation and spinodal decomposition in
a binary mixture, and it was assumed that the value of p
is irrelevant for the universal classification. However, for
ordering processes characterized by a continuous order-
ing symmetry this simple picture may break down. A
possible physical reason for such a breakdown could be
that, whereas the ordering process for discrete symmetry
can be characterized in terms of the formation of well-
defined domains bounded by a network of localized
domain boundaries, in the case of continuous symmetry
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there is no clear concept of domain boundaries. In the
classical phenomenological theories of Lifshitz-Allen-
Cahn [1] and Lifshitz-Slyozov [13] the presence of local-
ized domain boundaries are crucial for the general argu-
ment which leads to the two universality classes de-
scribed by n =

—,
' and n =

—,', respectively. Nevertheless, in

the case of continuous symmetry it has been suggested
[14] that the ordering process, despite the absence of
sharply defined domain walls, can still be characterized
by a correlation function, C ( r, t) and a time-dependent
structure factor, S(q, t), which obey the scaling forms
[14]

C(r, t)=f [rR '(t)],
S(q, t)=R (t)g [qR (r)],

(2)

(3)

where x =qR (t) is a scaling variable, f (x) and g (x) are
scaling functions, and d is the spatial dimension. R (t) is
then an appropriate time-dependent measure of the
coherence length of the evolving order.

Recently, substantial theoretical activity involving
both analytical and numerical work has been directed to-
wards a description of ordering processes in systems with
continuous symmetry [7,14—26]. The analytical theories,
which build on a renormalization-group approach and
which are well developed in the case of a conserved order
parameter [14,16,27], suggest for order-parameter sym-
metries O(N) the existence of a separate universality class
described by an algebraic growth law with exponent
value n =—,'. The analytical result has been supported by
numerical calculations on phenomenological models with
Langevin dynamics [19,22]. The case of ordering dynam-
ics for a nonconserved order parameter is less well
developed [14,17] but the available field-theory and
renorrnalization-group calculations suggest that one
should recover the Lifshitz-Allen-Cahn growth-exponent
value n =

—,'. Numerical work using cell-dynamics simula-
tion on nonconserved models with order parameters of
continuous symmetry lead to exponent values,
n =0.42 —44, which are slightly below the Lifshitz-Allen-
Cahn value [18,23 —25].

There is no experimental data available for the dynarn-
ics of conserved order parameter with continuous sym-
metry but it has been suggested [22] that the roughening
of crystal-vapor interfaces may be a candidate for a sys-
tem in this class. Liquid-crystal systems, for which the
nematic phase is formed through an ordering process of
continuous symmetry with a nonconserved order parame-
ter, have been studied experimentally via the structure
factor [28,29] and a modified Porod law has been found
to be consistent with the theoretical results [20]. There
is, however, a problem in that the nernatic ordering has a
more general symmetry than O(N) due to the lack of
head-tail syrnrnetry breaking.

So far no numerical work has been reported on order-
ing dynamics in systems with continuous order-
parameter syrnrnetry using microscopic models. In the
present paper we report on the results of a computer-
simulation study, using statistical-mechanical microscop-
ic lattice models, of the ordering dynamics in noncon-
served systems with continuous symmetry. We shall re-

turn to the case of conserved order parameter in a later
publication [30]. By using computer-simulated tempera-
ture quenching on microscopic models, one does not have
to use coarse-grained variables, and the effects of the
quench temperature can be studied in a more natural
way. Furthermore, different measures of the evolving or-
der from the simulations can be derived in a straightfor-
ward manner.

We have studied two different three-dimensional mod-
els. The first model, on which the major part of the
present paper is based, is the Lebwohl-Lasher model [31]
of the orientational ordering process in the isotropic-
nernatic phase transition in liquid crystals. The model
has a nonconserved (nematic) order parameter of con-
tinuous symmetry which is not quite the true O(3) sym-
metry due to the inversion symmetry of the nematic
director. The second model is the three-dimensional clas-
sical ferromagnetic Heisenberg model which has the true
O(3) symmetry. By deriving results for both of these
models we are in a position to determine whether the
difference in the type of continuous symmetry is pertinent
for the ordering dynamics in the case of nonconserved or-
der parameter.

