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Coupling between a coherent structure and fine-scale turbulence
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Our direct numerical simulations show that a coherent structure (C) in an initially fine-scale homo-
geneous, isotropic turbulent field breeds secondary structures in its vicinity. These are organized.
Shaped like concentric spiral threads perpendicular to the axis of C, each is found to be highly polarized
with the azimuthal vorticity component being dominant. The threads occur in pairs, and the polariza-
tion typically alternates between adjacent threads. Above a critical value ( =1000) of Re=I q/v (I is
circulation, v is kinematic viscosity) a small number of circulation-rich threads emerge as a result of the
evolution. The secondary structures are of both practical and theoretical importance. For Re & Re„;„
the strongest threads excite bending waves on the axis of C. For Re »Re„;„Cis eventually destroyed.
We believe that this feedback phenomenon is of critical importance for the rearrangement of coherent
structures (CS) and transition to turbulence in shear flows such as plane, circular, and elliptic jets. Tur-
bulent mixing near C is due to entrainment and ejection of fluid by the threads. Local isotropy assump-
tion cannot be applied near a CS, because our results show anisotropy in a layer surrounding C. The
threads are shown to be the combined result of three mechanisms: (1) azimuthal alignment of small-
scale vorticity by the strain rate field of C; (2) merger (pairing) and axisymmetrization as in two-
dimensional turbulent flows, enabled by the alignment; and (3) polarization by difterential rotation.

PACS number(s): 47.27.—i

I. INTRODUCTION

The interactions between large and small scales is of
fundamental importance for a deeper understanding of
the physics of turbulent Bows and their modeling, and for
developing effective techniques for the control of tur-
bulence phenomena. This is particularly true for Aows
featuring large-scale coherent structures. In such Bows,
for that matter in any turbulent shear Qow, it is question-
able if the small scales are statistically isotropic; i.e., we
have had lingering doubts about the validity of local Isot-
ropy, which is the centerpiece of Kolmogorov's theory
and is still the breeding ground for theories of turbulent
flows. For example, Hussain [I] speculates that in spite
of wide-scale separation, large- and fine-scale motions are
intimately coupled and that the presence of coherent
structures may thus partially cripple the traditional sta-
tistical turbulence models, which assume local isotropy.
Here we examine this issue further by studying direct nu-
merical simulations of a single idealized coherent struc-
ture embedded in a sea of random, small-scale, isotropic
turbulence.

The interaction between coherent structures and small
scales is dificult to model. On the one hand, a coherent
structure generates a local shear, which, if sufBciently
strong, can sustain turbulent fl.uctuations by shear pro-
duction via alignment and stretching of the fine-scale vor-
ticity. Such turbulent fluctuations can even be generated
by a coherent structure itself through various cascade
mechanisms, e.g. , filamentation, tearing, and reconnec-
tion [2]. In the neighborhood of a coherent structure, the
small-scale Auctuating vorticity in addition to being

stretched is also advected around the coherent structure.
On the other hand, the small scales may significantly
inAuence and change the evolution and internal dynamics
of the coherent structure itself. A prime example of this
phenomenon is the axisymmetrization of a noncircular
vortex in two-dimensional (2D) turbulence [3]. Here the
small-scale structures (filaments generated by the vortex)
influence the large scales (the vortex) in such a way as to
make it circularly symmetric. Throughout the history of
turbulence research there has been a strong temptation to
model the small-scale inAuence on the large scales by
means of a turbulent diffusion mechanism, e.g., mixing
lengths, eddy viscosities, as well as sophisticated models
such as renormalized-group theory (RNG). In two di-
mensions, such approaches have been clearly defeated
through the discovery that the small scales can self-
organize into increasingly larger scales [4]. The 2D
mechanism responsible for this inverse energy cascade is
pairing, or merger, of vortices. The vortices resulting
from successive mergers invalidate statistical theories
based on random phases [5].

Similar amalgamation of circulation through frequent
vortex mergers is in general not expected to occur in 30
for the geometrical reason that the vorticity vectors lack
a preferred direction. However, some 30 turbulent Aows
are quasi two dimensional in the large scales, e.g. , mixing
layer, plane jet, near field of a circular jet, and in such
Rows the amalgamation of circulation through successive
pairings is well known [6,7]. In fact, the coherent-
structure concept was formulated through an experimen-
tal investigation of a mixing layer [8] and the near field of
a circular jet [9]. In this paper, we show that the pres-
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ence of a large-scale coherent structure imposes preferred
direction to the nearby small scales. We examine in de-
tail the spiral structure of the intermittency thus induced
by the coherent structure. Our study leads us to formu-
late a conjecture about local anisotropy of the small
scales and internal intermittency in the high-Reynolds-
number limit. Also, we investigate the feedback (or back-
scatter) of the small scales on the coherent vortex and
whether this feedback can be modeled by an enhanced
diffusion. The similarities as well as differences between
the internal intermittency described here and related
types [10,11] reported in the literature are discussed in
Sec. VIII B.

II. INITIAL CONDITIONS AND THEIR MOTIVATION

The rectilinear laminar vortex (case L 1) discussed in a
companion study [12] has a sinusoidal core-size variation
along the axis. This vortex clearly qualifies as a coherent
structure. Our numerical simulations (spectral in a
periodic box) of the interactions between large and small
scales consist of this single dynamically evolving coherent
structure embedded in a background Aow, which initially
consists of random solenoidal fine-scale isotropic velocity
Auctuations. Thus there is no interaction with other
coherent structures and no self-induced transverse dis-
placement; moreover, the coherent structure dynamics
are represented entirely by the core dynamics, whose
laminar version we have analyzed in considerable detail
elsewhere [12,13]. This idealized setup allows us to focus
directly on the large-scale —small-scale coupling and may
also be thought of as a model of a segment of a coherent
structure (Fig. 1) in turbulent shear fiows like jets, wakes,
and mixing layers, or of internal intermittency near a
rodlike vortical structure.

The initial turbulent background is isotropic, homo-
geneous, and consists only of scales represented by wave
numbers in a certain interval, i.e., k E [kI, k& ]. Within
this interval, the phases are random with a uniform prob-
ability distribution, while the amplitudes are random
with a C" probability distribution P times a normaliza-
tion factor. The normalization factor serves to give the
turbulent velocity field a specified rms value u,', . The
distribution P is

for them to survive in strength for a reasonable length of
time and thus be able to dynamically interact with the
vortex. We performed a number of preliminary low-
resolution (64 ) calculations in order to find the interest-
ing Auctuation levels. In these test runs the background
Auctuations consisted of white noise. Even though the
fluctuation level always decayed rapidly, we observed the
formation of increasingly larger scales in the background,
albeit sometimes at very low amplitudes. Simple viscous
decay obviously produces a growing scale in the tur-
bulent background; i.e., the larger scales in the white
noise dissipate slower than the smaller ones. However,
the small-scale-structure dynamics in the meridional
planes appeared to have some resemblance with the or-
ganization in 20 turbulence. In order to check for a pos-
sible small-scale-organization mechanism other than sim-
ple viscous decay, we performed a simulation with a tur-
bulent background consisting only of the smallest possi-
ble scales allowed by the resolution. The formation of in-
creasingly larger scales in the background occurred also
under these conditions, thereby drawing our interest to
internal intermittency and small-scale organization.

