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Localized states in a film-dragging experiment
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When a viscous Quid is dragged up the retreating wall of a partially filled cylinder, rotating horizontal-

ly, a localized structure can occur corresponding to the spatial coexistence of two different states of the
viscous layer. By changing two control parameters, the angular velocity and the amount of Quid, we

were able to characterize the domains of stability of coexisting states. Localized structures are stable
and stationary in a small region of parameter space where the transition between these two states is

large. In analogy with a phase transition with a conserved order parameter, it is suggested that the size

of the localized structure is selected from both a law of conservation of total volume of liquid in the
cylinder and a stability criterion. By studying the profile and the dynamics of disturbances of the viscous

layer, we have shown that both states are well described by the lubrication approximation, but this ap-
proximation fails to explain the coexistence of the states.

PACS number(s): 47.52.+j, 47.20.Ma

I. INTRODUCTION

A problem of current interest is pattern formation in
nonlinear dissipative systems driven far from equilibrium
by an external force. One of the simplest spatial patterns
is a localized structure, consisting of two spatially homo-
geneous stable states coexisting in an interval range of the
control parameter. Such localized structures are widely
observed experimentally. Well-known examples are local
regions of turbulent motion surrounded by laminar Aow,
which appear in many open liow experiments [1], and
spatially localized traveling waves observed at the onset
of convection in binary fiuid mixtures [2,3].

The central questions of the field concern the mecha-
nism responsible for the stabilization of localized struc-
tures and for the selection of their size. Thual and Fauve
[4,5] have reported the existence of localized structures in
the vicinity of an inverted Hopf bifurcation. They have
shown that the stabilization mechanism is a nonvariation-
al e6'ect, i.e., it is due to the absence of a free energy to
minimize in the instability problem that they considered.

In contrast, we report, in this paper, the experimental
observation of a localized structure associated with a
conserved-order-parameter transition. This type of tran-
sition is well documented for systems at thermodynamic
equilibrium, when the stability and the proportion of
coexisting states can be calculated variationally by
minimizing the total free energy, while constraining a
global quantity to be constant [6]. We present an experi-
mental study of a dissipative system, where a spatially ex-
tended layer of viscous Auid breaks into two states above
a critical velocity threshold. In the experiment, the
viscous Auid is dragged up the inner wall of a horizontal-
ly rotating cylinder. At small rotation rates the Auid cov-
ers the entire inner surface of the cylinder. However, the
coverage is not uniform in the azimuthal direction and a
bump is formed near the bottom of the cylinder. This
bump shows a well-defined and perfectly horizontal front
parallel with the principal axis of the cylinder (the z axis)
[see Fig. 1(b)]. At high rotation rates the coverage is

completely uniform; the bump disappears [see Fig. 1(a)].
At intermediate rotation rates these two regions of cover-
age coexist along the z axis. Below the onset of the coex-
istence state, the dragging of Auid is homogeneous in the
axial direction, but when the rotation velocity is in-
creased further, we observe the fragmentation of the lay-
er into three regions: two lateral regions of completely
uniform azimuthal coverage surrounding a central region
of nonuniform coverage (see Fig. 4). The borders be-
tween any two regions connect in space the two possible
homogeneous solutions (along the z axis) and correspond
to kink-type defects. We observe that the size of the cen-
tral region, which we call a localized structure, decreases
when the angular velocity is increased. We show experi-
mentally that the size of the localized structure is deter-
mined by both the total conservation of Auid in the
cylinder and the limits of stability of each state. This
behavior is similar to the classical thermodynamic phase
coexistence when a global quantity is conserved. The dy-
namics and stability of the two states is studied in detail.
Each state is characterized by measuring its profile and
by studying the dynamics of imposed disturbances. It is
shown that the lubrication approximation [7] explains the
main features of the observed behavior but fails to ex-
plain the coexistence between the states: in this approxi-
mation a continuous transition is expected.

This paper is divided into four sections. In Sec. II we

FIG-. 1. Sketch of the profile of the film on the inner surface
of the horizontal cylinder: (a) Homogeneous film state; (b) Oat
front state. (The z axis is perpendicular to the plane of the
figure and is superposed with the principal axis of the cylinder. )
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describe the experiment itself, investigate the global
behavior of the system, and present our primary experi-
mental results, namely, a brief description of the observed
behavior and a phase diagram.