In Secs. II and III we define the two models and de-
scribe the computational techniques used. The results
are presented in Sec. IV, and the paper is concluded in
Sec. V by a discussion of the results in relation to theoret-
ical predictions and to the concept of universality in or-
dering dynamics.

II. MODELS

The three-dimensional Lebwohl-Lasher model is de-
scribed by the Hamiltonian

&=—e g Pz(cos8; ), (4)
E7J

where Pz(cos8;~)= —,'(3cos 0;J
—1), 0; is the angle be-

tween the axes of rotor molecules at nearest-neighbor
sites i and j, and e is a positive coupling parameter. The
rotors are positioned on a simple cubic lattice. The
Lebwohl-Lasher model [31] is the lattice version of the
Maier-Saupe model of an anisotropic liquid in which the
molecules are coupled by the Hamiltonian in Eq. (4). The
Lebwohl-Lasher model is the canonical model of a system
which displays an orientational phase transition and in
this respect it plays a role in the field of liquid crystals
similar to that played by the Ising model in the general
field of order-disorder phenomena in alloys and magnetic
systems. The Lebwohl-Lasher model, which neglects the
translational variables and the steric effects of the rotor
molecules, is known to produce a very weak first-order
orientational phase transition at kz T, /e = 1.1232 [32,33].
The nematic order in the Lebwohl-Lasher model is
characterized by a second-rank-tensor order parameter,
Q, and a macroscopic, three-component director which is
not coupled to the lattice. Hence the nematic ordering is
of continuous symmetry.

The three-dimensional classical ferromagnetic Heisen-
berg model is defined by the Hamiltonian

&= —JgS; S, ,
17J
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where S;=(S„;,S~;,S„) is a classical spin vector of unit
length, and J&0. The spin variables are arrayed on a
simple cubic lattice. The Heisenberg model has a
second-order phase transition from a ferromagnetic phase
to a paramagnetic phase at k~T, /J=1. 44. The order
parameter in the ferromagnetic phase is a macroscopic
magnetic moment specified by a length (the magnetic or-
der parameter) and a direction in space. The magnetiza-
tion direction in the Heisenberg model is not coupled to
the lattice. Hence, the ferromagnetic order has continu-
ous symmetry.

The two microscopic models have similar symmetry
properties, but while the spins in the magnetic model in
Eq. (5) have a sense of direction, and hence the continu-
ous symmetry is of type O(3), the rotor model in Eq. (4)
has an additional symmetry element corresponding to in-
version of the rotors.

where (,E(T) ) is the equilibrium internal energy at the
temperature to which the system is quenched. Second,
we calculated the time-dependent static structure factor,
S(q, t), and various length scales, l(t) and k (t), derived
as follows from the intensity of the structure factor
S(q=o, t)

and from its moments
—1/m

(MCS/S).
The time-dependent ordering has been monitored in a

number of different ways. First, we calculated the excess
internal energy

(6)

III. COMPUTATIONAL TECHNIQUES

The ordering dynamics in the Lebwohl-Lasher model
and in the Heisenberg model has been studied by conven-
tional Monte Carlo temperature-quenching simulations
[4,12]. Since Monte Carlo techniques imply the use of
stochastic dynamics to bring the quenched system to-
wards thermodynamic equilibrium, the choice of dynam-
ics is important when the Monte Carlo simulation is sub-
ject to a dynamical interpretation. Since we are studying
a situation with a nonconserved order parameter, we
have chosen the simplest possible Glauber excitation
mechanism which corresponds to single-site random re-
orientation of the rotor or spin variable. It should be
remarked that this dynamics does not necessarily corre-
spond to the real dynamics in a liquid crystal or in a mag-
netic system. Under equilibrium conditions the nematic
order parameter in a liquid crystal is usually conserved,
whereas the direction of the director is not [34]. In the
magnetic system, the spins are angular momentum opera-
tors and both the order parameter (the magnetization) as
well as the magnetization direction are conserved quanti-
ties. Under nonequilibrium conditions, the actual conser-
vation laws and the details of the equations of motion will
depend on how the system interacts with the environ-
ment.