This then motivates the choice of the random back-
grounds listed in Table I, each of which features a spec-
tral gap in wave number between coherent and in-
coherent scales. Four low-resolution simulations
( T 1 —T4) with varying amplitude /3 of the initial random
velocity Auctuations were performed so as to cover the
interesting range of P. In case Tl, the coherent structure
emerged in axisymmetric shape after the initial decay of
the random Auctuations. In cases T2 and T3, the
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where y= ~2~k~ —(kh+kI )(/(2kh —2kh). The graph of 8
is fiat topped with smoothed Qanks [3]. (Note that the
use of this distribution makes it easy to redo our simula-
tions at different resolutions. ) Thus the turbulent back-
ground is herewith specified by k&, kh, and u,', . The
motivation for the specific values of these parameters is
presented below.

In spite of our idealized setup, the spatial resolution
imposes severe restrictions. In order to have a well-
resolved calculation, the small scales must necessarily be
subject to strong damping. Consequently, the rms value
of the small-scale Auctuations must be initially substantial

FIG. 1. Sketch of a segment of a coherent structure in some

prototypical shear Aors. (A) Circular jet; (B) plane jet; (C) mix-

ing layer.
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TABLE I. Parameters for simulations (dimensional units).
Here N is the spatial resolution; v is the kinematic viscosity; ro,
p, and A, describe the initial coherent vortex (i.e., the vortex
boundary is given by s*(z*)=ra [1—icos(2mz*/A, *)]; coo is
the initial peak vorticity of the coherent vortex; [k„k„]is the
interval of wave numbers for the fine-scale turbulence;
P=u ', , /u ~„„withu~„kbeing the peak velocity in the laminar
vortex).

Case 1V Re p COp k( ka P

TABLE II. Parameters for simulations (nondimensional
units). The nondimensional values are obtained by using
characteristic time and length scales (t and L ) derived from the
initial coherent vortex. t =8~M*~/I * and 1.—:~8M*/1 *~ ',
where I * is the circulation and M* is the average axial angular
impulse (see [12] for details). Using these units we have
Re—= I */v=L 2/gv.

Case N 10 v p coo k( kq

L1
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10

0.5 0.6
0.5 0.6
0.5 0.6
0.5 0.6
0.5 0.6
0.5 0.6
0.5 0.6

64 7.563 2m 20
64 7.563 2m 20
64 7.563 2m 20
64 7.563 2n 20
64 7.563 2m. 20

128 1.891 2m 5
128 1.891 2m 5
128 0.503
128 a
128 0.503
128 a

0
18 21 0 1

18 21 0 5
18 21 1 25
18 21 2 5
30 34 1.
30 34 2 5

'In these simulations an artificial viscosity of the form v46 is
employed, with v4 = 1.563 X 10

L 1 64 665.2 0.5 0.8727 9.139
T1 64 665.2 0.5 0.8727 9.139
T2 64 665.2 0.5 0.8727 9.139
T3 64 665.2 0.5 0.8727 9.139
T4 64 665.2 0.5 0.8727 9.139
T5 128 665.2 0.5 0.8727 9.139
T6 128 665.2 0.5 0.8727 9.139
T7 128 2500.
T8 128 a
T9 128 2500
T10 128 a

'See Table I.

1.8752
1.8752 18
1.8752 18
1.8752 18
1.8752 18
0.4688 30
0.4688 30

0
21 0.1

21 05
21 1.25
21 25
34 1.
34 2.5

coherent structure emerged with bending waves excited
and sustained secondary structures winding azirnuthally
around the vortex. However, in case T4 the coherent
structure did not survive the interaction with the small
scales; that is, after the initial decay of the fluctuations
the vortex had disappeared altogether. Based on these
four simulations we estimated the parameter values for
the high-resolution simulations, T5 and T6, so as to ex-
cite bending waves on the vortex.

The initial random fluctuations of course cannot be
characterized as "genuine" turbulence, because they have
not adjusted to the presence of the coherent vortex; but
this is the only way to introduce well-defined background
turbulence field. However, within a few rotations of the
vortex the turbulence adjusts to the presence of the
coherent structure and thus becomes more realistic.
During this time the fine scales decay drastically. That
way we obtain a weakly turbulent vortex which we may
use as the initial condition for other simulations with in-
creased coherent Reynolds number, because the value of
the viscosity is no longer computationally restricted by
the fine-scale turbulence but by the coherent vortex.
Cases T9 and T10 (see Tables I and II) are examples of
such simulations.

In order to facilitate comparisons with the laminar
evolution (case L 1 in Refs. [12,13]), we designed the tur-
bulent simulations T 1 —T6 (Table I and II) such that the
"coherent Reynolds number" Re, ( =I /v), based on the
coherent vortex, is exactly the same as in case 1.1—the
reference laminar case for all turbulent simulations.
Thus, the circulation of the vortex was decreased by a
factor o. whenever the kinematic viscosity was reduced by
a factor a.

III. SMALL-SCALE ORGANIZATION

The growth of the incoherent scales is illustrated by
considering a plane ~~~ containing the axis of the coherent

structure (hence a meridional plane). This structure is in-
itially axisymmetric and would remain so in the absence
of the random fluctuations. The coherent vorticity does
not initially contribute to co„,the vorticity component
normal to m~~, as there is no azimuthal vorticity in the
structure at t =0. Thus the sizes of regions in m.

~~,
where

the vorticity component co„is of one sign, reveal visually
the scales associated exclusively with the initial in-
coherent vorticity; see Fig. 2(a). Subsequently, the
coherent structure acquires helical vortex lines and there-
by contributes to co„. These contributions to co„are
characterized by the nearly odd symmetry about the axis
and have larger scales than the incoherent background;
see Figs. 2(b) —2(e). The incoherent scales grow progres-
sively everywhere in the computational domain; see Figs.
2(a) —2(q). This growth cannot be the result of purely
diffusive mechanisms because of the absence of intermedi-
ate scales at t =0. In the following section we show that
the organization is the result of an inviscid interaction be-
tween coherent structure and the turbulent background.

The growth of incoherent scales in the neighborhood of
a coherent vortex, exemplified by case T5 in Fig. 2, is
typical. Such growth occurs in all turbulent simulations
of this type (Tables I and II) and was also seen in our pre-
liminary simulations with initially "white-noise" in-
coherent vorticity, devoid of any spectral gap. This takes
place for all excitation levels of the incoherent vorticity,
provided that the underlying coherent vortex survives in
some form. However, the effect of the organization on
the evolution of the coherent structure itself depends
strongly on both the initial excitation level and the
coherent Reynolds number as will be shown in a later
section.

While Fig. 2, which depicts only the sign of co„,shows
a growth of incoherent scales, it does not reveal the cor-
responding vortical structure. For that we need to con-
sider plane sections as well as isovorticity surfaces of ~ro~.
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TABLE III. Times for frames. (I): Valid for cases L1 and
T1—T4. (II): Valid for cases T5 and T6.