In Sec. III we summarize the lubrication approxima-
tion for the viscous layer, extend it, and discuss how it
applies to our experiment by comparing with more
refined experimental results: the measurement of the
profile and a study of the dynamics of disturbances of the
viscous layer. The main features of the profile and the
dynamics of disturbances are in good agreement with the
lubrication approximation. However, this theory fails to
explain the coexistence between the states. Further, we
present measurements of the size of localized structures
and perform a quantitative analysis utilizing both the glo-
bal conservation of volume and the stability criterion for
coexisting states. Finally, in Sec. IV a short conclusion is
given.

II. THE EXPERIMENT

Our experimental setup consists of a horizontal rotat-
ing cylinder of inner radius 5 cm and length 56 cm,
driven by a variable-speed motor at a rotation frequency
in the range 0.1 —3.0 Hz, with velocity Auctuations less
than 2%%uo. Vibrations produced by the motor are damped
by the coupling with the cylinder, and deviations of the
cylinder's principal axis from the horizontal are less than
5X10 rad. The cylinder is made of glass and was
rectified to reduce the variation of its inner radius to less
than l%%uo.

The two main experimental parameters are the volume
of Auid per unit length, i.e., the area of the cross section
of the cylinder occupied by the Auid, A, and the angular
velocity co. We consider only the case A « AT, where
AT is the total inner cross section of the cylinder. Vari-
ous regimes can be observed depending on these parame-
ters and properties of the fiuid [7—12]. The behavior we
describe here was observed using a silicon oil (Rhodorsil
47V500), with kinematic viscosity v=5 cm s ', surface
tension y=21 erg/cm at 25'C, and density p=0. 97
g/cm . This oil ensures a perfect wetting of the glass sub-
strate.

For high enough angular velocity, all the Auid gets
dragged up the inner wall of the cylinder, forming a near-
ly uniform stationary film. We call this state a "homo-
geneous film state" [see Fig. 1(a)]. In contrast, if the an-
gular velocity is small enough, a part of the liquid
remains near the bottom of the cylinder and generates a
bump. The bump is parallel with the principal axis of the
cylinder, and its steep part can be seen as a Aat front. We
call this state the "fiat front state" [see Fig. 1(b)). The
front is stationary in the frame of the laboratory and per-
fectly horizontal [see Fig. 3(a)]. The transition between
the homogeneous film and the Aat front states is not con-
tinuous, and several situations, depending on whether co

is increased or decreased, are observed.
We first studied the existence domain of the homogene-

ous film state. When m is decreased, the homogeneous
film becomes unstable at a critical velocity co 2(A). At
the threshold, it starts to develop small localized distur-

20

c2

15

10

I

50
I

100
I

150
I

200
I

250 300

A (cm 4)

FIG. 2. Phase diagram in the plane (co, A ). In the region TD
we observe traveling disturbances, in SD, stationary distur-
bances. The threshold for transitions undergone by the Oat
front is given by the line co &, for values of 3 in region 2, the

C

transition is to a modulated front (MF). In region 3, the transi-
tion is to localized structures (LS).

bances that correspond to a local excess of Auid traveling
azimuthally on the free surface of the film. Their veloci-
ties depend on angular position 8 (8 is defined from the
horizontal; see Fig. 1) and on the rotation rate: the dis-
turbances are observed to travel slowly near 19=0 and
quickly near 0=m.

In order to measure the onset of instability, we very
slowly decrease the angular velocity in small steps. After
each step, we wait for a time on the order of 30 periods of
rotation. It was observed that this time is larger that the
time necessary to reach a stationary regime. In this way,
we obtain the critical velocity co 2( A), and by measuring
it for several values of A, we obtain the limit of stability
of the homogeneous film. The experimental results are
presented in the phase diagram in the space of co and A
(see Fig. 2). The dependence of co &(A) with A is linear,
and the best resulting fit is the solid line ~ 2 in Fig. 2.