The simulations were performed on simple cubic lat-
tices of different sizes, I.", and subject to periodic bound-
ary conditions. The quenches were carried out by initiat-
ing the system in a high-temperature disordered phase
( T- 0() ) and instantly quenching to a temperature below
the corresponding transition temperature. Each type of
quench was performed a large number of times (typically
5 —100) using diff'erent initial states, and the results have
been averaged over the independent quenches to provide
proper ensemble averages. This is a necessary procedure
since the ordering processes are not subject to self-
averaging [35]. However, compared to quench studies of
systems with discrete symmetry we find that less averag-
ing is needed in order to obtain reliable ensemble values,
probably because of the larger degree of randomness in
the initial state of a system with continuous variables.
The time is measured in Monte Carlo steps per lattice site

Q p(r)= —,'u (r)ut((r) —
—,'5 ti, (10)

where a, P=x,y, z and u (r) is the a component of a unit
vector, u(r), which specifies the orientation of the rotor
molecular at position r. The structure factor is then
determined from the Fourier transforms

Q p(qes)=QQ p(r)e
r

S(q, t) —,
' Z (L Z Q=,eQe, )

.
5=x,y, z a, P=x,y, z

(12)

We have calculated the circularly averaged analog of Eq.
(12) and found that it leads to the same time dependence
as the one averaged over the canonical axes only.

IV. RESULTS

We shall mainly concentrate pn results for the ordering
dynamics in the Lebwohl-Lasher model and only present
some selected results derived for the Heisenberg model
for the purpose of comparison.

q

where the primed sums in Eq. (8) are restricted by an ul-
traviolet cutoff. Without an explicit assumption about
the shape of the structure factor it is not possible to relate
in a simple way these measures of the length scale ob-
tained in reciprocal space to length scales in real space
[36].

In the case of the Heisenberg model an average struc-
ture factor can be obtained (assuming translational in-
variance) as

2

s(qt)= —,
' z (L use ' ),5=x,y, z r

where e&, 5=x,y, x, is an orthonormal set of vectors in q
space.

Since the order parameter in the Lebwohl-Lasher mod-
el is a tensor order parameter, the structure factor is
defined in terms of a local tensor order parameter
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FIG. 1. Semilogarithmic plot of the development of the inter-
nal energy E(t)/c as a function of time [t in units of Monte
Carlo steps per site (MCS/S)] obtained from quenches of the
Lebwohl-Lasher model from the isotropic, disordered phase to
two different temperatures in the ordered, nematic phase. For
each temperature the results of two different quenches are
shown. The data refer to lattices with 28 sites (solid lines) and
40 sites (open symbols). The inset, which presents the same
data for the small system in a normal plot, shows the approach
to equilibrium over long times.

Figure 1 shows the evolution of the time-dependent
internal energy E(t)IE for the Lebwohl-Lasher model as
obtained from quenches from the disordered phase to two
different temperatures in the nematic phase. Results of
two different quenches are shown for each temperature.
The figure clearly shows that the equilibrium state can be
reached within the time span of the simulation and that
an accurate value of the equilibrium energy needed for
Eq. (6) can be obtained. This should be contrasted to the
usual result from deep quenches of lattice models with
discrete symmetry, such as Ising and Potts models, where

the domain pattern often locks into a metastable slab
configuration at late times [37].

Simulation data of the type shown in Fig. 1 is now ana-
lyzed in terms of a growth law as in Fig. 2 in case of the
Lebwohl-Lasher model. The data shown illustrate the
effects on the growth law due to the finite size of the sys-
tem. It is seen that for the larger system the data con-
form to a power law, b,E(t)—t ", over almost two de-
cades. A finite-size crossover effect is seen at long times
and the crossover sets in earlier for smaller systems. The
corresponding finite-size effects in the case of the length
scales derived from the first and second moment of the
structure factor are illustrated in Fig. 3. It is seen that
both k

&
and k2 grow effectively algebraically in time, but

with different exponent values which are both consider-
ably smaller than the growth exponent for the excess en-
ergy in Fig. 2.