Frame label

(a)
(b)
(c)
(d)
(e)
(f)

(g)
(h)
(i)

g)
(k)
(l)

(m)
(n)
(o)
(p)
(q)
(r)
(s)

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5 ' 5

6.0
6.5
7.0
7.5
8.0

10.0
12.0

0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0

0
5 ~ 322

10.644
15.966
21.288
26.610
31.932
37.254
42.576
47.898
53.220
58.542
63.864
69.186
74.508
79.829
85.152

106.440
127.728

~ QP~SI [

-~ie—

FIG. 2. Positive and negative regions of co„in ~~I for case T5
{see Tables I and II). The frame labeling (a), . . . , (q) refers to
the times given in Table III; the same labeling is used for same

time identification in figures throughout the paper. The hor-

izontal axis of the initially axisymmetric coherent vortex is

marked on the side of each frame.

FIG. 3. The vorticity norm in m~~ for case T5 at di6'erent

times; see Table III. The intersection point of arrows in {g) and

(i) indicates the location analyzed later. The contour levels in

dimensional units are (a) coq =70, 5&v=10, gray shading for
co&10; (b) coq =8, 5co=1, gray shading for co&1, thin contours
are for co=0.4,0.8, 1.2, 1.6; (c) &oh =4.5, 5co=0.5, gray shading
for co & 0.4, thin contours are for co =0.2, 0.4,0.8; (e)—(i)

coq =4.0, 5co=0.5, gray shading for co &0.2, thin contours are
for co=0.05, 0.1, . . . , 0.45; (1) co& =2, 5co=0.25, gray shading
for co&0. 1, thin contours are for co=0.02,0.04, . . . , 0.2; (q)

co& =1.25, 5co=0.25, gray shading for co &0.1, thin contours are
for co=0.02,0.04, . . . , 0.2. For reference the Kk = 1

(Rk =—[co /i2S;, S;, )]' is the kinematic vorticity number) con-
tour is overlaid with a heavy line in each frame.
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Figure 3 shows contour levels of ~r0~ in m~~
for the same

flow (case T5). Initially the incoherent vorticity contrib-
utes so much to ~co~ that the coherent structure is indis-
cernible [Fig. 3(a)]. Howeve'r, the vorticity magnitude de-
creases dramatically as a result of viscous decay in the
early part of the simulation and as a consequence the
coherent vortex quickly becomes discernible; see Figs.
3(b) and 3(c). While the scales of the incoherent vorticity

grow every where in the computational domain (Fig. 2), it
is only near the coherent structure that the incoherent
vorticity magnitude remains appreciable; see Figs.
3(e)—3(q). The fact that the incoherent scale —unlike the
vorticity magnitude —appears uniform in the computa-
tional domain is a consequence of computational limita-
tions, namely, the size of the coherent structure to the
box size. In j;eality, incoherent vorticity very far away

%4%%0%4%?%%1%4' ~W?? XIWX4%4%40 .%%6%%%%0 '%%4% X .. 6%AXE

~ .~'?40?? ?????

:.'i(i~4~~&++. .~.;.'. .&+ ':. . .:... ::..::... .: '. " . :"-::-:.. ': ...'44xxij"'q%44%iAA??~~

'';" i+W4c~4'~' ',: . . ",' '::. . : ':; ':. '
. .. ,-; ';, . ': . . ?F, ':.

A
' W?. .. ? .., ?? '~X%NSx ,'44g. .. . : %.??????Ã4%A+~

I"IQ. 3. (Continued).
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a ~"

FIG. 4. Cross section of the vortex corresponding to frame

(g) of Fig. 3 is shown by the vorticity norm. The lowest contour
levels are shaded gray. A smaller contour increment has been
used for the low levels than for the high levels.

from the coherent structure will not be inAuenced by the
shear of the vortex and hence will not be subject to or-
ganization; however, no part of our computational
domain is very far away from the coherent structure.

In a layer surrounding the coherent vortex, we observe
interesting vortical dynamics, reminiscent of 2D tur-
bulence; see Figs. 3(e)—3(q). This dynamics is driven by
the shear induced by the coherent structure, for the small
vortical structures are being wound around it in a spiral
fashion. Figure 4 which shows a cross section perpendic-
ular to the axis of the vortex at a z location indicated by
the upward arrow in Fig. 3(g). A 3D isovorticity plot,
Fig. 5, reveals that incoherent vortical structures are
swirling azimuthally around the coherent structure. We
recognize similarities with the growth of the boundary
layer on an impulsively rotated rod [14,15]. However,

FIG. 5. Isovorticity surface for case T5 corresponding to
frame (q) of Fig. 3. The vorticity norm on the surface equals
10% of the peak value.

there is an important difference in that the spiral struc-
ture in our case features an obvious lack of axisymmetry
(Fig. 4).

IV. VISCOUS AND INVISCID ASPECTS
OF THE SMALL-SCALE ORGANIZATION

The small-scale organization starts with the azimuthal
alignment of the random vorticity in a layer surrounding

100 10

10

0.1

0.01 =

0.001

,0001

0.01

0.001

0.0001

0.00001

FIG. 6. (A) Energy spectrum E(~k~, t) for
case T5 corresponding to frames (a), (b), (c),
(g), and (q) of Fig. 3. (8) Energy spectrum
E(k„t)corresponding to frames (a), (b), (c),
(g), and (q) of Fig. 3.
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the vortex; see Fig. 4. This alignment is obviously an
inviscid phenomenon for it is driven by the shear induced
by the coherent vortex. Once the vorticity in the sur-
rounding layer through the alignment acquires a pre-
ferred direction (roughly parallel to the azimuthal direc-
tion) the dynamics become subject to the similar geome-
trical constraints as 2D vorticity dynamics. Therefore
pairing of small-scale structures must be considered as a
possible inviscid mechanism for the organization. We
must carefully distinguish between this inviscid mecha-
nism and simple viscous decay which also produces a
growing scale.

The energy spectrum E( ~k~, t) for case T5 is shown in
Fig. 6(A). The initial spectral gap which is clearly evi-
dent at t*=O has disappeared at t*=0.5 due to the
strong damping. Most of the energy in the initial small-
scale peak cascades to higher wave numbers where it is
dissipated. Some energy is, however, transferred to
smaller wave numbers early on (before t*=0.5) as seen
by comparing the spectra at t*=O and t*=0.5. If the
small-scale peak in the spectrum had been a steady forc-
ing this would result in a k infrared spectrum (Lesieur
[16],p. 194). Such an infrared spectrum does not develop
here because the peak quickly disappears by decay. The
strong decay is evident at later times through the rapid
tailing off of the spectrum and its growing scale. The en-
ergy associated with the coherent vortex is mainly in the
axial wave number (k, ) equal to zero, therefore the small
scales in the surrounding layer are more clearly diag-
nosed by the spectrum E(k„t);see Fig 6(B).. This spec-
trum builds up a k ' tail. The energy transfer spectrum
(Fig. 7) shows a growing scale and that the energy is

0.001

FIG. 8. Enlarged view of a pairing event occurring in simula-

tion T5, illustrated by contours of co„in ~~I, with negative values
shown by gray shading. The enlarged area contains the two
small-scale vortical structures indicated by arrows in Fig. 3(g).
The successive frames (top to bottom) are at t*=2.75, 2.875,
3.0, 3.125, 3.25, 3.5, 3.75, 4.0.