When co is decreased further and reaches a second crit-
ical velocity co 0( A), the velocity of the disturbances van-

ishes near 0=0; several disturbances can collapse togeth-
er and stop at the same horizontal position, where they
create localized bumps. The bumps are organized in an
aperiodic pattern, as shown in Fig. 3(c). The profile of
bumps is smooth if A is small and steep if A is large [see
Fig. 3(c)]. Their axial size is about 1 cm. This transition
was measured and the experimental results correspond to
the straight line co o on the phase diagram of Fig. 2. The
bumps expand laterally as soon as co is decreased. When
co reaches a new critical velocity co &( A ), they collapse to-

gether forming a horizontal Aat front. This transition
was also measured and the experimental results plotted in
the phase diagram. The dependence of co &(A) with A is
also linear, and the best resulting fit is the solid line cu

&
in

C

Fig. 2. We note that when A is small enough, the transi-
tion between the homogeneous film and the Aat front
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states is roughly continuous. Experimentally, it becomes
dificult to differentiate between co &, co o, or co 2. the dis-

turbances appear preferentially near 0=0 and remain
there where they collapse together laterally and form rap-
idly into a bump along the principal axis of the cylinder.
Moreover, the profile of the bump along the cylinder is
smooth so that the front is not well defined.

In the following, we study how the Bat front state des-
tabilizes when the angular velocity is increased. For
small angular velocity the front is straight in the axial
direction except near the lateral walls where the bound-
ary creates small dips. At the threshold the front destabi-
lizes and disappears in different ways depending on A.
Three cases can be distinguished.

For small A, the bump disappears gradually: the Quid
contained in the bump is slowly and homogeneously
redistributed along the circumference of the cylinder.
Nevertheless, it creates small traveling disturbances on
the film. Later, these disturbances are damped to give
rise to a homogeneous film state.

For intermediate A, the linear front becomes wavy in
the z direction [cf. Fig. 3(b)]. It takes on a sinusoidal
shape of well-selected wavelength but the transient is
long: on the order of the viscous diffusion time over the
length of the front (~-I. /v). The wavelength of the pat-
tern is about 5 cm and practically independent of A. The
amplitude of the sinusoid is discontinuous at the thresh-
old and increases quickly with angular velocity. The bi-
furcation is thus a first-order transition and the observed
critical angular velocity is proportional to A . For all
the volumes that we investigate, the pattern is regular but
is stable only very close to the instability threshold; when
m is increased slightly further, the Quid contained in the
modulated bump is dragged up the retreating wall. But
in this case the dragging is not gradual. It starts in the
highest parts of the modulated bump and gives rise to a
periodic pattern of drops. These drops are quickly
dragged also, but the disturbances that they generate on
the films are not damped. In fact, two neighboring dis-
turbances can collapse together and become a stationary,
localized bump near 8=0 [cf. Fig. 3(c)]. The profile of
bumps is steep and their size is about 1 cm. Frequently,
these bumps organize themselves in an aperiodic pattern

%%+%%hhS%4&%%%%%4i%%%&h+%%hi+4hxitii%NXN%&%4%j ""::.i ~

FIG. 3. Photographs of fronts in the cases of (a) co=6.9
rad/s, a stable flat front; (b) co=7.3 rad/s, a stationary wavy
front; (c) co=7.5 rad/s, a quasiperiodic pattern of bumps.
A =10.7 cm . The dashes indicate the 0=0 location in the
cylinder.

FICx. 4. Localized structure: (a) co=12.1 rad/s; (b) co=13.06
rad/s; (c) co=14.45 rad/s. 3 =14.3 cm . The dashes indicate
the 0=0 location in the cylinder.
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whose mean wavelength is larger than that of the period-
ic pattern.

Karweit and Corrsin [8] reported a similar pattern for-
mation, also in a horizontal rotating cylinder, but utiliz-
ing Auids of small viscosities. In that case, for large rota-
tion rates, most of the Auid still lies at the bottom of the
cylinder and the free surface of Auid is quite irregular.

For large A, the front does not disappear completely,
but rather we observe that a homogeneous film state and
a Aat front state coexist at different z locations in the
cylinder. At co (co &( A ), the homogeneous front state ex-

ists everywhere, but at the threshold, two small regions of
the homogeneous film state start to appear near the la-
teral walls of the cylinder [cf. Figs. 4(a) and 4(b)]. The
central portion of the cylinder remains occupied by the
flat front state. We define a localized structure as a re-
gion of the flat front state surrounded by the homogene-
ous film state.

When co is increased in small steps, the size of the Aat
front state decreases slowly and its length stabilizes to a
well-defined value for each step in ~. As ~ increases,
most of the Auid moves laterally and goes into the Aat
front state where it increases the local value of A. The
coexisting states then have different "density of volume, "
and they can be characterized globally by these quanti-
ties, which we call 3, for the Aat front state and Az for
the homogeneous film state.