The effect of the quench temperature on the ordering
dynamics is analyzed in Fig. 4 and Fig. 5 in case of the
Lebwohl-Lasher model and the Heisenberg model, re-
spectively. For both models, a dramatic temperature
dependence is observed. For each temperature, the data
follow a power-law behavior over a substantial time range
before the finite-size effects set in. As expected, the
finite-size effects set in at an earlier time the higher the
temperature is. This is because the amplitude of the re-
laxation rate is larger at higher temperatures. Hence we
are able to obtain data which are not influenced by finite-
size effects for a longer time span the lower the quench
temperature is. For both models, the zero-temperature
growth exponent for the excess energy is close to n =0.25
and it increases towards n = 1 as the temperature is in-
creased towards the respective transition-temperature
value.

A comparison of the growth data for the different
length-scale measures for the Lebwohl-Lasher model in
the case of two different temperatures is shown in Fig. 6.
The main conclusions to be drawn from this comparison
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FIG. 2. Log-log plot of the excess energy, AE (t) in Eq. (6), vs
time time (t in units of MCS/S) for quenches of the Lebwohl-
Lasher model from the disordered phase to a temperature,
T/T, =0.71 in the ordered phase. The results, which corre-
spond to data obtained by averaging over 100 independent
quenches, are shown for two different lattice sizes, L =28' (bot-
tom curve) and 40 (top curve). The solid line has a slope of—0.72.
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FIG. 3. Log-log plot vs time (t in units of MCS/S) of the
length scales, k&(t) and k2(t) in Eq. (8), obtained using the first
two moments of the structure factor in Eq. (12) for quenches of
the Lebwohl-Lasher model from the disordered phase to a tem-
perature, T/T, =0.71 in the ordered phase. Results are shown
for two different lattice sizes, L =28 (open symbols) and 40
(solid symbols). The solid lines have slopes as indicated.
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FIG. 4. Log-log plot of the excess energy, AE(t) in Eq. (6), vs
time (t in units of MCS/S) for quenches of the Lebwohl-Lasher
model from the disordered phase to different temperatures,
T/T„ in the ordered phase. From top to bottom the data sets
correspond to temperatures T/T, =0, 0.18, 0.53, 0.71, and 0.89.
The data are obtained for a lattice with L =28 sites. For each
set of data a solid line with a given slope is indicated.

FIG. 6. Log-log plot vs time (t in units of MCS/S) of the
length scales, l(t)(Q), k, (t)(o ), and k2(t)( ) in Eqs. (7) and (8),
obtained using the q =0 intensity and the first two moments of
the structure factor in Eq. (12) for quenches of the Lebwohl-
Lasher model from the disordered phase to two different tem-
peratures, T/T, =0.18 and 0.71, in the ordered phase. Results
are shown for a lattice with L =28 sites. The solid lines have
slopes as indicated.

are, as already noted, that there is a substantial increase
in the effective growth exponent as the temperature is in-
creased. Moreover, we conclude that the different length
measures scale differently and the difference in their
effective growth exponents is larger than the uncertainty
for the time range and the lattice sizes studied. There is a
clear tendency for the higher moments to lead to progres-
sively lower growth exponents [we have also calculated
k4(t)j. Furthermore, the length-scale measure derived
from the structure-factor intensity at the Bragg point in-
variably has the lower exponent.

The same conclusions may be drawn from the data ob-
tained from the Heisenberg model, some of which are
shown in Fig. 7. There is a tendency for the Heisenberg
model result to give growth-exponent values which vary
more strongly with temperature compared to those of the

Lebwohl-Lasher model. The combined results obtained
from quenches to zero temperature are shown for the
Heisenberg model in Fig. 8. We note that at zero temper-
ature the different length-scale measures derived from the
structure factor give similar exponent values which are
lower than the value obtained from the excess energy, cf.
Fig. 5. Results from quenches of the Lebwohl-Lasher
model to zero temperature show the same systematics.

We have analyzed the high-q tails of the structure fac-
tor of the two models in terms of a scaling function
S (q, t) lS (0, t) and a scaled variable qS '~ (0, t) as shown
in Fig. 9 in the case of the Lebwohl-Lasher model. Due
to the small linear size of the systems simulated, data can
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log«(t)

3.0 4.0

-1.4
1.0 2.0 3.0
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FIG. 5. Log-log plot of the excess energy, AE(t) in Eq. (6), vs
time (t in units of MCS/S) for quenches of the Heisenberg mod-
el from the disordered phase to three different temperatures,
T/T„ in the ordered phase: (from top to bottom) T/T, =O,
0.18, 0.7. The data are obtained for a lattice with L"=28' sites.
For each set of data a solid line with a given slope is indicated.