0.000

-0.003

-0 ~ 002

10 20 30 40 50

FIG. 7. Energy transfer spectrum T( ~k~, t) for case T5 corre-
sponding to frames (b), (c), (g), and (q) of Fig. 3. Note that the
curve labeled (b) has been scaled by 0.1.

transferred from larger to smaller scales. Thus the
coherent vortex cascades energy to the smaller scales in
the surrounding layer through vortex stretching. We em-
phasize that the possible occurrence of pairings is not
ruled out by this type of energy transfer and that pairings
do not imply a net inverse energy cascade.

By following the evolution of individual small scale
structures in the surrounding layer we find events that
closely resemble pairings. That is, structures of the same
polarization (see Sec. V) combine into larger ones when
they come in close proximity. An example is given in
Fig. 8 which shows in an expanded view the details of the
amalgamation of the two structures identified by two ar-
rows in Fig. 3(g); these structures have combined into the
similarly identified structure in Fig. 3(i). If this is indeed
a pairing event, then it is of course very viscous and lacks
the fine-scale filaments seen in 2D simulations at much
higher Reynolds numbers [17]. Moreover, in Fig. 8, the
cross section is in a fixed plane in space, while the small
structures are actually swirling around the coherent
structure. This swirling is the reason for the outward dis-
placement (downward shift of the vorticity peak in Fig. 8)
of the paired small scale structure; compare Figs. 8(g) and
8(i). The motion of the small structures normal to the
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Even though axial transport is slow relative to the swirl
velocity it is of central importance. For axial transport
can bring distant small-scale structures in close prox-
imity —thus enabling them to pair. There are three axial
transpot phenomena: dipole motion of nearby threads
with opposite signed azi.muthal vorticity, curvature in-
duced motion of individual threads, and advection in the
meridional Row of the coherent vortex.

In addition to the inviscid pairing mechanism for the
production of larger structures, there are also inviscid
mechanisms generating new smaller scales in the sur-
rounding layer. Filamentation from the thread cores is
one such mechanism. Another is that a thread can peel
vorticity out of the coherent vortex. Moreover, the
coherent vortex can itself shed vorticity into the sur-
rounding layer. Finally, vortex stretching by the
coherent vortex can also produce small scales by shrink-
ing the thread cores.

V. THE NATURE OF THE INTERNAL
INTERMITTENCY NEAR A COHERENT STRUCTURE

FICx. 9. End result of simulations T7 (A) and T8 (B), both of
which have the How field in Fig. 3(g) as the starting conditions.
The cross sections should be compared with frame (i) of Fig. 8.

cross-section plane also makes the pairing event appear
slower than it in fact is.

In order to see whether the sequence of events cap-
tured and magnified in Fig. 8 is a pairing, and hence, an
inviscid phenomenon smoothed out by diffusion or just a
consequence of the viscous decay and a growing scale in
the background, we restarted the calculation from Fig.
3(g) with reduced damping, i.e., cases T7 and T8. In case
of T7 the Reynolds number is increased by a factor of 4,
while in case T8 the artificial viscosity v&5 (so-called hy-
perviscosity) is applied. The latter reduces the energy de-
cay drastically as only the very smallest scales are sub-
jected to significant damping. In both cases the pairing
event occurs within the same time in spite of the different
and smaller damping; see Figs. 9(A) and 9(B). Thus the
event captured in Fig. 8 is an inviscid pairing, which will
occur at all Reynolds numbers and which can only be
smoothed by viscous effects. We conclude that the
small-scale organization is an inviscid phenomenon with
pairing being the central mechanism.

The spiral structures surrounding the coherent struc-
ture (Fig. 5) constitutes a new type of internal intermit-
tency. We find mainly axial vorticity inside the vortex
and mainly azimuthal vorticity in the surrounding layer.
Note that the spiral structures are threadlike rather than
sheetlike. These threads have high helicity and are high-
ly polarized in the sense of the generalized Helmholtz
decomposition [16]—a point that we elaborate on in
the following.

The generalized Helmholtz decomposition splits a 3D
vector field into three rotationally invariant parts: a po-
tential part, a left- and a right-polarized part. The sum of
the latter two yields the rotational part of the field. Local-
ly the vector lines of the left (right) polarized part form
left-handed (right-handed) helixes, hence their names.
The decomposition is accomplished by using the complex
helical-wave decomposition [13,16]. The decomposition
reveals an important feature of the spiral threads sur-
rounding the coherent vortex, namely, individual struc-
tures are either predominantly right handed or predom-
inantly left handed. Figure 10 gives an overall picture of
this phenomenon by showing surfaces of constant co&

[Fig. 10(A)] and ~car ~
[Fig. 10(B)]at the end of simulation

T5. When these surfaces are overlaid [Fig. 10(C)] we see
that the polarized components tend to occupy separate
locations in the surrounding layer. This is a clear indica-
tion of small-scale polarization and spatial separation of
the peak regions of right- and left-handed polarized com-
ponents.

In order to quantitatively assess the degree of the
small-scale-structure polarization we must make a point-
wise comparison of the amplitudes of the polarized vorti-
city components uz and coL. For that purpose we intro-
duce the quantity

A(x, y, z) =logz[ ~mz(x, y, z)
~ /~co&(x, y, z)

~ ] .
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% equals zero when there is a balance between left and
right components (i.e., no polarization); % is positive
when the right component dominates and negative when
the left dominates. The absolute value of A gives a mea-
sure for the degree of local polarization. A logarithmic
function is used in (2) because R shows large spatial vari-
ations. For convenience we use the logarithmic function
with base 2. Figure 11 shows the contours of % for case
T5. Already the initial conditions exhibit significant po-
larization in the random small scales, in that A ranges
from approximately —5 to 5, [Fig. 11(a)]. This range of
A changes only little through the evolution. Figure 11
clearly shows that the small-scale organization is accom-
panied by a similar organization in the left and right
handedness of the vorticity field, which can hardly be
surprising as the characteristic scale in the turbulent
background grows continuously through the evolution.
The central issue that we must address is whether local
peaks of ~A~ are associated with local peaks of ~co~ (i.e.,
small-scale structures) in the surrounding layer. Thus we
must compare corresponding frames of Figs. 3 and 11.

This comparison is nontrivial, for % is not conditioned
with respect to vorticity magnitudes. That is, ~cori ~

and
~coL ~

may both be very small at a given point, in which
case the value of % is not of any interest. Note that
I~, I=0~I~, ~=O implies ~co~=0, but ~@@~=0 does not
imply ~co~ ~

=Oh (coL ~

=0. Note that subscripts R and L
denote right- and left-handed components. Hence the
best way to discount irrelevant peak in % is, for a given
peak in Fig. 3, to search for a corresponding peak in Fig.
11. Using this procedure, we readily find a significant de-
gree of polarization (i.e., ~%~ & 1) for most small struc-
tures in the surrounding layer. For example, in frame (q) cuz e6})OhcoL. e&(0 (3)

there are about 17 significant peaks of ~co~ in the sur-
rounding layer [Fig. 3(q)]—15 are matched closely by
peaks of % [Fig. 11(q)]. Note that in general there is a
small distance between corresponding peaks in Figs. 3
and 11, but the correlation is clear. We notice that in
frame (q) as well as in other frames there are a only a few
(less than 10%) small-scale structures in the surrounding
layer which show little polarization ( ~%

~

&0.5). Outside
the surrounding layer, however, the correlation between
polarization peaks and small-scale vortical structures
deteriorates with the distance from the coherent struc-
ture.