Between both states and over a distance on the order of
the radius of the cylinder, the front is strongly curved.
Near 0=0, it becomes tangential to the principal Aow
and gives rise to a ring of larger thickness at this axial po-
sition (see Fig. 4). This is a wall between the states. This
wall connects in space the two possible homogeneous
solutions and corresponds to a kink-type defect.

The thresholds for the Aat front instabilities were mea-
sured by very slowly increasing the angular velocity. At
each increment, we waited for a time on the order of the
viscous diffusion time. In this way, we obtain the critical
velocity, and by measuring it for several values of 3, we
obtain the limit of stability of the flat front state. The ex-
perimental results also collapse onto the straight line
co &(A) on the phase diagram (see Fig. 2). This shows

that the instability of the Aat front state has no apprecia-
ble hysteresis.

III. THE MODEL

A. A dimensional argument

less parameter Re is a Reynolds number, Re=Rcoho/v.
The dimensionless parameter 8 is an inverse Bond num-
ber, B=y/pgR . C=co R/g measures the competition
between centrifugal and gravitational force. a=ho/R
measures the fullness of the cylinder (ho and A are relat-
ed by the condition of conservation of volume). All these
dimensionless parameters have a clear physical meaning,
and any one of them is a constant along the transitions
thresholds. We then define a new dimensionless number
A =covR /gh 0

=C/e Re, which measures the competition
between viscous stress and gravity. Writing A as a func-
tion of 3, i.e., A =(2m) vR co/gA, we see that A is con-
stant along a straight line in the plane (co, A ). Each tran-
sition presented in the phase diagram (see Fig. 2) is then
characterized by a single value of A: Ao = 1.67,
A, =1.56, and A&=2. 14 for the straight lines co 0, co ~,

and ~ &, respectively. This result suggests that competi-
tion between viscous stress and the tangential component
of gravity is responsible for the observed behavior. How-
ever, in order to characterize fully the observed behavior,
a second dimensionless number is needed. We choose e
because it clearly identifies regions 1, 2, and 3 of the
phase diagram. In conclusion, a complete description of
the system requires four independent dimensionless num-
bers, but in our case only two dimensionless numbers are
relevant: A and e.

B. Lubrication approximation

In order to describe more precisely the homogeneous
film state and the Aat front state, we follow the enlighten-
ing work of Moffatt [7]. In the lubrication approxima-
tion, the spreading equation reads

0 zl
v =g cos(0),

By

where u is the azimuthal component of the velocity in the
layer, g cos(0) is the tangetial component of gravitational
acceleration, and 0 is measured from the horizontal (see
Fig. 1). y is the radial coordinate that, in this case, is
measured from the inner surface and taken positive when
moving toward the center of the cylinder. In Eq. (1), in-
ertia effects have been neglected. A necessary condition
for the validity of this approximation is Re*
=coho/v«1, where Re* is the Reynolds number for
this problem. Solving Eq. (1) with the relevant boundary
conditions, u =R~ at y=0 and Bu/By=0 at y=h,
Moffatt obtained

In order to summarize our experimental results and
gain some physical insight about the observed behavior,
we look for the relevant dimensionless control parameters
of the system: it is well known that such quantities mea-
sure the competition between stabilizing and destabilizing
effects at the instability onset.

The parameters of the system are the angular velocity
co, the Auid density p, the mean thickness of the viscous
layer ho, the Auid viscosity v, the surface tension y, the
radius of the cylinder R, and the acceleration of gravity
g. With these parameters, we define four independent di-
mensionless numbers: Re, B, C, and e. The dimension-

g(0)g(0)Rgcos(0)[h(0, t)]
3v

where Q(0, t ) = f ou dy is the flux at the angle 0 and h is

the local film thickness. The height profile is obtained
from the continuity equation

aa 1 ag
()t R BO

(3)

Equation (3) arises from volume conservation; for a
homogeneous state, its integral form reads
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A = J Rh(8)d8=2vrRho . (4)