FIG. 7. Log-log plot vs time (t in units of MCS/S) of the
length scales, l(t)(Q), k, (t)(O), and k2(t)( ) in Eqs. (7) and (g),
obtained using the q =0 intensity and the first two moments of
the structure factor in Eq. (9) for quenches of the Heisenberg
model from the disordered phase to two different temperatures,
T/T, =0.7, and 0.18, in the ordered phase. Results are shown
for a lattice with L"=28' sites. The solid lines have slopes as
indicated.
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FIG. 8. Log-log plots vs time (t in units of MCS/S) of the
length scales, l(t)(0), k, (t)(O ), and k2(t)( ) in Eqs. (7) and (g),
obtained using the q =0 intensity and the first two moments of
the structure factor in Eq. (9) for a quench of the Heisenberg
model from the disordered phase to zero temperature, T=O.
Results are shown for a lattice with L"=28 sites. The solid
lines have slopes as indicated.

FIG. 10. Semilogarithmic plot of the time dependence (time t
in units of MCS/S) of the size, V,„L,of the normalized,
largest ordered domain in the Lebwohl-Lasher model after a
quench from the disordered phase to a temperature T/T, =0.71
in the ordered phase. Results are shown for two different lattice
sizes, L"=28 (0) and 40 ( ). The solid lines are guides to the
eye.

only be obtained over a moderate range of q values. The
scaling of the data is not very clear but is, however, con-
sistent with Porod-type law

s(q, t)-q (13)

0.5

-0.5

0
0

-1.5

with co=5. The data for the Heisenberg model show a
similar appearance with the same value of cu.

In order to shed more light on the microscopic phe-
nomena which follow the ordering process in the
Lebwohl-Lasher model, we have tried to identify ordered
domains somewhat arbitrarily by locating those regions
of the system which carry the excess internal energy at

any given time. For that purpose we have defined or-
dered domains as connected sets of bonds between pairs
of rotors on the lattice which have interaction energies
smaller or equal to the equilibrium energy per bond at the
temperature in question. Using this definition we derived
a normalized, largest ordered domain V,„(t)L . Simu-
lation results for this quantity are shown in Fig. 10 for
two different lattice sizes. It is seen that at very early
times, t —100 MCSIS, a single domain has taken over the
whole system and the concept of domains and domain
wall loses its meaning. The fact, that the time at which
the largest domain extends over the whole system does
not depend on system size, shows that this is not a finite-
size effect. The same results have been obtained for the
Heisenberg model. Hence, the ordering process in these
microscopic models with order parameters of continuous
symmetry proceeds in a highly delocalized way involving
the cooperative reorientation of large regions of the sys-
tem. The use of the inverse excess energy, hE '(t), as a
length-scale measure is therefore questionable since it as-
sumes [12] a relation between the excess energy and a
perimeter of a domain-wall network which is not present
in these models.

-2.5

V. DISCUSSIQN

-3.5 -5.0

-4.5
-0.5 0.0

I

05 I 10
log„ IqS (O, t)]

1.5

FIG. 9. Log-log plot of the scaled structure factor,
S(q, t)/S(0, t), vs the scaling variable, qS' (O, t), for the
Lebwohl-Lasher model. The data, which are obtained from a
lattice with L"=40 sites, are shown for a series of times (in
units of MCS/S), t=2'(0), 2'( ), 2'(2 ), 2'(0), and 2' (4).
The solid line has the slope —5.

We have in this paper presented the results of a com-
parative computer-simulation study of the dynamics of
ordering in two microscopic statistical-mechanical lattice
models with nonconserved order parameter of continuous
symmetry. The main result of the study is that the time-
dependent excess energy, as well as the different measures
of time-dependent length scale which characterize the
evolving order after a quench from the disordered phase
to the ordered phase, conform to effectively algebraic
growth laws with values of the growth exponent which
are different for the excess energy and different length-
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scale measures. Furthermore, the growth exponent for
each length-scale measure is different from that of the
others and it varies with temperature. An analysis of
real-space configurations reveals that at late stages the or-
dering process cannot be characterized in terms of a
well-defined domain-boundary network. Hence, the
length-scale measure derived from the inverse excess en-
ergy does not behave like a proper length scale for our re-
sults, although it still monitors the time evolution of the
ordering process in a global manner. Therefore, our re-
sults for the ordering dynamics in the two microscopic
models studied do not conform to the usual ideas of
dynamical scaling and universality.