The small-scale structures surrounding the coherent
vortex are aligned with or against the swirl: the right-
handed structures are aligned with the swirl and the left-
handed ones are aligned against it, as indicated in Fig.
12(A). We can obtain a rough understanding of this
phenomenon by considering the vector lines of coR and
coL near the coherent vortex (note that these lines should
not be confused with the regular vortex lines, which are
the vector lines of co). Both co+ and coI have a positive
mean z component inside the coherent vortex. Since, fur-
thermore, the co+ lines are locally right-handed helixes
we can roughly expect an m& line, which enters or exits
the coherent vortex core, to have a positive coo corn-
ponent as sketched in Fig. 12(B). When a similar argu-
ment is applied to the coL lines, which are left-handed
helixes, we find that they have negative co& in the sur-
rounding layer [Fig. 12(C)]. Hence we can roughly ex-
pect that
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in the surrounding layer; here e is a unit vector in the
azimuthal direction. Figures 12(D) and 12(E) show that
the above argument has merit, but also show that it is not
always true. At a distance away from the coherent vor-
tex the argument fails completely, which can hardly be
surprising given the turbulent nature of the Bow. More

significantly, the argument occasionally also fails within
the surrounding layer, because of phenomena as illustrat-
ed in Fig. 12(F).

Some of the phenomena described above may also be
inferred from the helicity density [Fig. 12(G)] with the
present choice of inertial frame (i.e., no translational ve-

FICx. 11. Pointwise polarization ratio A [defined in Eq. (2)] for case T5 is shown in plane ~~~ at times given in Table III. Contour
levels are in increments of 0.5 and the negative values are marked by gray shading. For reference the Kk =1 contour is overlaid with
a heavy line in each frame.
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locity at infinity). This is due to the dominance of the az-
imuthal vorticity and velocity components in the sur-
rounding layer. However, we emphasize that the helicity
density is no substitute for the helical decomposition.
There are a number of reasons for this. First, the helicity
density is not a local characterization of the vortex lines
but of the streamlines. Second, it is not possible to ex-
press the Navier-Stokes equations in terms of the helicity
density. Third, the helicity density only shows the align-
ment of vorticity and velocity in the surrounding layer
and hence picks out the spirally aligned small-scale struc-
tures, but the local polarization of these small scales can-
not be inferred.

Figure 13 shows the dissipation contours in m~~. Com-
parison of Figs. 11 and 13 does not reveal any correspon-
dence between high values of % and low values of the dis-

FICz. 11. (Continued).

sipation. Neither does one observe a consistent
correspondence between low dissipation and high values
of the helicity density [compare Fig. 12(G) and Fig.
13(g)]. In fact there are examples of local helicity peaks
coinciding with local peaks in the dissipation. Hence, we
cannot draw any conclusions regarding spatial regions of
high or low dissipation, polarization, and helicity.

VI. POLARIZATION MKCHANISMS INHERENT
IN THK SMALL-SCALE ORGANIZATION

There are interesting consequences of the shear-
induced alignment resulting from the presence of the
coherent vortex. The foremost effect is to provide the
vorticity in the surrounding layer with a preferred direc-
tion (roughly the azimuthal direction) and thus enable the
well-known dynamics of 2D vortices (pairing or merger,
dipole motion, and axisymmetrization), albeit in a
rnodi6ed form. We now focus our attention on how this
quasi-20 vortex dynamics makes the small-scale struc-
tures highly polarized.

It is essential to notice that the vorticity after the ini-
tial alignment is not exactly aligned with the azimuthal
direction, but have vortex lines showing spiral pattern as
sketched in Fig. 14(A); see also the cross section in Fig. 4
[which corresponds to frame (g)]. The spiral pattern is
not stationary as the angle P with the azimuthal direction
decreases with time. This is because the azimuthal veloc-
ity induced by the coherent vortex increases as one moves
towards the vortex along one of the spiral arcs shown in
Fig. 14(A). The coherent shear and hence vortex stretch-
ing of the spirally aligned small-scale structures also in-
crease along the arc (as can be inferred from r ' induc-
tion velocity variation outside the coherent vortex). As a
result, the vorticity magnitude increases along the spiral
arc. It follows that there is a differential rotation along a
small-scale structure in the surrounding layer; see Fig.
14(B). This differential rotation gives the structure an in-
trinsic tendency to become polarized. As illustrated in
Fig. 14(B), structures with vorticity pointing in the direc-
tion of the coherent vortex's swirl become predominantly
right handed while structure with vorticity pointing
against the swirl becomes predominantly left handed.
We call this phenomenon internal polarization of the
small-scale structures.

Another important aspect of the spiral geometry
shown in Fig. 14(A) is that the distance between two
neighboring spiral arcs increases with increasing radius
(see also Fig. 4). When two small-scale structures pair in
the surrounding layer as shown in Fig. 14(C), then an ob-
vious consequence of the spiral geometry is that the pair-
ing takes place faster close to the vortex than away from
it. Thereby the vortex lines acquire additional coiling
and hence stronger polarization as shown schematically
in Fig. 14(C). Thus pairings of the small scales with the
same polarization maintain and may even enhance the
small-scale polarization.

There is another mechanism that follows from the
spiral geometry shown in Fig. 14(A). Consider a small-
scale structure surrounded by weak vorticity without any
preferred polarization [Fig. 14(D)]. Clearly the weak vor-
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ticity will be wrapped around the small-scale structure; in
addition, it will be advected by the swirl induced by the
coherent vortex. Because of the fact that the spin veloci-
ty increases as one approaches the coherent structure
along the spiral arc (on which a secondary structure lies)
shown in Fig. 14(A) it follows that the weak vorticity be-
comes polarized. In fact, the weak vorticity acquires the
same polarization as the small-scale structure around
which it wraps. These, therefore, are some of the mecha-
nisms for small-scale organization in turbulent shear
Aows.

VII. EFFECT OF THE SMALL-SCALE ORGANIZATION
ON THE DYNAMICS OF THE COHERENT STRUCTURE

The simulations T1—T6 are all decaying Aows as no
energy is supplied to replenish dissipative losses. Conse-
quently, these unforced Rows will eventually laminarize.
The time scale at which this happens depends both on the
Reynolds number Re, (based on the coherent vortex) as
well as on the initial turbulent fluctuation level (say, the
Reynolds number based on the Taylor microscale for the
initial turbulent background flow). Depending on the ini-

(A)
—right-handed

~~ left-handed

right-handed

left-handed

~ right-handed

exiting 03 L- l»e

entering IL- line

FICx. 12. (A) Sketch of the general orientation of the left- and right-handed small-scale vortical structures surrounding the
coherent vortex. (B) Sketch of the right-handed vorticity components vector lines. (C) Sketch of the left-handed vorticity com-
ponents vector lines. (D) Contours of normal component of co+ in m~~. (E) Contours of normal component of coL in m.