Suppose now that the Bow has reached steady state,
then clearly Q is constant and h (8) is given in terms of Q
from Eq. (2). This equation is represented graphically in
Fig. 5. Here, Q is presented as a function of h for con-
stant co, 0 is used as a continuous parameter. Note that
at 8=0, Q has a maximum, Q,„=—,'Rco&Rcov/g, when
h =h,„=&Rcov/g. A continuous solution for h(8) is
then given by the intersection of the horizontal line, cor-
responding to a given value of Q, with the family of
curves in Fig. S. As pointed out by MoC'att, a continuous
solution for h then exists if and only if Q Q,„.In this
case, h(8) ~h,„,since larger values of h cannot be
reached continuously. The condition Q ~Q,

„

for the
existence of the continuous solution can be translated,
from Eq. (4), into a condition involving the total volume
of Quid and the rotation rate, that is, for a given 3, co

must not be smaller than a critical value
co, =( A /4. 428R ) g/R v [7] (this corresponds to
A =2.06). Physically, it means that there exists a
minimum value of co for which all the Quid can be
dragged up the retreating surface to form a stationary
film. In other words, the homogeneous film solution no
longer exists if the tangential component of gravity can-
not be balanced everywhere by viscous stress. This
occurs first near 8=0 when h =h,„sothat Q =Q,„.

Nevertheless, we think that a stationary solution for
which the profile presents a thicker layer bounded by a
horizontal discontinuity near the bottom of the cylinder
representing the Oat front state is also possible if m (co, .
This solution can be obtained by intersecting a horizontal
line corresponding to Q,„with the family of curves in
Fig. 5, but by taking the values of h larger than h,

„

in
the lower portion of the cylinder. The angular position of
the discontinuity can be obtained from conservation of
volume of fiuid in the cylinder [Eq. (4)]. We note that the
resulting profile has a single discontinuity only if Q is
equal to Q,„.Otherwise, two discontinuities are neces-

3.0—

2.5—
~+max

2.0—

1.0—

0.5—

0.0 —,
0 h/h, „~

FIG. 5. Geometric representation of Eq. (2). Q/Q, „

is
presented as a function of h/h, „utilizing 0 as a parameter
(Q,„=2Rco&Rcovlg and h, „=v'Rcov/g). When Q/Q( 1, the intersection of the dashed line with the family of curves
gives a continuous solution for h(0). A solution with a single
front is possible only if Q =Q „.

sary to reach value of h larger than h,„(Q(Q,„)or no
solution exists (Q )Q,„).

In conclusion, two states for the viscous layer are pos-
sible depending on the angular velocity. The transition
between states must be continuous: the homogeneous
film state becomes a Aat front state at co, . Thus, the lu-
brication approximation cannot explain the coexistence
domain between these states. This can only be explained
by invoking a minimal bump size so that it is necessary to
have a finite amount of Quid to build a Bat bump. The
onset for the Oat front state must then be smaller than co, .
In the following subsections we study experimentally the
two states of the system and we discuss how the lubrica-
tion approximation applies.

C. The stationary homogeneous film state

In order to describe precisely the homogeneous film
state and to check the predictions of the lubrication ap-
proximation, we have measured the film thickness "h" as
a function of 0 for a constant 3 and several values of co,
all larger than co ~(A). The data were taken with a tip
gauge positioned directly above the free surface of the
film. The film thickness was then measured by the tip
gauge, which could be moved in the radial and angular
directions with a precision of about 10 mm and 0.2,
respectively. The experimental results are shown in Fig.
6. The profile of the film varies slowly with 0, having the
largest variation for small co. Experimentally, Q was
determined by measuring h (7r/2), from the relation
Q =h(vr/2)Rco [14]. The solid lines in Fig. 6 correspond
to the intersection of this value with the family of curves
in Fig. 5; very good agreement is obtained without any
adjustable parameter. It is necessary to note that the hy-
drostatic pressure contribution (due to the radial com-
ponent of gravity), the centrifugal force, and the surface
tension efFect were also neglected in deriving Eq. (2).
This assumption is valid if ho/R, co ho/g, and yho/pgR
are smaller than unity, which is the case in the domain of
parameter explored experimentally.
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FICi. 6. Profile of the homogeneous film state for various
values of cu and A =6.25 cm . h(m/2) =0.183 cm for co=4.85
rad/s, and h(m. /2)=0. 198 cm for co=12.3 rad/s. The solid
lines correspond to the theoretical profile obtained from the lu-
brication approximation.
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D. Dynamics and stability of the homogeneous film state