The important question is: do the ordering dynamics in
both microscopic models conform to the dynamical scal-
ing behavior of Eqs. (2) and (3)? The renormalization-
group analysis of Bray [14] is based on a coarse-grained
Langevin equation and gives a clear picture of dynamical
scaling for models with a conserved vector order parame-
ter. Bray states that the case of domain growth for a
nonconserved order parameter is more tenuous and pro-
poses that a contribution from the elimination of short
length-scale degrees of freedom should be included in the
analysis. He argues convincingly that this may be de-
scribed in terms of an intermediate length scale
representing the thickness of interfaces and directly pro-
portional to the surface tension. Under these cir-
cumstances Bray obtains a growth exponent n =

—,
' corre-

sponding to dynamical scaling for a nonconserved order
parameter in the universality class of the Ising model for
both scalar and vector order parameters. Direct simula-
tion of the nonconserved Langevin equation for nematic
liquid crystals gave a growth exponent n =0.44 in three
dimensions [18].It is most likely that our system sizes are
such that we would still be in the intermediate scaling re-
gime of Bray, in which case it is not unreasonable that
our results do not conform to the dynamic scaling predic-
tions and exhibit temperature-dependent effective growth
exponents. It is interesting to note that the results for
both our models are very similar, even though the
Lebwohl-Lasher model has inversion symmetry.

Another important question relates to the nature and
role of the defects in the ordering dynamics of systems
with a nonconserved order paraxneter. Liu and Mazenko
[17] invoke the presence of stable topological defects and
propose that the corresponding defect dynamics controls
both the bulk ordering field and short-distance behavior
in the scaling regime. This point has been studied in de-
tail by Bray and his co-workers [20,38] in terms of the
dependence of Porod's law on the nature of the defects.
In particular the form of Porod's law is that the high-q
tail in the structure factor can be written as follows in the

scaling regime:

g ( t) q
—(d+m) (14)
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m = 1 for domain walls, I=2 for strings or vortices, and
m =3 for monopoles. Bray et al. [20] obtain a value of
m =2 for nematic liquid crystals. They also show that
there is reasonable agreement with experiment for small
enough values of q. Our data of Fig. 9 for the high-q tail
corresponding to the Lebwohl-Lasher model is consistent
with this value even though the defects in our simulations
cannot be identified as strings. However, Fig. 9 does
show that, due to the sizes of our systems, the tail can
only be analyzed over a very short range of q values.

Furthermore, Bray [14] argues that temperature is an
irrelevant variable and, under certain circumstances, a
dangerously irrelevant variable in the scaling regime. In
contrast our data show that the growth exponent for both
the microscopic models considered here for the noncon-
served case is strongly temperature dependent. This re-
sult supports our earlier conjecture regarding the role of
intermediate length scales in dynamic scaling for systems
with nonconserved vector order parameters.

To conclude, our results are not in agreement with the
theoretical results based on field theory [17] and
approximate-renormalization-group theory [14] which
for the case of ordering dynamics in systems with non-
conserved order parameter of continuous symmetry pre-
dicts that the classical Lifshitz-Allen-Cahn growth law
with n =

—,
' should be recovered. It is dificult, based on

the present numerical work and the approximate nature
of the current theory, to assess the reason for the
discrepancies. It is interesting to note that a possible
route to clarify this situation further may be to numeri-
cally study the effect of fields which break the continuous
symmetry. Earlier work [39] on two-dimensional XY
models with cubic anisotropy which breaks the continu-
ous symmetry, introduced the concept of soft domain
walls whose width could be varied with the strength of
the symmetry-breaking field. In the region of "hard" and
localized domain walls the well-known results for order-
ing dynamics with nonconserved order parameter were
found, whereas when the softness was increased and the
domain-wall thickness became large compared to the sys-
tem size, the effective growth exponents increased beyond
the hard-wall values.
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