~~. (F) Highly lo-
calized coiling of vector lines. (Cx) Contours of the helicity density h =u. co in m.

~~.
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tial turbulent fluctuation level one of three things hap-
pens. (l) For low random fluctuation levels, the coherent
vortex recovers its axisymmetry completely, and al-
though secondary structures do exist in the surrounding
layer, their vorticity amplitude keeps decreasing relative
to that of the vortex. In such cases, the coherent vortex
quickly ceases to be turbulent. (2) For sufficiently high
Auctuation levels, the vortex is unable to survive the tur-
bulent environment and is completely disrupted. No sign
remains of a coherent vortex of any sort after the initial
decay of the turbulent background. However, the quality
of the early part of the simulation is questionable for such
simulations, as the spectrum tends to lift up too much at
the high wave numbers for the simulation to be adequate-
ly resolved. Thus, in such cases, we have at best a crude

large eddy simulation at early times. (3) For fluctuation
levels in between, a vortex survives in some coherent
form and the turbulence is sustained for some period of
time in the surrounding layer.

Bending waves can be excited if the initial fIuctuation
level is sufticiently high. In fact, the difference between
cases T5 and T6 is the excitation of bending waves in the
latter. The presence of these bending waves also has an
inhuence on the turbulence sustaining mechanism around
the vortex. As small-scale vortical structures become
more and more azimuthally aligned around the vortex,
their radial vorticity component diminishes and vortex
stretching diminishes (e.g., for concentric vortex ring
around a line vortex there is no stretching). The bending
waves alter this by making the stretching more non-

FIG. 12. (Continued).





48 COUPLING BETWEEN A COHERENT STRUCTURE AND FINE-. . . 2683

inviscid cascade mechanism (i.e., stretching) and lose en-
ergy mainly by viscous damping, which is now strongly
reduced compared to case T5. This phenomenon is clear-
ly revealed by the energy transfer spectrum [Fig. 15(A)]
and the corresponding energy spectrum [Fig. 15(B)];both
spectra are plotted for the end of simulations T9 and
T10, whose durations are 50% of the duration of T5.
Moreover, the small-scale structures gain enstrophy and
the peak vorticity magnitude in the surrounding layer in-
creases [Figs. 16(A) and 16(B)]. Consequently, the vortex
becomes turbulent again. This has implications for the
generation of bending waves, which can be excited by en-
ergetic small-scale structures. By comparing isovorticity
surfaces at the end of simulations T9, T10 [Figs. 17(A)
and 17(B)] with the initial condition [Fig. 17(C)], we ob-
serve that the small scales have made the vortex nonax-
isymmetric through the excitation of bending waves.

right

slow
rotation

vortex line

small scale
vortical structures

&
fast rotation

rotation
rotation

FIG. 14. (a) Schematic of the spiral vortical structure sur-
rounding the coherent vortex. (b) The differential rotation
which causes the polarization of the small-scale vortical struc-
tures. (c) Increase and maintenance of polarization during pair-
ing events in the surrounding layer. (d) Polarization of weak
vorticity surrounding a small vortical structure.

FIG. 130 (Co«&need).

This phenomenon is the sole result of feedback (or back-
scatter) from the small scale on the coherent vortex, a
process which cannot be modeled by enhanced
diffusivities. For example, it would not be possible to
predict where the bending waves would develop.

Apart from the bending waves the main effect of the
turbulence on the coherent vortex dynamics is to slow the
motion of the helical-wave packet (discussed later). For
case T5, one observes core dynamics which except for a
slower evolution closely resemble that of case I.1. At the
end of simulation T5, the small scales in the surrounding
layer have lost their energy and the coherent vortex is
largely axisymmetric and rectilinear; see Fig. 3(q).

The quantity % is useful as a measure of the intensity
of the internal core dynamics within the coherent struc-
ture. That is, high amplitudes of % within the core sig-
nals strong core dynamics. This is because the core dy-
namics is driven by differences between the left- and
right-handed vorticity components [13]. In Fig. 11, A
thus reveals the motion of helically polarized packets
within the core. The large-scale motion inside the vortex
core immediately breaks the random distribution in Fig.
11(a) by making the contracting part of the vortex left
handed and the expanding part right handed; see Fig.
11(c). The motion of the helical-wave packets on the vor-
tex makes % significantly more coherent inside the vortex
than outside; see Figs. 11(b)—11(e). The low enstrophy
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"bubble" which formed in each of the polarized vorticity
coinponents for the laminar case I.l (see Refs. [12,13])
also forms in the turbulent case; see Figs. 11(g) and 11(i).
Note that the sharp peaks inside the vortex core [Figs.
11(g) and 11(i)] are the result of these bubbles; for exam-
ple the bubble in the col distribution gives a positive peak
in A as Idol I

((
I co+ I. The bubbles in the polarized vorti-

city components coalesce in Fig. 11(1) (or shortly before),
thereby producing a bubble in the r0 field [Fig. 3(1)].
Compared to the laminar case L1 this event occurs
significantly later in the turbulent case T5. The reason
for this delay is that the small-scale turbulence enhances
dissipation and diffusion and thus reduces the mean vorti-
city inside the vortex core faster than in the laminar case.
As the core dynamics otherwise are qualitatively similar
to the laminar case, this delay in the evolution could be
modeled by an eddy viscosity. However, other aspects of
the evolution such as the small-scale polarization cannot
be modeled this way. As for the laminar simulations [13],
the polarized vorticity components enable us to analyze
the dynamics within the coherent structure in terms of
wave packets moving in opposite directions along the axis
of the coherent vortex.

The organized smaller structures around the coherent
vortex are instrumental in scalar mixing and entrainment.
The predominant azimuthal alignment of the secondary
structures implies that they can induce a local flow with a
significant radial velocity. An example of this is seen in
Fig. 18, which shows both vorticity magnitude and scalar
concentration at the end (t*= 8 ) of simulation T6. Two
secondary structures with opposite polarization are indi-
cated in Fig. 18(A). We clearly observe how fiuid from
outside with low scalar concentration is transported radi-
ally inwards between two structures, while at the edges of
the pair, fluid with high scalar concentration is convected
radially outwards. Thus, azimuthally aligned structures
contribute to entrainment and scalar mixing. Final1y,
note that the vortical structures in the surrounding layer
are not directly marked by the scalar, but can be only
qualitatively inferred from the scalar concentration.

VIII. DISCUSSION AND CONCLUSION

A. A conjecture about local anisotropy

Traditionally, turbulence theory invokes the assurnp-
tion of local isotropy for scales in the inertial subrange,
thus assuming that there is no preferred direction of the
vorticity associated with scales which are both much
larger than the Komolgorov scale and much smaller than
the energy containing integral scale. Consequently in the
1irnit of infinite Reynolds number, anisotropy is only asso-
ciated with the large scales of the flow. Note that the as-
surnption of local isotropy does not imply that there are
no structures in the inertial subrange, nor does it imply
anything about the shape of such structures. What it
does imply, however, is that the orientation of small-scale
structures is statistically random. Local isotropy is
indeed a strong assumption, which, however, is very con-
venient for calculating the transfer of energy between
different scales. In essence 1ocal isotropy implies a decou-
pling of large and fine scales. As mentioned by Hussain

[1], the evolutions of large and fine scales might be inti-
rnately coupled, thus suggesting that local isotropy is
suspect in turbulent shear flows. With basis in the results
obtained here we pursue this idea further by formulating
the conjecture that a coherent structure will induce local
anisotropy at all scales in its vicinity. We also present a
physical space picture of how the cascade of energy from
larger to smaller scales might take place.