Above co 2 the homogeneous film is observed to be
C

stable, and we can gain physical insight about its dynam-
ics and stability by studying the spatiotemporal evolution
of local artificially created disturbances. These were gen-
erated by small drops that were released onto the free
surface of the film by a pipette. When a disturbance is
created, two phenomena are observed. First, it is quickly
advected by the flow and, second, it is damped or
amplified. The damping or amplification of disturbances
depends on angular position. A disturbance crossing the
region between m &8&2m. (the stabilization region) is
slightly damped. In contrast, it is observed that a distur-
bance is slightly amplified by the radial component of
gravity while it crosses the region between 0 & 8 & n (the
destabilization region). Despite this, for co above co 2, the

global result is a damping of disturbances after several re-
volutions of the cylinder. Note that the characteristic
time of amplification of a disturbance of size l near
8= n/2 is rD —3vl /gh 0 and that the characteristic time
of advection of a disturbance is r„-~/co. Thus, when co

is decreased, a disturbance crossing the destabilization re-
gion in a time ~~ larger than ~D could be considerably
amplified and the homogeneous film could become unsta-
ble. Taking l —lpl, (l, =v'y/pg is the capillary length),
which is the size of disturbance observed experimentally,
we find that, at the threshold and for the domain of pa-
rameters explored experimentally, ~~ is always smaller
than ~D. This estimate shows that the arnplification
effect is not responsible for the instability of the homo-
geneous film; the stabilizing effects of surface tension,
centrifugal force, and the radial component of gravity (in
the stabilization region) dominate. In fact, in the desta-
bilization region the homogeneous film state must be un-
stable to the Rayleigh-Taylor instability [13]. This
phenomenon was not observed because the disturbances
are quickly advected, passing out of the destabilization
region before they actually grow.

As discussed earlier, in the framework of the lubrica-
tion approximation, the homogeneous film solution no
longer exists if co is smaller than the critical value

co, = ( A /4. 428R ) g /R v .

The experimental results presented in Fig. 2 show that
co 2 is proportional to 3 with the constant of propor-
tionality nearly equal to the value predicted by the lubri-
cation approximation. The instability of the homogene-
ous film state is then due to the tangential component of
gravity, which cannot be balanced by viscous stress near
0=0. At the threshold, the Quid which cannot be
dragged accumulates near 0=0 where it forms small dis-
turbances. As we pointed out in Sec. II, at the threshold
and for small 2 disturbances were observed effectively to
stop near 0=0. When A is large, the disturbances do not
stop. This is not surprising because co & increases with 2

C

so that a disturbance can have enough kinetic energy to
cross the region where viscous stress vanishes.

In the following we measure the azimuthal velocity of
the artificial disturbances. We consider the case of small

~p g cos(8)h
co R vco

(5)

where co is the advection velocity and h is the nonper-
turbed profile. This relation is represented by the solid
lines in Fig. 7 for 0=0 and m. The agreement with exper-
imental results is good considering that there is no adjust-
able parameter. Therefore, we think that the advection
of disturbances is well characterized by this term. We do
not suggest that the dynamics of local disturbances is
given by a simple equation of advection, but rather that
the advection phenomenon can be isolated from the
diffusion phenomenon when the time scale is small
enough. We think that this is the case when we measure
a local velocity.

The variation of co&/co with 0 was studied in more de-
tail by measuring co /co as a function of 0 for two values
of co and constant A. The experimental results plotted in
the inset of Fig. 7 show that for values of 0 in the interval

1.5—

3~ 1.0-m=.==... Q~3 Q

G
Q

D~
05 Q e=P

6= n

0.6—

0
0.4—

I

0.0
I I I I I

0.2 0.4 0.6 0.8 1.0

0.0—
I

0.00
I

0.05
I

0.10 0.15
h(cm)

I I

0.20 bc 0.25
I

0.30

FIG. 7. Local tangential velocity cop of disturbances normal-
ized to co as a function of h. co= 1.85 rad/s. The inset shows cop

as a function of 0: A =2.5 cm; co 2-0.5 rad/s.
C

3 only. The velocities were measured by a differential
position photosensor placed very near the free surface of
the film. It detected the time of transit of a disturbance
between the two sensing points of the photosensor, which
were illuminated homogeneously by a planar laser beam.
Then, in the absence of disturbances, the sensing points
remain homogeneously illuminated, giving a very small
signal. A disturbance passing in front of the sensor devi-
ates light from the laser, giving two opposite peaks whose
time delay is measured by a numeric oscilloscope. In Fig.
7 we show the mean velocity of disturbances co, for 0=0
and ~, as a function of local thickness h and for a con-
stant co (h is varied by changing 3). At 8=0, co~/co
remains nearly 1 as long as h «h, (h, is defined at
co=co 2), it decreases with increasing h, and becomes

practically zero when h reaches h„the disturbances stop
near 8=0. At 8=~, co~/co always increases with h.