The presence of the coherent vortex clearly makes the
large scales anisotropic. We will now examine how the
anisotropy of the largest scales cascades down to the
sma11est scales. The first step in this cascade is discussed
above, namely, that the coherent vortex gives rise to the
formation of secondary vortical structures (threads) in
the surrounding layer (e.g., Fig. 4) through alignment and
subsequent amalgamation of small-scale structures.
These secondary structures may then, provided that they
are sufficiently strong, dominate the strain rates in their
immediate vicinity. If the Reynolds number is sufficiently
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large, so as to allow the existence of even smaller scales,
we can then imagine that these smaller scales align and
organize azimuthally around the threads, as shown in
Fig. 19(A). In the limit of infinite Reynolds number, this
line of reasoning leads to a hierarchy of increasingly
smaller scale structures which are organized as schemati-
cally suggested in Figs. 19(A)—19(C). By construction
this figure represents a fractal vortical structure. The no-
tion of fractals in turbulence is not new; it can in fact be
traced back to Richardson [18] and has been promoted
extensively by Mandelbrot [19,20]. The present scenario
merely adds a concrete physical space picture. An in-
teresting aspect of the fractal vortex shown in Fig. 19 is

~nil~I
(C)
FIG. 17. 65% level isovorticity surfaces at the end of simula-

tions T9 (A) and T10 (B). Comparison with the end of simula-

tion T5 (C), the initial condition of simulations T9 and T10,
shows the excitation of bending waves.

QNoc40C~ .

yQOAO NXNXWNSXa CC

FIG. 16. Contours of the vorticity norm in ~~~ at the end of
simulations T9 (a) and T10 (b). The contour levels in the two
panels are equal. The lowest contour levels are shaded gray.
Moreover, a smaller contour increment has been used for the
lower levels (up to 30% of the peak) than for the high levels.

that the spatial support of the dissipation might also be
fractal, or multifractal. Note that the present simulations
have Reynolds numbers which are too low to reveal more
than the secondary structures, and thus the existence of a
hierarchy of small-scale structures is purely a specula-
tion. However, if this speculative scenario has merit,
then it follows that a coherent structure induces a depar-
ture from local isotropy directly at all scales.

A few remarks about such a fractal vortical structure
are in order. First, the structure would not be stationary,
but constantly changing although it may still be statisti-
cally stationary. For example, each time two secondary
structures of the same polarization pair, or each time two
secondary structures of opposite polarity come in close
proximity, a subsequent rearrangement of the accom-
panying smaller-scale structures would follow, presum-
ably much the same way as the "ribs" rearrange follow-
ing pairings of "rolls" in a mixing layer. Second, the time
scale associated with the smaller vortical structures de-
creases in proportion to the size of the structures, thereby
enabling the smaller-scale structures to adjust rapidly to
changes in the larger-scale structures, Third, the in-
herent local anisotropy would not necessarily make the
Row unamenable to modeling, for the role played by the
local isotropy assumption would be replaced by a fractal
self-similarity in the surrounding layer. Fourth, the frac-
tal vortical structure would give a clear physical space
picture of how the energy cascade from large to small
scales takes place, for the secondary structures take ener-

gy from the coherent vortex, and so on.

B. Comparison with other "spiral-type" intermittency scenarios

The spiral small-scale structures surrounding our
coherent structure constitute an alternative type of inter-
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nal intermittenc . It hy. has some features in common with
Lundgren's model [10] as well as with Childress model

compare the different scenarios and also discuss what
e ect axial straining would have on our structure.

Lund ren ~10~g ~ ~ conjectures a spiral-type intermittency
near a columnar vortex which is s b t t

~ ~

u jec o axisymmetric
axial stretching. A noticeable feature of this model is

i yie s a —
—, spectrum. In Lundgren's model, the

vorticity is everywhere parallel to the axis of the vortex

(A)

(A)

FIG. 19. SSchematic illustrating our conjecture of a fractal
vortex in the hi h-Re ig - eynolds-number limit. Frames (A) —(C)
show successive magnifications.

vortex cor
nt
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vortex surface

vortex line
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Qow

FIG. 18. Scalar entrainment due the small-scale vortical
structures in the surrounding layer for the las fr or e ast rame of simula-
ion . ( ) Contours of the vorticity norm in ~ . (B) Co

bution of
ar concentration, which initially matched th d'c e e istri-

vortex. C
n o „=„—ere g=rvs) in the axisymmetr' he ric co erent

r ex. (C) Scalar contours in the lowest 20% level. FICx. 20. Sch. Schematic of a Lundgren vortex [10j.
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(i.e., the z axis) —even in the spiral structure; see Fig. 20.
Lundgren shows that the dynamics of the vortex can be
transformed to that of a two-dimensional vortex [Eqs.
(11) and (12) in Ref. [10]]. Thus, spiral structures typical-
ly result from the two-dimensional mechanism known as
axisymmetrization [3], where a noncircular vortex spins
off filaments, in the form of spiral arms, so as to make the
core region circular. The Lundgren vortices differ from
regular two-dimensional vortices through the axial
stretching, which makes the filaments much thinner than
in two-dimensional vortex dynamics. These thin fila-
ments are the source of the —

—,
' spectrum.

Our intermittent structure difFers from Lundgrens in
foUr ways. First, our coherent structure is not subject to
external axial stretching, but only to local internal axial
stretching resulting from the core dynamics. Second, our
small scales are primarily recruited from the turbulent
environment of the coherent vortex, whereas Lundgrens
spirals are expelled from an initially noncircular vortex
core. Third, the vorticity in our small-scale structures is
essentially perpendicular to the axis of the coherent
vortex —in Lundgren s spirals the vorticity is parallel to
the axis of the vortex. Finally, our small scales are polar-
ized and have high helicity, while Lundgren s are unpo-
larized and have no helicity.

In the presence of axisymmetric axial stretching our in-
termittent structure may or may not develop —the decid-
ing factor is the ratio between the initial mean vorticity
in the vortex co(0) and the axial strain rate S. In the Ap-
pendix we consider the passive advection of a material
curve in the Aow of an axial stretched potential vortex.
We find that the curve will ultimately align with the axis
of the vortex when S )0. However, if co(0)/S ))1 many
vortex turnover times elapse before the ultimate axial
alignment sets in, and meanwhile the material curve
aligns azimuthally. Based on these considerations, we
conclude that our intermittent structure will also form in
the presence of weak axial stretching.