A straightforward estimation of the velocity of local-
ized disturbances can be obtained from a linear stability
analysis of Eq. (3). The resulting equation, which gives
the dynamics of disturbances, includes an advection term
of the form
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[~/2, 3m /2], co~/co is always of order unity and slowly in-
creasing when co is decreased. A larger decrease of co /cu

is observed for 8 in the interval [ m—/2, .vr/2]. As a result
of the variation of cu~ /cu with 8, focusing and defocusing
effects appear. To explain these effects, we consider two
disturbances starting at different angular positions, the
first one at some 0& near the center of the interval
(3m. /2, 2~) and the second one at 82 near the center of the
interval (vr, 3'/2) T.he two disturbances approach 0=0
with decreasing velocities. As the velocity of the second
one is larger, the distance between disturbances de-
creases; this is the focusing effect, which is equivalent to
what occurs when two cars start to slow down at a red
light. Alternately, when the first disturbance crosses
0=0, its velocity starts to increase, while the velocity of
the second one is still decreasing. The distance between
the two disturbances then increases; this is the defocusing
effect.

K. The Aat front state
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In this section we describe the evolution of the fiat
front state with rotation rate, before its destabilization.
We measured the thickness of the film at O=vr/2 as a
function of co for several values of A. The experimental
results (see Fig. 8) show that h(n/2) varies as &tu and
does not depend on the value of A; all the experimental
data collapse onto a single curve. This result is in agree-
ment with the lubrication approximation, where the scale
of h is given by h(~/2) cc &Rcov/g. Moreover, in the
particular case, when the fiux is equal to Q,„,Eq. (2)
predicts that h(~/2) = 2&Rcov/g. This law is represent-
ed by the solid line in Fig. 8. Because all the experimen-
tal data collapse onto this particular curve, we conclude
that in the fiat front state, Q is always close to Q,„.This
result is independent of A. The inner wall of the cylinder
is then dragging the maximal quantity of liquid predicted
by the lubrication approximation.

Next, we measured the profile of the Hat front state.
Two cases are distinguished: small and large A. For
small A, Fig. 9(a) shows the profile of the front state for

7.5

E
g3—

0—
l

0
I

10
I

20 30 40
Rta(cm js)

50
I

60

FIG. 8. Thickness of film at 0=m/2 as a function of cu and
several values of A. In the flat front regime, h(~/2) is indepen-
dent of A and is proportional to &co. The experimental value of
the numerical constant of proportionality shows that the Aux
traversing the angular section at 0=~/2 is always close to the
maximum value predicted by the lubrication approximation.

FIG. 9. Profile of the linear front state for various values of
m: (a) 3 =6.25 cm . When h(0) is normalized to h(~/2), the
profile of the film scales as &co. The dotted lines correspond to
the two theoretical branches obtained in the lubrication approx-
imation. (b) A =10.2 cm . In the bump, experimental results
deviate from the prediction of the lubrication approximation.
Close to the steep-slope part, other effects must be taken into
account [15]. The units of co are rad/s.

two values of ~. The bump near the bottom of the
cylinder and a slowly varying part elsewhere. The bump
has a smooth part which matches tangentially, near 0=0,
with the slowly varying part, and a steep slope part,
defining a front. We show that when h(8) is normalized
to h(vr/2), experimental profiles collapse into a single
shape, except near the steep-slope part of the bump.
When cu is increased, this part of the bump moves to
larger 0 values as a result of the decrease in the amount
of liquid in the bump. These results show that the profile
of the linear front state scales as &co. Moreover, the
profile of the linear front state follows the form predicted
by the lubrication approximation when Q =Q,„and is
represented by the dashed lines in Fig. 9(a).

For large A, the results plotted in Fig. 9(b) are similar,
but the profile of the bump does not scale as v'co

anymore. The nondimensional slope of the smooth part
of the bump increases with co. Nevertheless, we think
that the profile of the linear front state is not physically
different from the second solution given by the lubrica-
tion approximation. The observed deviations are prob-
ably due to surface tension and to the inertial and
geometric effects [15] which become important when the
thickness of the bump becomes large.

F. Localized structure

In the nucleation of localized structures, two situations
are possible: the viscous layer can break into several lo-
calized structures or form a single one, depending on the
way in which the rotation rate is increased to reach the



48 LOCALIZED STATES IN A FILM-DRAGGING EXPERIMENT 2711

coexistence domain. We first study the case of a single
localized structure. The density of volume is identified as
the naturally conserved order parameter whose global
conservation reads

1.0 +

LA =A, A, +(L —
A, )A2, (6)

0.6—

where A. is the size of the isolated localized structure and
L is the length of the cylinder. Let us assume that A&

and Az are given by the limit of stability of each state
(presented in the phase diagram of Fig. 1). Then from
Eq. (6) we can write the following relation for the evolu-
tion of k with cu:

0.4—

0.2—

Q. Q +
2.0 2.2 2.4 2.6

+
2.8

1 1

A2 A)

1

ga2
(7)

where o,'& and a2 are the slope of the lines co & and

co, respectively, in the phase diagram of Fig. 2 (a,
=6.15X10 and a2=8. 5X10 rads 'cm ). The
last assumption appears justified because the coexisting
states were observed to be sensitive to perturbations. For
example, when ~ was increased by a small jump, the fIat
front state broke into several localized structures. Equal-
ly, sma11 bumps appeared spontaneously on the portions
of homogeneous film. This shows that both states are
close to their 1irLiits of stability. Thus, A2 and A& are
given reasonably well by the lines co 2 and cu & of the

phase diagram.
In order to measure k as a function of co, we increased

the angular velocity very slowly and at each increment
we waited a time of at least order ~. In this way only one
localized structure appears in the central region of the
cylinder. The experimental results are plotted in Fig. 10.
When A, is of order L, its evolution with co is well de-
scribed by Eq. (7). However, when A, becomes small, Eq.
(7) predicts a value smaller than the value observed ex-
perimentally. We think that in the latter case, A, is dom-
inated by the repulsive interaction between the two walls
of the localized structure, rather than by a marginal sta-
bility criterion.

When our system was quenched in the coexistence re-
gion by a jump of angular velocity, the viscous layer
broke into several localized structures of different sizes.
The total length occupied by these structures decreased
faster than the prediction of Eq. (7) (see Fig. 10). We
think this is due to the finite amount of Quid contained in
the walls of the localized structure. Equation (7) must
then be corrected to take this effect into account. More-
over, this effect becomes dominant when the number of
walls is large.

In our experiment the formation of localized structures
is seen to be similar to the formation of droplets in a
phase transition with a conserved order parameter. For
instance, when an impurity-containing substance at the
solid-liquid transition is quenched in the coexistence
domain, it breaks in two phases. Many small regions of a

(rad/s)

FIG. 10. k/I. as a function of co, for A =14.3 cm . The solid
line represents the prediction of Eq. (7). The closed circles cor-
respond to the size of a single localized state; the open circles
correspond to the total size of several localized states.

solid phase, low in impurities, then appear. We can also
imagine a small system where only one region nucleates.
In both cases the global conservation of impurities con-
trols the final state of the system. In the first case, it gives
the volume occupied by the collection of regions and in
the second case it controls the size of the single region.

IV. CONCLUSION

We have shown that two states of the viscous layer can
coexist and give rise to localized structures. By extending
the model of Ref. [7], we are able to explain the general
features of the coexisting states, namely, their profiles
and the dynamics of imposed disturbances. Nevertheless,
this model cannot explain the coexistence of the states be-
cause it predicts a continuous transition between them.
This coexistence can only be explained by invoking a
minimal bump size, so that a finite amount of Quid is
necessary to build a Aat bump. Thus, the onset for the
Bat front state is smaller than co„aswas observed experi-
mentally.

In Sec. III, we have seen that the size of a single local-
ized structure is well described by both global conserva-
tion and by stability arguments for coexisting states.
Thus, the transition from the Oat front state to a localized
structure appears as the nonequilibrium analog of a ther-
modynamic transition with conserved order parameter.
In such a transition, the stability and the proportion of
the coexisting state can be calculated variationally by
minimizing the total free energy while constraining a glo-
bal quantity to be constant. However, this has not been
done in our system since, as yet, no expression for the
free energy has been found.
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