The vortex tube cascade model of Childress [11]results
in a fully three-dimensional fractal vortex structure,
which resembles our Fig. 19. As in our case the small
scales have helicity. However, the intermittent structure
is generated by a different mechanism, namely, through
instability of the vortex core, and not as in our case
through the recruitment of fine scales from a turbulent
environment. In this respect the Childress model, like
Lundgren's, provides a physical space description of how
a cascade can build up. Our scenario does not describe
the build up of a cascade, but elucidates the coexistence
of a coherent structure and surrounding turbulence. That
is, we describe how the turbulent environment is affected
and organized by the presence of a large-scale tubular
vortex.

C. Summary of results and future directions

When the laminar vortex is superimposed on fine-scale
turbulence we have a prototype of a segment of a
coherent structure in a turbulent Aow as well as of inter-
nal intermittency near a strong vortical structure. The
coherent vortex induces a very special type of intermit-

tency in the surrounding layer. The vorticity in this layer
is organized in spiral patterns and is almost parallel or
antiparallel to the swirl of the coherent vortex. This way
the vorticity dynamics in the surrounding layer is subject-
ed to some of the same constraints as 2D turbulence. In
particular, we have identified pairings between structures
with vorticity oriented in the same direction as a frequent
event, which in fact organizes small vortical structures in
the surrounding layer into larger ones. An important
feature of the small-scale structures is that they tend to
be highly polarized, i.e., left or right handed. Such polar-
ization partially suppresses energy cascades to larger
wave numbers.

In spite of the observed pairings, we have not found an
inverse energy cascade. On the contrary, the energy
transfer is always from larger to smaller scales. This is
because the small scales are energized at the expense of
the coherent vortex. Even when the small-scale vortical
structures in the surrounding layer are very weak com-
pared to the coherent vortex, they have the potential for
making the vortex fully turbulent provided that the Rey-
nolds number is suIIIiciently high. Thereby, the small
scales can have a profound impact on the coherent vortex
itself, an effect which cannot be modeled by any type of
eddy viscosity. This feedback consists of the excitation of
bending waves on the coherent vortex. Another effect of
the small scales on the coherent vortex is a quicker ex-
pansion of the vortex core and the associated reduction of
the vorticity magnitude; the latter has the consequence
that the core dynamics is slower than in the laminar case.
This effect can conceivably be modeled by an enhanced
diffusion.

This paper opens up several new directions for future
research into coherent structure dynamics and tur-
bulence. To a large extent, these center around the
helical-wave decomposition, the dynamics of the polar-
ized vorticity components in turbulent Aows, and the evo-
lution and interaction of isolated vortices of high polar-
ization. The reasons why these issues demand further
consideration are that the polarized vorticity components
give detailed insight into vortex dynamics, and the obser-
vation that 3D vortical structures in general are polar-
ized. Some Aows such as the circular jet are not initially
truly 3D but axisymmetric. However, after a circular jet
has undergone rollup and successive pairings, and the
ring structures develop azimuthal instabilities, then the
polarized vorticity components start to separate spatially.
It is here important to realize that the ring instabilities
consist entirely of core dynamics. When the ring struc-
tures break down completely, and the jet becomes fully
turbulent, then the Aow field consists of mainly stream-
wise vortical structures, which have the form of lobes or
asymmetric hairpins. These structures are each partially
polarized, i.e., one leg in a hairpin is predominantly right
handed while the other is predominantly left handed [21].
It remains to be seen if the transition to turbulence in
general is coupled to the spatial separation of the polar-
ized vorticity components. The separation also occurs
during asymmetric collision of vortex rings and in a
viscous Row is a principal mechanism for generation of
total helicity H and making the Bow approach a Beltrami
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state [22]. A natural continuation of the present paper is
therefore to analyze the structure of the internal intermit-
tency near a fully or partially polarized vortical structure.
Presumably, the small-scale structures surrounding the
vortex will have a corkscrew structure, be wrapped
around the vortex, and have the same polarization as the
coherent vortex.
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Using (A2) we find

Now consider two particles, o. and a', which are very
close together at t =0. The separation between these par-
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5r(t) =5r (0)e

58(t) =58(0)+ 5r(0)(1 —e '),I
rrSr (0)

5z (t) =5z (0)e ' .

(A4)

APPENDIX: ALIGNMENT OF
A PASSIVE MATERIAL CURVE

s rv„=——r, v&=, v, =Sz,
2 '

2mr
' (A 1)

here I is the circulation and S is the constant strain rate.
The trajectory of a particle o, is given by

r

Consider an inviscid column vortex subject to axial
stretching;

Now let a and a' be particles on a material line which is
advected by the flow (A 1). The tangent direction s of the
line at the material particle a changes with time in a
manner, which we can easily calculate from (A4). The
tangent direction can be described in terms of three an-
gles: P„„P&„andP„e.These angles are defined such that

e, -s
tang„,= c„s

r (t)=r (0) exp
St

8 (t)= (e ' —1)+8 (0),I
2vrSr (0)

z (t)=z (0)e ' .

(A2)

e, .s
tangs, =

cg s

c& s
tang„e=

c~ 's

Using (A4) and taking the limit a' —+a we find

(A5)

tang, (t) = lim ——lim e""=e"'tang„,(0),5z (t) . 5z (0) siy2
a'~a 5r (t) a ~a 5r (0)

r (t)58(t)
cottle, (t) = lima-a 5z t

(A6)

r (0)58(0)= lim e
—3st/2

a' a 5z(0)
—sin;1 —si) 5 (o)

e j1—e
Sr (0) . 5z (0)

=e '
cottle, (0)— e s' (1—e ')cot/„,(0),r

vrSr (0)
(A7)

r (t)58(t)
tang„e(t)= lim

a' a 5r t
= lim

r (0)58(0)
5r(0)

(
' —1)

rrSr (0)

r
=tang„e(0)— ~

(e ' —1) .
vrSr (0)

Note the two obvious cases: (1) if s is initially normal to
the radial direction then s remains so; (2) if s is initially
normal to the axial direction then s stays that way. Ex-
cluding these two cases, all the trigonometric functions in
(A6) —(A8) are nonsingular. We notice immediately that
in the limit of large St, the tangent will align with the z
axis. However, formula (A7) shows that substantial az-
imuthal alignment (Pe, =0) can occur first. This is be-
cause of the second term in the final expression (A7).
This term involves the factor exp( St/2)[1 —exp( St—)]-
which is initially zero, but then increases to a maximum

(A8)

I

of 2/27 =0.38 at St =ln3 = 1.1 before its final monton-
ic decay. Moreover, this term includes the factor
1 /~Sr (0) which is of order co/S(co is the mean initial
vorticity of the vortex core) when r (0) is comparable to
the initial core size. Thus, for S/co(&1 many turnover
times will elapse before t reaches the value (ln3)/S, and
hence before the axial alignment sets in. Prior to
t =(ln3)/S (A7) shows azimuthal alignment, which is
substantial for S/co «1. When St (&1, the asymptotic
form of (A7) is
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cot/a, ( t) = cottle, (0)— cot/„,(0)
rt

~r (0)

2

=cottle, (0)—tto cot/„,(0),
r (0)

(A9)

where o. is the initial vortex core size.
The above analysis shows that the alignment of a pas-

sive material curve involves two distinct phases when the
axial straining is weak: first, an intermediate azimuthal
alignment phase (St (1), then the terminal axial align-
ment (St ) 1).
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